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We can divide quadratic forms Q(x,y) = ax2 + bxy + cy2 with integer coef-

ficients a,b, c into four broad classes according to the signs of the values Q(x,y) ,

where as usual we restrict x and y to be integers. We will always assume at least one

of the coefficients is nonzero, so Q is not identically zero, and we will always assume

(x,y) is not (0,0) . There are four possibilities:

(I) If Q(x,y) takes on both positive and negative values but not 0 then we call

Q a hyperbolic form.

(II) If Q(x,y) takes on both positive and negative values and also the value 0 then

we call Q a 0 -hyperbolic form.

(III) If Q(x,y) takes on only positive values or only negative values then we call Q

an elliptic form.

(IV) If Q takes on the value 0 and either positive or negative values, but not both,

then Q is called a parabolic form.

The hyperbolic-elliptic-parabolic terminology is motivated in part by what the level

curves ax2 + bxy + cy2 = k are when we allow x and y to take on all real values

so that one gets actual curves. The level curves are hyperbolas in cases (I) and (II),

and ellipses in case (III). In case (IV), however, the level curves are not parabolas as

one might guess, but straight lines. From the classical perspective of conic sections

parabolas are the transitional case between hyperbolas and ellipses, but from another

viewpoint one can pass from hyperbolas to ellipses through a transitional case of a

pair of parallel lines as in the family of curves x2− cy2 = 1 which are hyperbolas for

c > 0, ellipses for c < 0, and a pair of parallel lines for c = 0. Parabolic forms are

much simpler than the other types and we will not be spending much time on them.

As we will show later in the chapter, there is an easy way to distinguish the four

types of forms ax2 + bxy + cy2 in terms of their discriminants ∆ = b2 − 4ac :

(I) If ∆ is positive but not a square then Q is hyperbolic.

(II) If ∆ is positive and a square then Q is 0-hyperbolic.

(III) If ∆ is negative then Q is elliptic.

(IV) If ∆ is zero then Q is parabolic.
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Discriminants play a central role in the theory of quadratic forms. A natural question

to ask is whether every integer occurs as the discriminant of some form, and this is

easy to answer. For a form ax2 + bxy + cy2 we have ∆ = b2 − 4ac , and this is

congruent to b2 mod 4. A square such as b2 is always congruent to 0 or 1 mod 4,

so the discriminant of a form is always congruent to 0 or 1 mod 4. Conversely, for

every integer ∆ congruent to 0 or 1 mod 4 there exists a form whose discriminant

is ∆ . The simplest ones are:

x2 − ky2 with discriminant ∆ = 4k

x2 + xy − ky2 with discriminant ∆ = 4k+ 1

Here k can be positive, negative, or zero. The forms x2−ky2 and x2+xy−ky2 are

called the principal quadratic forms of these discriminants.

5.1 The Four Types of Forms

We will analyze each of the four types of forms in turn, but before doing this let

us make a few preliminary observations that apply to all forms.

In the arithmetic progression rule controlling the labeling of the four regions

surrounding an edge of the topograph, we can label the edge

by the common increment h = (q+r)−p = s−(q+r) as in

the figure at the right. The edge can be oriented by an arrow

showing the direction in which the progression increases

by h . Changing the sign of h corresponds to changing the orientation of the edge. In

the special case that h happens to be 0 the orientation of the edge is irrelevant and

can be omitted.

The values of the increment h along the boundary of a region in the topograph

have the interesting property that they also form an arithmetic progression when all

these edges are oriented in the same direction, and the amount by which h increases

as we move from one edge to the next is 2p where p is the label on the region adjacent

to all these edges:







We will call this property the second arithmetic progression rule. To see why it holds,

start with the edge labeled h in the figure, with the adjacent regions labeled p and

q . The original arithmetic progression rule then gives the value p+ q+h in the next

region to the right. From this we can deduce that the label on the edge between the

regions labeled p and p+q+h must be h+2p since this is the increment from q to
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p+ (p+q+h) . Thus the edge label increases by 2p when we move from one edge to

the next edge to the right, so by repeated applications of this fact we see that we have

an arithmetic progression of edge labels all along the border of the region labeled p .

Another thing worth noting at this point is something that we will refer to as the

monotonicity property . This says that in the figure at

the right, if the three labels p , q , and h adjacent to

an edge are all positive, then so are the three labels

for the next two edges in front of this edge, and the

new labels are larger than the old labels. It follows

that when one continues forward going out this part

of the topograph, all the labels become monotonically

larger the farther one goes. Similarly, when the original three labels are negative, all

the labels become larger and larger negative numbers.

Next we have a very useful way to compute the discriminant of a form directly

from its topograph:

Proposition 5.1. If an edge in the topograph of a form Q(x,y) is labeled h with

adjacent regions labeled p and q , then the discriminant of Q(x,y) is h2 − 4pq .

Note that the sign of h and the orientation of the edge are irrelevant here. The

proposition implies that if the discriminant is known then any two of p , q , and |h|

determine the third.

Proof: For the given form Q(x,y) = ax2 + bxy + cy2 , the 1/0 and 0/1 regions in

the topograph are labeled a and c , and the edge in the topograph

separating these two regions has h = b since the 1/1 region is

labeled a + b + c . So the statement of the proposition is correct

for this edge. For other edges we proceed by induction, moving

farther and farther out the tree. For the induction step suppose

we have two adjacent edges labeled h and k as in the figure, and

suppose inductively that the discriminant equals h2−4pq . We have r = p+q+h , and

from the second arithmetic progression rule we know that k = h+ 2q . Then we have

k2−4qr = (h+2q)2−4q(p+q+h) = h2+4hq+4q2−4pq−4q2−4hq = h2−4pq ,

which means that the result holds for the edge labeled k as well. ⊔⊓

Elliptic Forms

Elliptic forms have fairly simple qualitative behavior, so let us look at these forms

first. Recall that we defined a form Q(x,y) to be elliptic if it takes on only positive

or only negative values at all integer pairs (x,y) 6= (0,0) . The positive and negative

cases are equivalent since one can switch from one to the other just by putting a minus

sign in front of Q . Thus it suffices to consider the case that Q takes on only positive

values, and we will always assume we are in this case whenever we are dealing with
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elliptic forms. We will also generally assume when we look at topographs of elliptic

forms that the orientations of the edges are chosen so as to give positive h -values,

unless we state otherwise.

For a positive elliptic form Q let p be the minimum positive value taken on by

Q , so Q(x,y) = p for some (x,y) ≠ (0,0) . Here (x,y) must be a primitive pair

otherwise Q would take on a smaller positive value than p . Thus there is a region

in the topograph of Q with the label p . All the edges having one endpoint at this

region must be oriented away from the region, by the arithmetic

progression rule and the assumption that p is the minimum value

of Q . The monotonicity property then implies that all edges farther

away from the p region are also oriented away from the region, and

the values of Q increase steadily as one moves away from the p

region.

For the edges making up the border of the p region we know

that the h - labels on these edges form an arithmetic progression

with increment 2p , provided that we temporarily re-orient these edges so that they

all point in the same direction. If some edge bordering the p region has the label h = 0

then the topograph has the form shown in the first figure below, with the orientations

on edges that give positive h - labels. An example of such a form is px2 + qy2 . We

call the 0-labeled edge a source edge since all other edges are oriented away from

this edge.

The other possibility is that no edge bordering the p region has label h = 0.

Then since the labels on these edges form an arithmetic progression, there must be

some vertex where the terms in the progression change sign. Thus when we orient the

edges to give positive h - labels, all three edges meeting at this vertex will be oriented

away from the vertex, as in the second figure above. We call this a source vertex since

all edges in the topograph are oriented away from this vertex.

If the three regions surrounding a source vertex are labeled p,q, r

then the fact that the three edges leading from this vertex all point

away from the vertex is equivalent to the three inequalities p < q+ r ,

q < p+r , and r < p+q . These are called triangle inequalities since they are satisfied

by the lengths of the three sides of any triangle. In the case of a source edge one of

the inequalities becomes an equality, for example r = p + q in the earlier figure with
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a source edge.

As we know, any three integers p,q, r can be realized as the three labels surround-

ing a vertex in the topograph of some form. If these are positive integers satisfying

the triangle inequalities then this vertex is the source vertex of an elliptic form since

these inequalities imply that the three edges at this vertex are oriented away from

the vertex, so the monotonicity property guarantees that all values of the form are

positive. The situation for source edges is simpler since any two positive integers p

and q determine an elliptic form with a source edge having adjacent regions labeled

p and q as in the earlier figure.

Hyperbolic Forms

The topographs of hyperbolic forms exhibit quite different behavior from the

topographs of elliptic forms since they always have a periodic separator line of the

sort that we saw in several of the examples in the previous chapter. Here is the general

statement:

Theorem 5.2. In the topograph of a hyperbolic form the edges for which the two

adjacent regions are labeled by numbers of opposite sign form a line which is

infinite in both directions, and the topograph is periodic along this line, with other

edges of the topograph leading off the line on both sides.

Proof: For a hyperbolic form Q all regions in the topograph have labels that are either

positive or negative, never zero, and there must exist two regions of opposite sign.

By moving along a path in the topograph joining two such regions we will somewhere

encounter two adjacent regions of opposite sign. Thus there must exist edges whose

two adjacent regions have opposite sign. Let us call these edges separating edges.

At an end of a separating edge the value of Q in the next region must be either

positive or negative since Q does not take the value 0 :

This implies that exactly one of the two edges at each end of the first separating edge

is also a separating edge. Repeating this argument, we see that each separating edge

is part of a line of separating edges that is infinite in both directions, and the edges

that lead off from this line are not separating edges.

The monotonicity property implies that as we move off this line of separating

edges the values of Q are steadily increasing through positive integers on the posi-

tive side and steadily decreasing through negative integers on the negative side. In

particular this means that there are no other separating edges that are not on the

initial separator line, so there is only one separator line.
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It remains to prove that the topograph is periodic along the separator line. We

can assume all the edges along the separator line are oriented in the same direction

by changing the signs of the h values if necessary. For an edge of the separator line

labeled h with adjacent regions labeled p and −q with p > 0 and q > 0, we know

that h2 + 4pq is the discriminant ∆ , by Proposition 5.1. The equation ∆ = h2 + 4pq

with p and q positive implies that ∆ is positive and furthermore that each of |h| ,

p , and q is less than ∆ . Thus there are only finitely many possible values for h , p ,

and q along the separator line since ∆ is a constant depending only on Q . It follows

that there are only finitely many possible combinations of values h , p , and q at each

edge on the separator line. Since the separator line is infinite, there must then be two

edges on the line that have the same values of h , p , and q . Since the topograph is

uniquely determined by the three labels h , p , q at a single edge, the translation of

the line along itself that takes one edge to another edge with the same three labels

must preserve all the labels on the line. This shows that the separator line is periodic.

There must be edges leading away from the separator line on both the positive

and the negative side, otherwise there would be just a single region on one side of

the line, and then the second arithmetic progression rule would say that the h labels

along the line formed an infinite arithmetic progression with nonzero increment 2p

where p is the label on the region in question. However, this would contradict the

fact that these h labels are periodic. ⊔⊓

The qualitative behavior of the topograph of a hyperbolic form away from the

separator line fits the pattern we have seen in examples. Since the separator line is

periodic the whole topograph is periodic, consisting of repeating sequences of trees

leading off from the separator line on each side, with monotonically increasing pos-

itive values of the form on each tree on the positive side of the separator line and

monotonically decreasing negative values on the negative side, as a consequence of

the monotonicity property.

Parabolic and 0-Hyperbolic Forms

The remaining types of forms to consider are parabolic forms and 0-hyperbolic

forms. These turn out to be less interesting, and they play only a minor role in the

theory of quadratic forms.

Parabolic and 0-hyperbolic forms are the forms whose topograph contains at

least one region labeled 0. By the second arithmetic progression rule, each edge

adjacent to a 0 region has the same label h , and from this it follows that the labels

on the regions adjacent to the 0 region form an arithmetic progression:
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When h = 0 the topograph has the very simple pattern shown in the following figure:

Thus the form is parabolic, taking on only positive or only negative values away from

the 0 region, depending on the sign of q . We cannot have q = 0 since we are not

allowing forms to be identically zero. An example of a form with this topograph is

Q(x,y) = qx2 , with the 0 region at x/y =
0/1 . The topograph is periodic along the 0

region since it consists of the same tree pattern repeated infinitely often.

The remaining case is that the label h on the edges bordering a 0 region is

nonzero. The arithmetic progression of values of Q adjacent to the 0 region is

then not constant, so it includes both positive and negative numbers, and hence Q is

0-hyperbolic. If the arithmetic progression includes

the value 0, this gives a second 0 region adjacent to

the first one, and the topograph is as shown at the

right. An example of a form with this topograph is

Q(x,y) = qxy , with the two 0 regions at x/y = 1/0

and 0/1 .

If the arithmetic progression of values of Q adjacent to the 0 region does not

include 0, there will be an edge separating the positive from the negative values in

the progression. We can extend this separating edge to a line of separating edges as

we did with hyperbolic forms. If this extension does not eventually terminate with a

second 0 region, the reasoning we used in the hyperbolic case would yield two edges

along this line having the same h and the same positive and negative labels on the two

adjacent regions, forcing the line to be periodic in the direction of this extension. This

in turn would force it to be periodic in both directions by the arithmetic progression

rule. But this is impossible since the line began with a 0 region at one end. Thus the

topograph contains a finite separator line connecting two 0 regions.

An example of such a form is Q(x,y) = qxy − py2 = (qx − py)y which has

the value 0 at x/y =
1/0 and at x/y =

p/q or the reduction of p/q to lowest terms

if p and q are not coprime. Here we must have |q| > 1 for the two 0 regions to be

nonadjacent. The separator line must follow the strip of triangles in the Farey diagram

corresponding to the continued fraction for p/q since the separator line is dual to a

finite strip of triangles with the vertices 1/0 and p/q at its two ends. For example,

for p/q =
2/5 the topograph of the form 5xy − 2y2 = (5x − 2y)y is shown in the

following figure:
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General Conclusions

Having described the topographs of the four types of forms, we can now deduce

the characterization of each type in terms of the discriminant:

Proposition 5.3. The four types of forms are distinguished by their discriminants,

which are negative for elliptic forms, positive nonsquares for hyperbolic forms,

positive squares for 0 -hyperbolic forms, and zero for parabolic forms.

Proof: Consider first an elliptic form Q , which we may assume takes on only positive

values since changing Q to −Q does not change the discriminant. The topograph

of Q contains either a source vertex or a source edge. For a source edge with the

label h = 0 separating regions with positive labels p and q the discriminant is ∆ =
h2−4pq = −4pq , which is negative. For a source vertex with adjacent regions having

positive labels p,q, r the edge between the p and q regions is labeled h = p+ q− r

so the discriminant can be expressed in the following way:

∆ = h2 − 4pq = (p + q − r)2 − 4pq

= p2 + q2 + r 2 − 2pq − 2pr − 2qr

= p(p − q − r)+ q(q − p − r)+ r(r − p − q)

In the last line the three quantities in parentheses are negative by the triangle inequal-

ities, so ∆ is again negative.

For a parabolic form the topograph contains a region labeled 0 bordered by edges

labeled 0, so ∆ = h2−4pq = 0. A 0-hyperbolic form has a region labeled 0 bordered

by edges all having the same nonzero label h so ∆ = h2 , a positive square.

For an edge in the separator line for a hyperbolic form the adjacent regions have

labels p and −q with p and q positive so ∆ = h2 + 4pq is positive. To see that

∆ is not a square, suppose the form is ax2 + bxy + cy2 . Here a must be nonzero,

otherwise the form would have the value 0 at (x,y) = (1,0) , which is impossible for a

hyperbolic form. If the discriminant was a square then the equation az2+bz+ c = 0

would have a rational root z = x/y with y ≠ 0 by the familiar quadratic formula

z = (−b ±
√
b2 − 4ac)/2a . Thus we would have a

(
x/y

)2
+ b

(
x/y

)
+ c = 0 and hence

ax2+bxy+cy2 = 0, so the form would have the value 0 at a pair (x,y) with y 6= 0,

which is again impossible for a hyperbolic form. ⊔⊓
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The presence or absence of periodicity in a topograph has the following conse-

quence:

Proposition 5.4. If an equation Q(x,y) = n with n ≠ 0 has one integer solution

(x,y) then it has infinitely many integer solutions when Q is hyperbolic or para-

bolic, but only finitely many integer solutions when Q is elliptic or 0 -hyperbolic.

Proof: Consider first the hyperbolic and parabolic cases. Suppose (x,y) is a solution

of Q(x,y) = n . If (x,y) is a primitive pair, then n appears in the topograph of

Q so by periodicity it appears infinitely often, giving infinitely many solutions of

Q(x,y) = n . If there is a nonprimitive solution (x,y) then it is d times a primitive

pair (x′, y ′) with Q(x′, y ′) = n/d2 . The latter equation has infinitely many solutions

(x′, y ′) by what we just showed, hence Q(x,y) = n has infinitely many solutions

(x,y) = (dx′, dy ′) .

For elliptic and 0-hyperbolic forms there is no periodicity, and the monotonicity

property implies that each number appears in the topograph at most a finite number

of times. Thus Q(x,y) = n can have only finitely many primitive solutions. If it had

infinitely many nonprimitive solutions, these would yield infinitely many primitive

solutions of equations Q(x,y) = m for certain divisors m of n . However, this is

impossible since each equation Q(x,y) = m for a fixed m can have only finitely

many primitive solutions and n has only finitely many divisors since we assume it is

nonzero. ⊔⊓

Exercises

1. (a) Find two primitive elliptic forms ax2 + cy2 that have the same discriminant

but take on different sets of values. Draw enough of the topographs of the two forms

to make it apparent that they do not have exactly the same sets of values. (Remember

that the topograph only shows the values Q(x,y) for primitive pairs (x,y) .)

(b) Do the same thing with hyperbolic forms ax2 + cy2 .

2. (a) Show the quadratic form Q(x,y) = 92x2−74xy+15y2 is elliptic by computing

its discriminant.

(b) Find the source vertex or edge in the topograph of this form.

(c) Using the topograph of this form, find all the integer solutions of 92x2 − 74xy +

15y2 = 60, and explain why your list of solutions is a complete list. (There are exactly

four pairs of solutions ±(x,y) , three of which will be visible in the topograph.)

3. Show that if a form takes the same value on two adjacent regions of its topograph,

then these regions are both adjacent to the source vertex or edge when the form is

elliptic, or both lie along the separator line when the form is hyperbolic.

4. Show that the minimum value of |h| for all the edges in the border of a given

region in the topograph of an elliptic or hyperbolic form occurs at an edge having an
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endpoint that achieves the minimum distance to the separator line or source vertex

or edge of all vertices in the border of the given region.

5. (a) Show that if a quadratic form Q(x,y) = ax2 + bxy + cy2 can be factored

as a product (Ax + By)(Cx + Dy) with A,B,C,D integers, then Q takes the value

0 at some pair of integers (x,y) 6= (0,0) , hence Q must be either 0-hyperbolic or

parabolic. Show also, by a direct calculation, that the discriminant of this form is a

square.

(b) Find a 0-hyperbolic form Q(x,y) such that Q(1,5) = 0 and Q(7,2) = 0 and draw

a portion of the topograph of Q that includes the two regions where Q(x,y) = 0.

5.2 Equivalence of Forms

In the topographs we have drawn we often omit the fractional labels x/y for the

regions in the topograph since the more important information is often just the values

Q(x,y) of the form. This leads to the idea of considering two quadratic forms to be

equivalent if their topographs “look the same” when the labels x/y are disregarded.

For a precise definition, one can say that quadratic forms Q1 and Q2 are equivalent

if there is a vertex v1 in the topograph of Q1 and a vertex v2 in the topograph of

Q2 such that the values of Q1 in the three regions surrounding v1 are equal to the

values of Q2 in the three regions surrounding v2 . For example if the values at v1 are

2,2,3 then the values at v2 should also be 2,2,3, in any order, but 2,3,3 is regarded

as different from 2,2,3. Since the three values around a vertex determine all the

other values in a topograph, having the same values at one vertex guarantees that the

topographs look the same everywhere if the labels x/y are omitted.

An alternative definition of equivalence of forms would be to say that two forms

are equivalent if there is a linear fractional transformation in LF(Z) that takes the

topograph of one form to the topograph of the other form. This is really the same

as the first definition since there is a vertex of the topograph in the center of each

triangle of the Farey diagram and we know that elements of LF(Z) are determined by

where they send a triangle, so if two topographs each have a vertex surrounded by

the same triple of numbers, there is an element of LF(Z) taking one topograph to the

other, and conversely.

A topograph and its mirror image correspond to equivalent forms since the mirror

image topograph has the same three labels around each vertex as at the corresponding

vertex of the original topograph. For example, switching the variables x and y reflects

the circular Farey diagram across its vertical axis and hence reflects the topograph of a

form Q(x,y) to the topograph of the equivalent form Q(y,x) . As another example,

the forms ax2 + bxy + cy2 and ax2 − bxy + cy2 are always equivalent since they
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are related by changing (x,y) to (−x,y) , reflecting the Farey diagram across its

horizontal axis, with a corresponding reflection of the topograph.

Equivalent forms have the same discriminant since the discriminant of a form

is determined by the three numbers surrounding any vertex, as these three numbers

determine the numbers p,q,h at each edge abutting the vertex and the discriminant

is h2 − 4pq for any of these edges.

Our next goal will be to see how to compute all the different equivalence classes

of forms of a given discriminant. The method for doing this will depend on which of

the four types of forms we are dealing with.

Reduced Elliptic Forms

Let us look at elliptic forms first to see how to determine all the different equiv-

alence classes for a given discriminant in this case. As usual it suffices to consider

only the forms with positive values. At a source vertex or edge in

the topograph of a positive elliptic form Q let the smaller two of

the three adjacent values of Q be a and c with a ≤ c , and let the

edge between them be labeled h ≥ 0. The third of the three small-

est values of Q is then a + c − h . The form Q is equivalent to the

form ax2 + hxy + cy2 which has the values a , c , and a + h + c

for (x,y) = (1,0) , (0,1) , and (1,1) . Since a and c are the smallest

values of Q we have a ≤ c ≤ a + c − h , and the latter inequality is

equivalent to h ≤ a . Summarizing, we have the inequalities 0 ≤ h ≤ a ≤ c .

Thus every positive elliptic form is equivalent to a form ax2 + hxy + cy2 with

0 ≤ h ≤ a ≤ c . An elliptic form satisfying these conditions is called reduced. Two

different reduced elliptic forms with the same discriminant are never equivalent since

a and c are the labels on the two regions in the topograph where the form takes its

smallest values, and h is determined by a , c , and ∆ via the formula ∆ = h2 − 4ac

since we assume h ≥ 0.

To avoid dealing with negative numbers let us set ∆ = −D with D > 0, so the

discriminant equation becomes D = 4ac−h2 . To find all equivalence classes of forms

of discriminant −D we therefore need to find all solutions of the equation

4ac = h2 +D with 0 ≤ h ≤ a ≤ c

This equation implies that h must have the same parity as D , and we can bound the

choices for h by the inequalities 4h2 ≤ 4a2 ≤ 4ac = D + h2 which imply 3h2 ≤ D ,

or h2 ≤ D/3 . This limits h to a finite number of possibilities, and for each of these

values of h we just need to find all of the finitely many factorizations of h2 + D as

4ac with a ≤ c and h ≤ a . In particular this shows that there are just finitely many

equivalence classes of elliptic forms of a given discriminant.

As an example consider the case ∆ = −260, so D = 260. Since ∆ is even, so is h ,

and we must have h2 ≤ 260/3 so h must be 0, 2, 4, 6, or 8. The corresponding values
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of a and c that are possible can then be computed from the equation 4ac = 260+h2 ,

always keeping in mind the requirement that h ≤ a ≤ c . The possibilities are shown

in the following table:

h ac (a, c)

0 65 (1,65), (5,13)

2 66 (2,33), (3,22), (6,11)
4 69 —

6 74 —

8 81 (9,9)

As a side comment, note that the values of ac increase successively by 1,3,5,7, · · · .

This always happens when ∆ is even, so the h values are 0,2,4,6, · · · . For odd ∆
the values of h are 1,3,5,7, · · · and the increments for ac are 2,4,6,8, · · · . (Let it

be an exercise for the reader to figure out why these statements are true.)

From the table we see that every positive elliptic form of discriminant −260 is

equivalent to one of the six reduced forms x2+65y2 , 5x2+13y2 , 2x2+2xy+33y2 ,

3x2 + 2xy + 22y2 , 6x2 + 2xy + 11y2 , or 9x2 + 8xy + 9y2 , and no two of these

reduced forms are equivalent to each other. Here are small parts of the topographs

of these forms:

In the first two topographs the central edge is a source edge, and in the last four

topographs the lower vertex is a source vertex.

One might wonder what would happen if we continued the table with larger values

of h not satisfying h2 ≤ 260/3 . For example for h = 10 we would have ac = 90 so the

condition a ≤ c would force a to be 9 or less, violating the condition h ≤ a . Larger

values of h would run into similar difficulties. The condition h2 ≤ D/3 saves one the

trouble of trying larger values of h .

Cycles of Hyperbolic Forms

Next we consider hyperbolic forms of a given discriminant ∆ > 0. The topograph

of a hyperbolic form has a separator line, so for each edge in the separator line we

have the edge label h with the adjacent regions labeled p and −q for p > 0 and

q > 0. We can assume h ≥ 0 by reorienting the edge if necessary. The discriminant

equation is ∆ = h2+4pq . Since p and q are positive this implies h2 < ∆ so there are

only finitely many possibilities for h along the separator lines of forms of the given
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discriminant ∆ . For each h we then look at the factorizations ∆ − h2 = 4pq . There

can be only finitely many of these, so this means there are just finitely many possible

combinations of labels h,p,−q and hence only finitely many possible separator lines.

Thus the number of equivalence classes of hyperbolic forms of a given discriminant

is finite.

As an example, let us determine all the quadratic forms of discriminant 60, up

to equivalence. Two obvious forms of discriminant 60 are x2−15y2 and 3x2−5y2 ,

whose separator lines consist of periodic repetitions of the following two patterns:

From the topographs it is apparent that these two forms are not equivalent, and also

that the negatives of these two forms, −x2 + 15y2 and −3x2 + 5y2 , give two more

inequivalent forms, for a total of four equivalence classes so far. To see whether

there are others we use the formula ∆ = 60 = h2 + 4pq relating the values p and

−q adjacent to an edge labeled h in the separator line, with p > 0 and q > 0. The

various possibilities are listed in the table below. The equation ∆ = h2+4pq implies

that h and ∆ must have the same parity, just as in the elliptic case.

h pq (p, q)

0 15 (1,15), (3,5), (5,3), (15,1)

2 14 (1,14), (2,7), (7,2), (14,1)
4 11 (1,11), (11,1)

6 6 (1,6), (2,3), (3,2), (6,1)

Each pair of values for (p, q) in the table occurs at some edge along the separator

line in one of the two topographs shown above or the negatives of these topographs.

Hence every form of discriminant 60 is equivalent to one of these four. If it had

not been true that all the possibilities in the table occurred in the topographs of the

forms we started with, we could have used these other possibilities for h , p , and q

to generate new forms px2+hxy−qy2 with new topographs, eventually exhausting

all the finitely many possibilities.

The procedure in this example works for all hyperbolic forms. One makes a list of

all the positive integer solutions of ∆ = h2+4pq , then one constructs separator lines

that realize all the resulting pairs (p, q) . The different separator lines correspond

exactly to the different equivalence classes of forms of discriminant ∆ . Each solution

(h,p, q) gives a form px2+hxy−qy2 . These are organized into cycles corresponding

to the pairs (p,−q) occurring along one of the periodic separator lines. Thus in the

preceding example with ∆ = 60 the 14 pairs (p, q) in the table give rise to the four

cycles along the four different separator lines.

A hyperbolic form ax2+bxy +cy2 belongs to one of the cycles for the discrim-

inant ∆ = b2 − 4ac exactly when a > 0 and c < 0 since a and c are the numbers p
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and −q lying on opposite sides of an edge of the separator line when (x,y) = (1,0)

and (0,1) .

If we superimpose the separator line of a hyperbolic form on the associated in-

finite strip in the Farey diagram, we see that the forms within a cycle correspond to

the edges of the Farey diagram that lie in the strip and join one border of the strip to

the other. For example, for the form 3x2 − 5y2 we obtain the following picture, with

fans of two triangles alternating with fans of three triangles:

The number of forms within a cycle can be fairly large in general. The situation can

be improved somewhat by considering only the “most important” forms in the cycle,

namely the forms that correspond to those edges in the strip that separate pairs of

adjacent fans, indicated by heavier lines in the figure above. In terms of the topograph

itself these are the edges in the separator line whose two endpoints have edges leading

away from the separator line on opposite sides. The forms corresponding to these

edges are traditionally called the reduced forms within the given equivalence class. In

the example of discriminant 60 these are the forms with (p, q) = (1,6) , (6,1) , (3,2) ,

and (2,3) . These are the forms x2+6xy−6y2 , 6x2+6xy−y2 , 3x2+6xy−2y2 , and

2x2 + 6xy − 3y2 . In this example there is just one reduced form for each cycle, but

in more complicated examples there can be any number of reduced forms in a cycle.

Note that the reduced forms do not necessarily give the simplest-looking forms, which

in this example were the original forms x2 − 15y2 and 3x2 − 5y2 along with their

negatives −x2 + 15y2 and −3x2 + 5y2 , or alternatively 15x2 −y2 and 5x2 − 3y2 .

0-Hyperbolic and Parabolic Forms

For 0-hyperbolic forms it is rather easy to determine all the equivalence classes

of forms of a fixed discriminant. As we saw in our initial discussion of 0-hyperbolic

forms, their topographs contain two regions labeled 0, and the labels on the regions

adjacent to each 0-region form an arithmetic progression with increment given by the

label on the edges bordering the 0-region. Previously we called this edge label h but

now let us change notation and call it q . We may assume q is positive by re-orienting

the edges if necessary. The discriminant is ∆ = q2 so both 0-regions must have the

same edge label q . Either one of the two arithmetic progressions determines the form

up to equivalence since two successive terms in the progression together with the 0 in

the adjacent region give the three values of the form around a vertex in the topograph.

The form qxy − py2 has discriminant q2 and has −p as one term of the arith-

metic progression adjacent to the 0-region x/y =
1/0 , namely in the region x/y =

0/1 .
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Thus every 0-hyperbolic form of discriminant q2 is equivalent to one of these forms

qxy −py2 . Arithmetic progressions with increment q can be thought of as congru-

ence classes mod q , so only the mod q value of p affects the arithmetic progression

and hence we may assume 0 ≤ p < q . The number of equivalence classes of 0-hyper-

bolic forms of discriminant q2 is therefore at most q , the number of congruence

classes mod q . However, the number of equivalence classes could be smaller since

each form has two 0 regions and hence two arithmetic progressions, which could be

the same or different. Since either arithmetic progression determines the form, if the

two progressions are the same then the topograph must have a mirror symmetry in-

terchanging the two 0-regions. This always happens for example if the two 0-regions

touch, which is the case p = 0 so the form is qxy and the mirror symmetry just in-

terchanges x and y . If we let r denote the number of forms qxy − py2 without

mirror symmetry then the number of equivalence classes of 0-hyperbolic forms of

discriminant q2 is q − r since each form without mirror symmetry has two different

arithmetic progressions giving the same form.

For parabolic forms it is even easier to describe what all the different equivalence

classes are since we have seen exactly what their topographs look like: There is a

single region labeled 0 and all the regions adjacent to this have the same label q ,

which can be any nonzero integer, positive or negative. The integer q thus determines

the equivalence class, so there is one equivalence class of parabolic forms for each

nonzero integer q , with qx2 being one form in this equivalence class. Parabolic forms

all have discriminant 0, so in this case there are infinitely many different equivalence

classes with the same discriminant. However, if we look only at primitive forms then

there are just the two classes given by the forms ±x2 .

Every parabolic form is equivalent to one of the forms qx2 by a change of vari-

ables T(x,y) = (sx+ty,ux+vy) with sv−tu = ±1, so every parabolic form factors

as q(sx + ty)2 for some pair of coprime integers s and t , with q = ±1 for primitive

forms. Similarly, every 0-hyperbolic form is equivalent to a form y(qx−py) so the

form can be written as (ux+vy)
(
q(sx+ ty)−p(ux+vy)

)
which can be simplified

to a product (Ax + By)(Cx + Dy) with A,B,C,D integers. Conversely, every form

that factors as (Ax + By)(Cx +Dy) with integer coefficients has the value 0 when

(x,y) = (−B,A) or (−D,C) so the form must be parabolic or 0-hyperbolic. Parabolic

forms are the case that the two linear factors are the same up to a constant multiple.

We have now shown how to compute all the equivalence classes of forms of a

given discriminant for each of the four types of forms. In particular we have proved

the following general fact:

Theorem 5.5. There are only a finite number of equivalence classes of forms with

a given nonzero discriminant.
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Exercises

1. (a) For positive elliptic forms of discriminant ∆ = −D , verify that the smallest

value of D for which there are at least two inequivalent forms of discriminant −D is

D = 12.

(b) If we add the requirement that all forms under consideration are primitive, then

what is the smallest D?

2. Determine all the equivalence classes of positive elliptic forms of discriminants

−67, −104, and −347.

3. Find two elliptic forms that are not equivalent but take on the same three smallest

values a < b < c .

4. Determine the number of equivalence classes of quadratic forms of discriminant

∆ = 120 and list one form from each equivalence class.

5. Do the same thing for ∆ = 61.

6. (a) Find the smallest positive nonsquare discriminant for which there is more than

one equivalence class of forms of that discriminant. (In particular, show that all

smaller discriminants have only one equivalence class.)

(b) Find the smallest positive nonsquare discriminant for which there are two inequiv-

alent forms of that discriminant, neither of which is simply the negative of the other.

7. (a) Determine all the equivalence classes of 0-hyperbolic forms of discriminant 49.

(b) Determine which equivalence class in part (a) each of the forms 7xy − py2 for

p = 0,1,2,3,4,5,6 belongs to.

5.3 The Class Number

When considering equivalence classes of forms of a given discriminant there are

further refinements that turn out to be very useful. The first involves forms whose

topographs are mirror images of each other. According to the definition we have

given, two such forms are regarded as equivalent. However, there is a more refined

notion of equivalence in which two forms are considered equivalent only if there is an

orientation-preserving transformation in LF(Z) taking the topograph of one form to

the topograph of the other. In this case the forms are called properly equivalent.

To illustrate the distinction between equivalence and proper equivalence, let us

look at the earlier example of discriminant ∆ = −260 where we saw that there were

six equivalence classes of forms:
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In the first two topographs the central edge is a source edge and in the other four

the lower vertex is a source vertex. Whenever there is a source edge the topograph

has mirror symmetry across a line perpendicular to the source edge. When there is

a source vertex there is mirror symmetry only when at least two of the three sur-

rounding values of the form are equal, as in the third and sixth topographs above,

but not the fourth or fifth topographs. Thus the mirror images of the fourth and

fifth topographs correspond to two more quadratic forms which are not equivalent to

them under any orientation-preserving transformation. With the more refined notion

of proper equivalence there are therefore eight proper equivalence classes of forms

of discriminant −260.

To obtain explicit formulas for the mirror image forms we can interchange the

coefficients a and c in ax2+bxy +cy2 , which corresponds to interchanging x and

y , reflecting the topograph across a vertical line. Alternatively we could change the

sign of b , which corresponds to changing the sign of either x or y and thus reflecting

the topograph across a horizontal line.

For a general discriminant ∆ each equivalence class of forms of discriminant ∆
gives rise to two proper equivalence classes except when the class contains forms

with mirror symmetry, in which case equivalence and proper equivalence amount to

the same thing since every orientation-reversing equivalence can be converted into

an orientation-preserving equivalence by composing with a mirror reflection. Here we

are using the fact that the only linear fractional transformations that take a topograph

to itself and reverse orientation are mirror reflections, as will be shown in Section 5.4

when we study symmetries of topographs in more detail.

Multiplying a form by an integer d > 1 does not change its essential features in

any significant way, so it is reasonable when classifying forms to restrict attention just

to primitive forms, the forms that are not proper multiples of other forms. In other

words, one considers only the forms ax2 + bxy + cy2 for which a , b , and c have

no common divisor greater than 1. The primitivity of a form is detectable just from

the numbers appearing in its topograph since all the numbers in the topograph of a

nonprimitive form are divisible by some number d > 1, and conversely if all numbers

in the topograph of a form ax2+bxy+cy2 are divisible by d then in particular a , c ,

and a+b+ c , the values at (1,0) , (0,1) , and (1,1) , are divisible by d which implies
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that b is also divisible by d so the whole form is divisible by d . Thus primitivity

is a property of equivalence classes of forms. Multiplying a form by d multiplies its

discriminant by d2 , so nonprimitive forms of discriminant ∆ exist exactly when ∆ is

a square times another discriminant. For example, when ∆ = −12 = 4(−3) one has

the primitive form x2+3y2 as well as the nonprimitive form 2x2+2xy+2y2 which

is twice the form x2 + xy +y2 of discriminant −3.

The number of proper equivalence classes of primitive forms of a given discrim-

inant is called the class number for that discriminant, where in the case of elliptic

forms one considers only the forms with positive values. The traditional notation for

the class number for discriminant ∆ is h∆ . (This h has nothing to do with the h

labels on edges in topographs.)

Since we have an algorithm for computing the finite set of equivalence classes

of forms of a given nonzero discriminant, this leads to an algorithm for computing

class numbers. When computing the table of triples (h,a, c) for elliptic forms or

(h,p, q) for hyperbolic forms we omit the nonprimitive triples since these correspond

to nonprimitive forms. Then we determine which of the remaining forms have mirror

symmetry. For elliptic forms these are the cases when one or more of the inequalities

0 ≤ h ≤ a ≤ c is an equality, as we will see in the next section. For hyperbolic forms

mirror symmetries can be detected in the separator line. Forms with mirror symmetry

count once when computing the class number, and forms without mirror symmetry

count twice. However, just having an algorithm to compute the class number h∆ does

not make it transparent how h∆ depends on ∆ , and indeed this is a very difficult

question which is still only partially understood.

Of special interest are the discriminants for which all forms are primitive. These

are called fundamental discriminants. Thus a fundamental discriminant is one which

is not a square times a smaller discriminant. For example, 8 is a fundamental dis-

criminant even though it is divisible by a square, 4, since the other factor 2 is not

the discriminant of any form, as it is not congruent to 0 or 1 mod 4. Technically

1 is a fundamental discriminant according to our definition, but we will exclude this

trivial case. Thus fundamental discriminants are never squares, so fundamental dis-

criminants appear only for elliptic and hyperbolic forms. With 1 excluded it is easy

to check that the fundamental discriminants ∆ with |∆| < 40 are 5, 8, 12, 13, 17,

20, 21, 24, 28, 29, 33, 37 and −3, −4, −7, −8, −11, −15, −19, −20, −23, −24,

−31, −35, −39.

It is not hard to give a precise characterization of the discriminants ∆ that are

fundamental. First write ∆ = 2kn with k ≥ 0 and n odd, possibly negative. If any

odd square divides n then we can factor this out of ∆ and still get a discriminant

since odd squares are congruent to 1 mod 4 so multiplying by an odd square does

not affect whether a number is 0 or 1 mod 4. The exponent k in 2k can never be

1 since this would imply ∆ ≡ 2 mod 4. If k ≥ 4 we can factor powers of 4 out of
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∆ until we have k equal to 2 or 3 and still have a discriminant. If k = 3 we cannot

factor a 4 out of ∆ since this would give the excluded case k = 1. If k = 2 we can

factor 4 = 2k out of ∆ exactly when n ≡ 1 mod 4. Finally, when k = 0 we have ∆ = n
so we must have n ≡ 1 mod 4. Thus the fundamental discriminants other than −4

and ±8 are of three types:

∆ = n with |n| a product of distinct odd primes and n ≡ 1 mod 4.

∆ = 4n with |n| a product of distinct odd primes and n ≡ 3 mod 4.

∆ = 8n with |n| a product of distinct odd primes.

Every nonsquare discriminant can be factored uniquely as ∆ = d2∆′ where ∆′ is a

fundamental discriminant and d ≥ 1. The number d is called the conductor of ∆ .

Fundamental discriminants are those whose conductor is 1. Conductors will become

important when we study the deeper properties of forms in later chapters. The class

number h∆ is always a multiple of h∆′ and there is a not-too-complicated formula

for what this multiple is, so the determination of class numbers reduces largely to the

case of fundamental discriminants. However, we will not be going into more detail on

the relationship between h∆ and h∆′ since this would lead us somewhat outside the

scope of the book.

Discriminants of Class Number 1

The question of which discriminants have class number 1 has been much studied.

This amounts to finding the discriminants for which all primitive forms are equivalent

since if all primitive forms are equivalent, they are all equivalent to the principal form

which has mirror symmetry so they are all properly equivalent to the principal form.

For elliptic forms the following nine fundamental discriminants have class num-

ber 1 : ∆ = −3, −4, −7, −8, −11, −19, −43, −67, −163

In addition there are four more which are not fundamental: −12, −16, −27, −28. It

was conjectured by Gauss around 1800 that there are no other negative discriminants

of class number 1. Over a century later in the 1930s it was shown that there is

at most one more, and then in the 1950s and 1960s Gauss’s conjecture was finally

proved completely.

Another result from the 1930s is that for each number n there are only finitely

many negative discriminants with class number n . Finding what these discriminants

are is a difficult problem, however, and so far this has been done only in the range

n ≤ 100.

The situation for positive discriminants with class number 1 is not as well un-

derstood. Computations show that there are a large number of positive fundamental

discriminants with class number 1, and it seems likely that there are in fact infinitely

many. However, this has not been proved and remains one of the most basic unsolved

problems about quadratic forms. If one allows nonfundamental discriminants then
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it is known that there are infinitely many with h∆ = 1, including for example the

discriminants ∆ = 22k+1 for k ≥ 1 and ∆ = 52k+1 for k ≥ 0.

Returning to the nine negative fundamental discriminants of class number 1, it is

easy to check in each case that all forms are equivalent. For example when ∆ = −163

and we apply the earlier algorithm to find all reduced forms we must have h odd with

h2 ≤ 163/3 so the only possibilities are h = 1,3,5,7. From the equation 4ac = 163+h2

the corresponding values of ac are 41,43,47,53 which all happen to be prime, and

since a ≤ c this forces a to be 1 in each case. But since h ≤ a this means h must

be 1, and we obtain the single quadratic form x2 + xy + 41y2 .

The corresponding polynomial x2+x+41 has a curious property discovered by

Euler: For each x = 0,1,2,3, · · · ,39 the value of x2+x+41 is a prime number. Here

are these forty primes:

41 43 47 53 61 71 83 97 113 131 151 173 197 223 251 281 313

347 383 421 461 503 547 593 641 691 743 797 853 911 971

1033 1097 1163 1231 1301 1373 1447 1523 1601

Notice that the successive differences between these primes are 2,4,6,8,10, · · · ,78

since [(x + 1)2 + (x + 1) + 41] − [x2 + x + 41] = 2(x + 1) . The next number in

the sequence after 1601 would be 1681 = 412 , not a prime. (Write x2 + x + 41 as

x(x + 1) + 41 to see why x = 40 must give a nonprime.) A similar thing happens

for the other negative fundamental discriminants of class number 1. The nontrivial

cases are listed in the table below, where D = −∆ .

D

7 x2 + x + 2 2

11 x2 + x + 3 3 5

19 x2 + x + 5 5 7 11 17

43 x2 + x + 11 11 13 17 23 31 41 53 67 83 101

67 x2 + x + 17 17 19 23 29 37 47 59 73 89 107 127 149 173 199 227 257

Satisfactory explanations are known for the occurrence of so many prime values of

these quadratic polynomials but they involve fairly deep theory. It is curious that the

lists of prime values account for all primes less than 100 except 79.

Suppose one asks about the next forty values of x2 + x + 41 after the value 412

when x = 40. The next value, when x = 41, is 1763 = 41·43, also not a prime. After

this the next two values are primes, then comes 2021 = 43·47, then four primes,

then 2491 = 47·53, then six primes, then 3233 = 53·61, then eight primes, then

4331 = 61·71, then ten primes, then 5893 = 71·83. This last number was for x = 76,

and the next four values are prime as well for x = 77, 78, 79, 80, completing the

second 40 values. But then the pattern breaks down when x = 81 where one gets

the value 6683 = 41·163. Thus, before the breakdown, not only were we getting

sequences of 2, 4, 6, 8, 10 primes but the nonprime values were the products of two

successive terms in the original sequence of prime values 41, 43, 47, 53, 61, · · · .
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All this seems quite surprising, even if the nice patterns do not continue forever. A

partial explanation can be found in the fact that the polynomial P(x) = x2 + x + 41

satisfies the identity P(40 + n2) = P(n − 1)P(n) as one can easily check, so when

n = 1,2,3, · · · we get P(41) = P(0)P(1) = 41·43, P(44) = 43·47, P(49) = 47·53,

P(56) = 53·61, etc. However this does not explain why the intervening values of P(x)

should be prime. The polynomials in the preceding table exhibit similar behavior.

Exercises

1. Compute the class number for each of the following discriminants:

(a) −23 (b) −47 (c) −71 (d) −87 (e) −92 (f) 145 (g) 148.

2. In this extended exercise the goal will be to show that the only negative even dis-

criminants with class number 1 are −4, −8, −12, −16, and −28. (Of these only −4

and −8 are fundamental discriminants.) The strategy will be to exhibit an explicit

reduced primitive form Q different from the principal form x2 + dy2 for each dis-

criminant −4d with d > 4 except d = 7. This will be done by breaking the problem

into several cases, where in each case a form Q will be given and you are to show

that this form has the desired properties, namely it is of discriminant −4d , primitive,

reduced, and different from the principal form. You should also check that the cases

considered cover all possibilities.

(a) Suppose d is not a prime power. Then it can be factored as d = ac where 1 < a < c

and a and c are coprime. In this case let Q be the form ax2 + cy2 .

(b) The form ax2 + 2xy + cy2 will work provided that d + 1 factors as d+ 1 = ac

where a and c are coprime and 1 < a < c . If d is odd, for example a power of an odd

prime, then d+1 is even so it has such a factorization d+1 = ac unless d+1 = 2n .

(c) If d = 2n the cases we need to consider are n ≥ 3 since d > 4. When n = 3 take

Q to be 3x2 + 2xy + 3y2 and when n ≥ 4 take Q to be 4x2 + 4xy + (2n−2 + 1)y2 .

(d) When d + 1 = 2n the cases of interest are n ≥ 3. When n = 3 we have d = 7

which is one of the allowed exceptions with class number 1. When n = 4 we have

d = 15 and 3x2 + 5y2 works as in part (a). When n = 5 we have d = 31 and we take

the form 5x2+4xy +7y2 . When n ≥ 6 we use the form 8x2+ 6xy + (2n−3+ 1)y2 .

3. Show that the class number for discriminant ∆ = q2 > 1 is ϕ(q) where ϕ(q) is

the number of positive integers less than q and coprime to q .

5.4 Symmetries of Forms

We have observed that some topographs are symmetric in various ways. To give

a precise meaning to this term, let us say that a symmetry of a form Q or its to-

pograph is a transformation T in LF(Z) that leaves all the values of Q unchanged,
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so Q(T(x,y)) = Q(x,y) for all pairs (x,y) . For example, every hyperbolic form

has a periodic separator line, which means there is a symmetry that translates the

separator line along itself. If T is the symmetry translating by one period in either

direction, then all the positive and negative powers of T are also translational sym-

metries. Strictly speaking, the identity transformation is always a symmetry but we

will sometimes ignore this trivial symmetry.

Some hyperbolic forms also have mirror symmetry, where the symmetry is re-

flection across a line perpendicular to the separator line. This reflector line could

contain one of the edges leading off the separator line, or it could be halfway between

two consecutive edges leading off the separator line on the same side. Both kinds of

symmetry occur along the separator line of the form x2 − 19y2 , for example:

Elliptic forms can have mirror symmetries as well, as we saw in the earlier example

∆ = −260 where two topographs had mirror symmetry across a line perpendicular to

an edge and two had symmetry across a line containing an edge.

Proposition 5.6. A number a appears on the reflector line of a mirror symmetry

of the topograph of a form Q exactly when Q is equivalent to a form ax2 + cy2

or ax2 + axy + cy2 . In both cases a divides the discriminant of Q .

In particular the principal forms x2 − ky2 and x2 +xy − ky2 have mirror sym-

metry, so there is at least one form with mirror symmetry in each discriminant.

Proof: The figures at the right show the two

types of mirror symmetries, where the reflec-

tor line is either the perpendicular bisector

of an edge of the topograph or contains an

edge of the topograph. Let a and c be the

labels on the left and right regions as in the

figures, so the reflector line passes through the a region. If the edge between the

left and right regions is labeled h then the regions above and below this edge are

labeled a + c + h and a + c − h . In the first figure the mirror symmetry forces h

to be 0 so the form is equivalent to the form ax2 + cy2 . In the second figure the

mirror symmetry forces the lower region to be labeled c and this forces h to equal a

when the edge labeled h is oriented upward. The form is then equivalent to the form

ax2 + axy + cy2 .

Conversely, the forms ax2 + cy2 and ax2 + axy + cy2 have topographs as

shown in the figures, so these topographs have mirror symmetry with the reflector
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line passing through the a region. These two forms have discriminants −4ac and

a2 − 4ac , both divisible by a . ⊔⊓

As the proof showed, reflector lines crossing an edge in the topograph corre-

spond to forms ax2+cy2 and reflector lines containing an edge correspond to forms

ax2 + axy + cy2 . For example, a form ax2 + bxy + ay2 has mirror symmetry

interchanging x and y , reflecting across the vertical axis of the circular Farey dia-

gram which contains an edge of the topograph, so this form is equivalent to a form

Ax2+Axy+Cy2 . The reflector line passes through regions of the topograph labeled

2a+b and 2a−b so A can be taken to be either 2a+b or 2a−b , with C = a since

this is the value of the form at x/y =
0/1 .

Proposition 5.7. Let a be a divisor of the discriminant ∆ that is either odd or twice

an odd number. Then there exists a form ax2+cy2 or ax2+axy+cy2 of discrimi-

nant ∆ having a in its topograph. If a is squarefree, a form of discriminant ∆ with

a in its topograph is unique up to equivalence, and a appears in the topograph

only on a reflector line of a mirror symmetry.

The conditions on the number a can be illuminated by looking at the case ∆ =
−36 where there are three equivalence classes of forms:

The first two topographs have a single reflector line while the third has two reflector

lines. The positive divisors of 36 are 1,2,3,4,6,9,12,18, and 36. The divisors that

appear in the topographs are the ones that are odd or twice an odd number, so 4, 12,

and 36 are excluded. Of the divisors that do appear, the ones that are not squarefree

are 9 and 18, and these appear in more than one topograph, and off the reflector

lines as well as on them.

Proof of Proposition 5.7: Suppose first that ∆ is even. For the given divisor a of ∆
let us first look for a form ax2+ cy2 since this has even discriminant. Thus we want

an integer c such that ∆ = −4ac . Since ∆ is even it is divisible by 4, so if a is odd

and divides ∆ then 4a divides ∆ so the desired integer c exists in this case.

Since ∆ is even it is either 8k or 8k + 4 for some integer k . If ∆ = 8k then

∆ = −4ac can again be solved for c when a is twice an odd number.
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When ∆ = 8k+ 4 and a is twice an odd number the equation ∆ = −4ac will not

have an integer solution c since −4ac is divisible by 8, so we instead look for a form

ax2+axy +cy2 . This has ∆ = a(a−4c) and we want to find an integer c such that
∆
�a = a − 4c . This is equivalent to saying ∆

�a ≡ a mod 4. We have a = 2(2m + 1)

so a ≡ 2 mod 4. For ∆
�a , if we first divide ∆ by 2 we get 4k + 2, then dividing by

2m+1 can only change the congruence class mod 4 by a sign since odd numbers are

±1 mod 4. Thus ∆
�a ≡ 2 mod 4 so the congruence ∆

�a ≡ a mod 4 is satisfied. This

finished the proof of the existence of a form ax2+ cy2 or ax2+axy + cy2 when ∆
is even.

Suppose now that ∆ is odd, hence also its divisor a . Since ∆ is odd, we are

looking for a form ax2+axy + cy2 . As above, the condition for having such a form

is the congruence ∆
�a ≡ a mod 4. This is satisfied since ∆ ≡ 1 mod 4 and a ≡ ±1

mod 4.

Now we turn to the second statement in the proposition where we assume a is

a squarefree divisor of ∆ . Suppose that a appears in the topograph of a form of

discriminant ∆ . If b is one of the labels on an edge of the topograph bordering the

region labeled a then we have ∆ = b2−4ac for c the label on the other region adjacent

to the b edge. Since we assume a divides ∆ = b2−4ac it must also divide b2 , and if

a is squarefree it will therefore divide b . Thus we have b =ma for some integer m .

The labels on the edges bordering the a region form an arithmetic progression with

increment 2a so these are the numbers b + 2ka as k ranges over all integers. Since

b = ma we can factor b + 2ka as (m + 2k)a . The numbers m + 2k for varying k

form an arithmetic progression consisting of all even numbers if m is even and all

odd numbers if m is odd. Thus we can choose k so that m+2k is either 0 or 1, and

hence the arithmetic progression (m+ 2k)a contains either 0 or a . This means one

of the edge labels on the border of the a region is either 0 or a .

The topograph near this edge has the

shape shown in one of the two figures at the

right. From this we see that there is a reflec-

tor line passing through the a region and

the form is equivalent to either ax2 + cy2

or ax2 + axy + cy2 .

To finish the proof we only need to see that there cannot be both a form ax2+cy2

and a form ax2 +axy + c′y2 with the same a and the same discriminant. Equating

the discriminants of these two forms, we would have −4ac = a2−4ac′ and therefore

a = 4(c′ − c) , but a would then be divisible by 4 and thus not squarefree. ⊔⊓

Symmetries of Elliptic Forms

Let us consider now what sorts of symmetries are possible in general for the vari-

ous types of forms, beginning with elliptic forms. For an elliptic form each symmetry
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must take the source vertex or edge to itself since this is where the smallest values

of the form occur. In the case of a source edge, if a symmetry does

not interchange the two ends of the source edge then the symmetry

must be either the identity or a reflection across a line containing

the source edge. If a symmetry does interchange the two ends of a

source edge then it must either be a reflection across a line perpen-

dicular to the edge or a 180 degree rotation of the topograph about

the midpoint of the edge. Referring to the figure at the right, this ro-

tation can only give a symmetry if a = c and a+b+c = a−b+c which is equivalent

to having b = 0. Thus the form is ax2 + ay2 so if it is primitive it is just x2 + y2 .

Note that multiplying any form by a constant does not affect its symmetries so there is

no harm in considering only primitive forms. For the form x2+y2 note also that this

form has both types of mirror symmetries, and the composition of these two mirror

symmetries is the 180 degree rotational symmetry.

For a source vertex, a symmetry must take this vertex to itself. If a symmetry is

orientation-preserving and not the identity then it must be a rotation about the source

vertex by either one-third or two-thirds of a full turn. In either case this means that

the three labels around the source vertex must be equal, so if the source vertex is

the lower vertex in the figure above then the condition is a = c = a− b + c , which is

equivalent to saying a = b = c . The form is then ax2+axy+ay2 so if it is primitive

it is x2 + xy + y2 . The only other sort of symmetry for a source vertex is reflection

across a line containing one of the three edges that meet at the source vertex. The

only time there can be more than one such symmetry is when all three adjacent labels

are equal so we are again in the situation of a form ax2 + axy + ay2 .

For an elliptic form ax2 + bxy + cy2 that is reduced, so 0 ≤ b ≤ a ≤ c , it is

easy to recognize exactly when symmetries occur, namely when at least one of these

three inequalities becomes an equality. Again using the figure above, when b = 0 one

has a source edge with a mirror symmetry across the perpendicular line. When b = a

we have a − b + c = c so there is a mirror symmetry across the lower right edge.

And when a = c one has mirror symmetry across the central edge. Since a and c

are the two smallest labels on regions in the topograph, we see that reduced forms

ax2+bxy +ay2 occur when the smaller two of the three labels at the source vertex

are equal, and reduced forms ax2 +axy + cy2 occur when the larger two labels are

equal, at 0/1 and ---1/1 .

Certain combinations of equalities in 0 ≤ b ≤ a ≤ c are also possible. If b = 0 and

a = c the form is a(x2 +y2) with a source edge and both types of mirror symmetry

as well as 180 degree rotational symmetry. Another possibility is that b = a = c so

the form is a(x2 + xy + y2) with the symmetries described earlier. These are the

only combinations of equalities that can occur since we must have a > 0 so 0 = b = a

is impossible.
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For reduced elliptic forms this exhausts all the possible symmetries since if we

have strict inequalities 0 < b < a < c then the values of the form in the four regions

shown in the figure above are all distinct. The first time this occurs is when the

inequalities are 0 < 1 < 2 < 3 so the form is 2x2 + xy + 3y2 of discriminant −23.

Symmetries of Hyperbolic Forms

Now consider hyperbolic forms. These all have periodic separator lines so they

always have translational symmetries, and the question is what other sorts of sym-

metries are possible. For a hyperbolic form each symmetry must take the separator

line to itself since this line consists of the edges that separate positive from negative

values of the form. It is a simple geometric fact that a symmetry of a line L that is

divided into a sequence of edges, say of length 1, extending to infinity in both direc-

tions, must be either a translation along L by some integer distance in either direction,

or a reflection of L fixing either a vertex of L or the midpoint of an edge of L and

interchanging the two halves of L on either side of the fixed point. This can be seen

as follows. Symmetries of L are assumed to take vertices to vertices, so suppose the

symmetry T sends a vertex v to the vertex T(v) . Then if T preserves the orientation

of L it must be a translation along L by the distance from v to T(v) as one can see

by considering what T does to the two edges adjacent to v , then to the next two

adjacent edges on either side, then the next two edges, and so on. If T reverses the

orientation of L then either T(v) = v or T fixes the midpoint of the segment from v

to T(v) since it sends this segment to a segment of the same length with one end at

T(v) but extending back toward v since T reverses orientation of L . Thus T fixes a

point of L in either case, and it follows that T must reflect L across this fixed point,

as one can again see by considering the edge or edges containing the fixed point, then

the next two edges, and so on. If the distance from v to T(v) is an even integer, the

midpoint between v and T(v) will be a vertex, and if it is odd, the midpoint will be

a midpoint of an edge.

Returning to the situation of a symmetry T of the topograph of a hyperbolic form

that takes the separator line L to itself, T must also take the side of L with positive

labels to itself, so T preserves orientation of the plane exactly when it preserves ori-

entation of L . Thus the only orientation-preserving symmetries of the topograph are

translations along the separator line, and the only orientation-reversing symmetries

are the two kinds of reflections across lines perpendicular to L .

If the separator line of a hyperbolic form has a mirror symmetry then because of

periodicity there has to be at least one reflector line in each period, but in fact there are

exactly two reflector lines in each period. To see this, let T be the translation by one

period and let R1 be a reflection across a reflector line L1 . Consider the composition

TR1 , reflecting first by R1 then translating by T , so TR1 is an orientation-reversing

symmetry. If L2 is the line halfway between L1 and T(L1) then T(R1(L2)) = L2 as
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we can see in the first figure below:

Thus TR1 is an orientation-reversing symmetry that takes L2 to itself while preserving

the positive and negative sides of the separator line, so TR1 must be a reflection R2

across L2 . This shows that there are at least two reflector lines in each period. There

cannot be more than two since if R1 and R2 are the reflections across two adjacent

reflector lines L1 and L2 as in the second figure then the composition R2R1 , first

reflecting by R1 then by R2 , is orientation-preserving and sends L1 to R2(R1(L1)) =

R2(L1) so this composition is a symmetry translating the separator line by twice the

distance between L1 and L2 . The distance between L1 and L2 must then be half the

length of the period, otherwise if the translation R2R1 were some power Tn of the

basic periodicity translation T with |n| > 1, there would be fewer than two reflector

lines in a period.

For completeness let us also describe the symmetries for the remaining two types

of forms besides elliptic and hyperbolic forms. For a 0-hyperbolic form, if the two

regions labeled 0 in the topograph have a border edge in common then a symmetry

must take this edge to itself, and it cannot interchange the ends of the edge since

positive values must go to positive values. The only possibility is then a reflection

across this edge, which is always a symmetry of the topograph. If the two 0-regions

do not have a common border edge they are joined by a finite separator line and a

symmetry must take this line to itself without interchanging the positive and negative

sides. The only possibility is a reflection across a line perpendicular to the separator

line and passing through its midpoint. This reflection gives a symmetry only when

the finite continued fraction associated to the form is palindromic.

A parabolic form has a single 0-region in its topograph, so the bordering line for

this region must be taken to itself by any symmetry. Every symmetry of this bordering

line gives a symmetry of the form, either a translation along the line or a reflection

across a perpendicular line.

The preceding analysis shows in particular the following fact:

Proposition 5.8. All orientation-reversing symmetries of the topograph of a form

are mirror symmetries, reflecting across a line that is either perpendicular to or

contains an edge of the topograph.

Traditionally, a form whose topograph has an orientation-reversing symmetry is

called ambiguous although there is really nothing about the form that is ambiguous
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in the usual sense of the word, unless perhaps it is the fact that such a form is indis-

tinguishable from its mirror image.

The Symmetric Class Number

Let us define the symmetric class number hs∆ to be the number of equivalence

classes of primitive forms of discriminant ∆ with mirror symmetry. Recall that equiv-

alence is the same as proper equivalence for forms with mirror symmetry. The or-

dinary class number h∆ is thus hs∆ plus twice the number of equivalence classes of

primitive forms without mirror symmetry. We have h∆ ≥ h
s
∆ , and in fact h∆ is always

a multiple of hs∆ as we will see in Proposition 7.16.

In contrast with h∆ , the number hs∆ can be computed explicitly. Here is the result

for elliptic and hyperbolic forms:

Theorem 5.9. If ∆ is a nonsquare discriminant and k is the number of distinct

prime divisors of ∆ then hs∆ = 2k−1 except in the following cases :

(a) If ∆ = 4(4m+ 1) then hs∆ = 2k−2 .

(b) If ∆ = 32m then hs∆ = 2k .

The exceptional cases (a) and (b) involve nonfundamental discriminants, so for

fundamental discriminants we have hs∆ = 2k−1 . For example, the discriminants ∆ =
60 = 3·4·5 and ∆ = −260 = −4·5·13 that we looked at in the previous section have

three distinct prime divisors so the theorem says there are 22 = 4 equivalence classes

of mirror symmetric forms in these two cases. This agrees with what the topographs

showed.

The proof of the theorem will involve considering a number of different cases.

Fortunately most of the resulting complication disappears in the final answer.

Proof: By Proposition 5.6 every form with mirror symmetry is equivalent to a form

ax2 + cy2 or ax2 + axy + cy2 . The strategy will be to count how many of these

special forms there are that are primitive with discriminant ∆ , then determine which

of these special forms are equivalent.

For counting the special forms ax2+cy2 and ax2+axy +cy2 we may assume

a > 0 since a is the value of the form when (x,y) = (1,0) and for elliptic forms

we only consider those with positive values, while for hyperbolic forms we are free to

change a form to its negative so it suffices to count only those with a > 0 and then

double the result.

Case 1: Forms ax2+cy2 . Then ∆ = −4ac = 4δ for δ = −ac . Primitivity of the form

is equivalent to a and c being coprime. The only way to have coprime factors a and

c of δ = −ac is to take an arbitrary subset of the distinct primes dividing δ and let

a be the product of these primes each raised to the same power as in δ (so a = 1

when we choose the empty subset). The number of such subsets is 2k
′

where k′ is the
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number of distinct prime divisors of δ , so there are 2k
′

primitive forms ax2 + cy2

with a > 0.

Case 2: Forms ax2 + axy + cy2 with ∆ odd. We have ∆ = a2 − 4ac so ∆ and a

have the same parity. From ∆ = a(a − 4c) we see that a divides ∆ . We claim that

each divisor a of ∆ gives rise to a form ax2+axy +cy2 of discriminant ∆ . Solving

∆ = a2−4ac for c gives c = (a2−∆)/4a . The numerator is divisible by 4 since a and

∆ are odd and hence a2 and ∆ are both 1 mod 4, making the numerator 0 mod 4.

The numerator is also divisible by a if a divides ∆ . Since 4 and a are coprime when

a is odd, it follows that 4a divides the numerator so c is an integer and we get a

form ax2+axy +cy2 of discriminant ∆ . This form is primitive exactly when a and

c are coprime. This is equivalent to saying that the two factors of ∆ = a(a− 4c) are

coprime since any divisor of a and c must divide the two factors, and conversely any

divisor of the two factors must divide a and 4c , hence also c since this divisor of

the odd number a must be odd. As in Case 1, the only way to obtain a factorization

∆ = a(a−4c) with the two factors coprime is to take an arbitrary subset of the distinct

primes dividing ∆ and let a be the product of these primes each raised to the same

power as in ∆ . The number of such subsets is 2k so this is the number of primitive

forms ax2 + axy + cy2 with a > 0 when ∆ is odd.

There remain the forms ax2+axy + cy2 with ∆ = 4δ . Again ∆ and a have the

same parity since ∆ = a2 − 4ac , so a is even, say a = 2d . From ∆ = a2 − 4ac we

then have δ = d2 − 2dc = d(d− 2c) .

Case 3: Forms ax2 + axy + cy2 with ∆ = 4δ and a = 2d for odd d . By primitivity

c must be odd. The two factors of δ = d(d − 2c) are odd and must be distinct

mod 4 since c is odd. Thus one factor is 1 mod 4 and the other is 3 mod 4, so

δ ≡ 3 mod 4, say δ = 4m + 3. We claim that when δ = 4m + 3, each divisor d

of δ gives rise to a form ax2 + axy + cy2 with a = 2d . To show this, note first

that d must be odd since it divides δ which is odd. Solving δ = d(d − 2c) for c

gives c = (d2 − δ)/2d . Since d and δ are odd, the numerator d2 − δ is even hence

divisible by the 2 in the denominator. The numerator is also divisible by the d in

the denominator if d divides δ . Since d is odd, this implies that 2d divides the

numerator, so c is an integer for each divisor d of δ . In fact c is an odd integer since

the numerator d2 − δ is 2 mod 4 and so cd = (d2 − δ)/2 is odd, forcing c to be

odd. For the form ax2+axy +cy2 to be primitive means that a and c are coprime.

Since c is odd and a = 2d this is equivalent to c and d being coprime. This in turn is

equivalent to the two factors of δ = d(d− 2c) being coprime since c and d are odd.

Thus when δ = 4m+ 3 we get a primitive form ax2 + axy + cy2 for each choice of

a subset of the distinct prime divisors of δ since this determines d as before, and d

determines c and a . The number of primitive forms ax2 + axy + cy2 is then 2k
′

when ∆ is even and a = 2d with d odd, where k′ is the number of distinct prime

divisors of δ as in Case 1.
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Case 4: Forms ax2 + axy + cy2 with ∆ even and a = 2d for even d , say d = 2e .

Then δ = d(d − 2c) = 4e(e − c) . Since c is odd by primitivity of the form, the two

factors e and e− c of δ = 4e(e− c) have opposite parity, hence δ must be divisible

by 8, say δ = 8m . We need to determine which choices of e and c yield primitive

forms ax2 + axy + cy2 . Let δ′ = δ/4 = 2m so the equation δ = 4e(e − c) becomes

δ′ = e(e−c) . Thus e must divide δ′ . We have c = e − δ′/e and this will be an integer

if e divides δ′ . From the equation c = e − δ′/e we see that any divisor of two of the

three terms c , e , and δ′/e will divide the third. In particular, c and e will be coprime

exactly when e and δ
′
/e are coprime. Since δ′ = e ·δ

′
/e this means we want to choose

e by choosing some subset of the distinct prime divisors of δ′ and letting e be the

product of these primes raised to the same powers as in δ′ . Then e and δ′/e will be

coprime and of opposite parity since they are not both even and their product δ′ is

even. Their difference c = e − δ′/e will then be odd. Also, c and e will be coprime

so c and a = 4e will be coprime, making the form ax2 + axy + cy2 primitive. The

number of distinct prime divisors of δ′ is the same as for δ = 4δ′ since δ′ is even.

Thus in Case 4 the number of primitive forms ax2 + axy + cy2 with a > 0 is 2k
′

.

Note that k′ = k when δ is even and k′ = k − 1 when δ is odd. By combining

the four cases above and remembering to double the number of forms when ∆ > 0

to account for negative coefficients of x2 , we then obtain the following table for the

number of forms of either of the types ax2 + cy2 or ax2 + axy + cy2 :

∆ odd 4δ , δ = 4m+ 1 4δ , δ = 4m+ 3

Cases (2) (1) (1) and (3)

∆ < 0 2k 2k
′

= 2k−1 2k
′

+ 2k
′

= 2k
′+1 = 2k

∆ > 0 2k+1 2k
′+1 = 2k 2k

′+1 + 2k
′+1 = 2k

′+2 = 2k+1

∆ 4δ , δ = 8m 4δ , δ even, δ ≠ 8m

Cases (1) and (4) (1)

∆ < 0 2k
′

+ 2k
′

= 2k
′+1 = 2k+1 2k

′

= 2k

∆ > 0 2k
′+1 + 2k

′+1 = 2k
′+2 = 2k+2 2k

′+1 = 2k+1

Comparing the results in the table with the statement of the theorem, we see that the

proof will be finished when we show that under the relation of equivalence the special

forms split up into pairs when ∆ < 0 and into groups of four when ∆ > 0.

Two easy cases that can be disposed of first are ∆ = −3 and ∆ = −4. Here all

forms are equivalent and are primitive, and k = 1, so the theorem is true since the

exceptional cases (a) and (b) in the statement of the theorem do not apply.

Our earlier analysis of symmetries of elliptic and hyperbolic forms shows that the

only time that reflector lines can intersect is for elliptic forms equivalent to ax2+ay2

or ax2 + axy + ay2 , so when we restrict to primitive forms this means ∆ = −3 or

∆ = −4. Thus we may assume from now on that reflector lines do not intersect.
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For a form ax2 + cy2 with a reflector line

perpendicular to an edge of the topograph as in

the first figure at the right we have a ≠ c , oth-

erwise there would be two intersecting reflector

lines. Thus the reflector line corresponds to two

distinct special forms, ax2+cy2 and cx2+ay2 .

The second figure shows the case of a form with a reflector line containing an edge of

the topograph. This edge corresponds to a form ax2 + bxy + ay2 and the adjacent

edges correspond to two forms dx2 + dxy + ay2 and ex2 + exy + ay2 of the type

ax2+axy+cy2 . These two forms are distinct since if d = e there would be a second

reflector line intersecting the first one. Thus the reflector line accounts for two special

forms ax2 + axy + cy2 .

Primitive elliptic forms with mirror symmetry and ∆ ≠ −3,−4 have just one

reflector line, so each equivalence class of such forms contains exactly two special

forms. For hyperbolic forms with mirror symmetry there are two reflector lines in

each period, with one pair of special forms for each reflector line. These two pairs

give four distinct special forms, otherwise there would be a translational symmetry

taking one reflector line to the other within a single period, which is impossible. Thus

each equivalence class of mirror-symmetric hyperbolic forms contains exactly four

special forms, and the proof is complete. ⊔⊓

We illustrate the theorem with an example, the first negative discriminant with

four distinct prime divisors, ∆ = −420 = −3·4·5·7. In this case ∆ = 4(4m + 3) so

the theorem says there are 23 = 8 equivalence classes of symmetric primitive forms.

If we compute all the reduced forms for ∆ = −420 by the method in Section 5.2 we

get the following table, with the letter b replacing h so we are finding solutions of

b2 + 420 = 4ac with 0 ≤ b ≤ a ≤ c . The entries [a, b, c] in the last column give the

reduced forms ax2 + bxy + cy2 .

b ac (a, c) [a, b, c]

0 105 (1,105) [1,0,105]

(3,35) [3,0,35]

(5,21) [5,0,21]

(7,15) [7,0,15]

2 106 (2,53) [2,2,53]

4 109 —

6 114 (6,19) [6,6,19]

8 121 (11,11) [11,8,11]

10 130 (10,13) [10,10,13]

Thus all forms of discriminant −420 are symmetric. The first four have b = 0 so

these arise in Case 1 in the proof of the theorem where we set ∆ = 4δ , so δ =

−3·5·7 and we get a form [a,0, c] for each positive divisor a of δ , the eight numbers
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1,3,5,7,15,21,35, and 105. These forms [a,0, c] are the first four entries in the last

column of the table along with the equivalent forms obtained by reversing a and c .

The remaining four forms in the last column have b nonzero and are instances of

forms [a,a, c] and [a, b,a] . The relevant parts of the topographs of these four forms

are shown in the figure to the right of the table. Each edge in the figure gives a form

[a, b,a] , [a,a, c] , or [a, c, c] . For example the third figure gives the forms [11,8,11] ,

[11,14,14] , [14,14,11] , [11,30,30] , and [30,30,11] . In the proof of the theorem

we were only counting the forms [a,a, c] , not [a, b,a] or [a, c, c] . According to

Case 3 in the proof of the theorem the numbers a in the forms [a,a, c] should be

twice the numbers a in the forms [a,0, c] , and they are: 2 = 2·1, 6 = 2·3, 10 = 2·5,

14 = 2·7, 30 = 2·15, 42 = 2·21, 70 = 2·35, and 210 = 2·105.

Corollary 5.10. The nonsquare discriminants ∆ with hs∆ = 1 are ∆ = −4 , ±8 , −16 ,

±p2k+1 , and ±4p2k+1 for odd primes p with p ≡ 1 mod 4 when ∆ > 0 and p ≡ 3

mod 4 when ∆ < 0 . In particular, the only fundamental discriminants with hs∆ = 1

are ∆ = −4 , ±8 , and ±p for odd primes p , with p ≡ 1 mod 4 when ∆ > 0 and

p ≡ 3 mod 4 when ∆ < 0 .

Proof: Consider first the case ∆ > 0. If we are not in one of the exceptional cases (a)

and (b) in Theorem 5.9 then ∆ must have just one distinct prime divisor so it must be

a power of a prime, in fact an odd power if it is not a square. Thus for p odd we have

∆ = p2k+1 and we must have p ≡ 1 mod 4 in order to have ∆ ≡ 1 mod 4. For odd

powers of p = 2 the only possibility is ∆ = 8 since ∆ cannot be 2 and odd powers

beyond 8 are of the form ∆ = 32m , the exceptional case (b) where hs∆ ≥ 2 so this is

ruled out as well. In the exceptional case (a) we have ∆ = 4(4m + 1) with 4m + 1 a

prime power p2k+1 with p ≡ 1 mod 4 since ∆ = 4p2k is a square.

When ∆ < 0 the reasoning is similar, the main difference being that −p2k and

−4p2k are ruled out, not because squares are excluded, but because p2k is always 1

mod 4 when p is odd, so −p2k is 3 mod 4. This rules out −p2k as a discriminant,

and it rules out −4p2k being an exceptional case ∆ = 4(4m+ 1) .

Requiring ∆ to be a fundamental discriminant eliminates the cases ∆ = −16 and

±4p2k+1 and restricts the exponent in ±p2k+1 to be 1. ⊔⊓

We have mentioned the fact that h∆ is always a multiple of hs∆ , which will be

proved in Proposition 7.17. This tells us nothing about h∆ when hs∆ = 1, but we will

also prove that hs∆ = 1 exactly when h∆ is odd. Thus the preceding corollary gives a

way to determine whether h∆ is even or odd. In the examples we have looked at so far

h∆ has been either 1 or even, but odd numbers greater than 1 can also occur as class

numbers. The table on the next page gives some examples for negative discriminants,

so we are determining the reduced forms ax2 + bxy + cy2 by finding the solutions

of b2 + |∆| = 4ac with 0 ≤ b ≤ a ≤ c . The forms other than the principal form

in each discriminant lack mirror symmetry so they count twice in the class number,
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making the class number odd. The discriminants in the table are all fundamental

discriminants, and in each case they are the first negative discriminant with the given

class number.

∆ b ac (a, c) h∆

−23 1 6 (1,6), (2,3) 3

−47 1 12 (1,12), (2,6), (3,4) 5

3 14 —

−71 1 18 (1,18), (2,9), (3,6) 7

3 20 (4,5)

−199 1 50 (1,50), (2,25), (5,10) 9

3 52 (4,13)

5 56 (7,8)

7 62 —

−167 1 42 (1,42), (2,21), (3,14), (6,7) 11

3 44 (4,11)

5 48 (6,8)

7 54 —

−191 1 48 (1,48), (2,24), (3,16), (4,12), (6,8) 13

3 50 (5,10)

5 54 (6,9)

7 60 —

−239 1 60 (1,60), (2,30), (3,20), (4,15), (5,12), (6,10) 15

3 62 —

5 66 (6,11)

7 72 (8,9)

Besides the cases when hs∆ = 1, another nice situation is when h∆ = hs∆ so all

primitive forms of discriminant ∆ have mirror symmetry. We call such discriminants

fully symmetric. As we will see in later chapters, forms with fully symmetric discrim-

inants have very special properties. A table at the end of the book lists the 101 known

negative discriminants that are fully symmetric, ranging from −3 to −7392.

Of the 101 known fully symmetric negative discriminants, 65 are fundamental

discriminants, the largest being −5460. Since 5460 factors as 3·4·5·7·13 with five

distinct prime factors, Theorem 5.9 says that hs∆ = 24 = 16. This is in fact the

largest value of hs∆ among the 101 discriminants in the list. Computer calculations

have extended to much larger negative discriminants without finding any more that

are fully symmetric. It has not yet been proved that no more exist, although it is

known that there are at most two more. For positive discriminants there are probably

infinitely many that are fully symmetric since it is likely that there are already infinitely

many with h∆ = 1.
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Skew Symmetries

Among the examples of hyperbolic forms we have considered there were some

whose topograph had a “symmetry” which was a glide reflection along the separator

line that had the effect of changing each value to its negative rather than preserving

the values. These are not actual symmetries according to the definition we have given,

so let us call such a transformation that takes each value of a form to its negative a

skew symmetry . (Compare this with skew-symmetric matrices in linear algebra which

equal the negative of their transpose.)

A skew symmetry must take the separator line to itself while interchanging the

two sides of the separator line, so it either translates the separator line along itself and

hence is a glide reflection, or it reflects the separator line, interchanging its two ends

as well as the two sides of the separator line, making it a 180 degree rotation about

a point of the separator line. Examples of forms with this sort of skew symmetry

occurred in Chapter 4, the forms x2 − 13y2 and 10x2 − 29y2 .

The figures below show forms whose separator lines have all the possible combi-

nations of symmetries and skew symmetries.

The first form has all four types: translations, mirror symmetries, glide reflections,

and rotations. The next three forms have only one type of symmetry or skew symmetry

besides translations, while the last form has only translational symmetries and no

mirror symmetries or skew symmetries. It is not possible to have two of the three

types of nontranslational symmetries and skew symmetries without having the third

since the composition of two of these three types gives the third type. One can see

this by considering the effect of a symmetry or skew symmetry on the orientation of
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the plane and the orientation of the separator line. The four possible combinations

distinguish the four types of transformations according to the following chart, where a

plus sign means orientation-preserving and a minus sign means orientation-reversing.

plane orientation line orientation

translation + +

rotation + −

glide reflection − +

reflection − −

A rotational skew symmetry is a rotation about the midpoint of an edge of the

separator line where the two adjacent regions have labels a and −a . If the edge

separating these two regions has label b then the form associated to this edge is

ax2 + bxy − ay2 . Conversely, any form ax2 + bxy − ay2 whose discriminant

∆ = b2+4a2 is not a square (although it is the sum of two squares) will be a hyperbolic

form having a rotational skew symmetry, as one can see in the

figure at the right. Note that the form ax2 + bxy − ay2 will be

one of the reduced forms in the equivalence class of the given form

since the two edges leading off the separator line at the ends of the

edge labeled b do so on opposite sides of the separator line. Thus rotational skew

symmetries can be detected by looking just at the reduced forms. The same is true for

mirror symmetries and glide reflection skew symmetries, but for these one must look

at the arrangement of the whole cycle of reduced forms rather than just the individual

reduced forms.

For rotational skew symmetries there are two rotation points along the separator

line in each period, just as reflector lines occur in pairs in each period.

Exercises

1. Show that the number of symmetries of an elliptic form, including the identity

transformation, is 1, 2, 4, or 6.

2. Show that the number of equivalence classes of forms of discriminant 45 with

mirror symmetry is not a power of 2 if nonprimitive as well as primitive forms are

allowed. (Compare this with Theorem 5.9.)

3. In the text an example was given of a hyperbolic form having only translational

symmetries and no skew symmetries, the form 5x2 + 14xy − 10y2 . Find another

example of the same sort which is not equivalent to this form or a constant times it.

Hint : First find a separator line with the desired properties, without any labels along

the line, then find a form realizing that separator line.

4. Show that a positive nonsquare number is the discriminant of some hyperbolic

form whose topograph has a rotational skew symmetry if and only if the number is
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the sum of two squares at least one of which is even.

5. Verify that the following discriminants are fully symmetric, so all primitive forms

of that discriminant have mirror symmetry:

(a) −195 (b) −660 (c) 195

6. Show that the topograph of a primitive 0-hyperbolic form qxy −py2 has mirror

symmetry exactly when p2 ≡ 1 mod q , and has rotational skew symmetry exactly

when p2 ≡ −1 mod q . (See the discussion at the end of Secion 2.1 about the rela-

tion between the continued fraction for p/q and the continued fraction obtained by

reversing the order of the terms.)

5.5 Charting All Forms

We have used the Farey diagram to study individual quadratic forms through their

topographs, and in this section we will see that the Farey diagram also appears in

another way when one creates a global picture mapping out all forms simultaneously.

This viewpoint will not play an essential role in later chapters, however, so this section

can be regarded as something of a digression from the main line of the book.

Quadratic forms are defined by formulas ax2+bxy+cy2 , and our point of view

will be to regard the coefficients a , b , and c as parameters that vary over all integers

independently. It is natural to consider the triples (a, b, c) as points in 3-dimensional

Euclidean space R3 , and more specifically as points in the integer lattice Z3 consist-

ing of points (a, b, c) whose coordinates are in-

tegers. We will exclude the origin (0,0,0) since

this corresponds to the trivial form that is iden-

tically zero. Instead of using the usual (x,y, z)

as coordinates for R3 we will use (a, b, c) , but

since a and c play a symmetric role as the coef-

ficients of the squared terms x2 and y2 we will

position the a-axis and the c-axis in a horizontal

plane, with the b-axis vertical, perpendicular to

the ac-plane.

Along a ray starting at (0,0,0) and passing through another lattice point (a, b, c)

there are infinitely many lattice points (ka, kb, kc) for positive integers k . If a , b , and

c have a greatest common divisor larger than 1 we can cancel this common divisor

to get a primitive triple (a, b, c) corresponding to a primitive form ax2+bxy +cy2 .

Then all the other lattice points on the ray through (a, b, c) are the positive integer

multiples (ka, kb, kc) , corresponding to the nonprimitive forms kax2+kbxy+kcy2 .

Thus primitive forms correspond exactly to rays from the origin passing through

lattice points. These are the same as rays passing through points (a, b, c) with rational
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coordinates since denominators can always be eliminated by multiplying a , b , and c

by a common denominator.

Since the discriminant ∆ = b2 − 4ac plays

such an important role in the classification of

forms, let us see how this fits into the picture in

(a, b, c) coordinates. When b2 − 4ac is zero we

have the special class of parabolic forms, and the

points in R3 satisfying the equation b2−4ac = 0

form a double cone with the common vertex of the two cones at the origin. The dou-

ble cone intersects the ac-plane in the a-axis and the c-axis. The central axis of the

double cone is the line a = c in the ac-plane. Parabolic forms are the lattice points

on these cones.

Elliptic and Parabolic Forms

Points (a, b, c) inside either cone have b2 − 4ac < 0 so the lattice points inside

the cones correspond to elliptic forms. Positive elliptic forms have a > 0 and c > 0

so they lie inside the cone projecting to the first quadrant of the ac-plane. We call this

the positive cone. Inside the other cone are the negative elliptic forms, those with a < 0

and c < 0. Outside the cones is a single region consisting of points with b2−4ac > 0

so the lattice points here correspond to hyperbolic forms and 0-hyperbolic forms.

If one slices the positive cone via the vertical plane a + c = 1 perpendicular to

the axis of the cone then the intersection of the cone with this plane is an ellipse

which we denote E . The top and bottom

points of E are (a, b, c) =
(
1/2 ,±1, 1/2

)
so

its height is 2. The left and right points of E

are (1,0,0) and (0,0,1) so its width is
√

2.

Thus E is somewhat elongated vertically. If

we wanted, we could compress the vertical

coordinate to make E a circle, but there is

no special advantage to doing this.

If we take a lattice point (a, b, c) corresponding to a primitive positive elliptic

form and project this lattice point along the ray to the origin passing through (a, b, c) ,

this ray intersects the plane a+c = 1 in the point
(
a/a+c ,

b/a+c ,
c/a+c

)
since this is

the rescaling of (a, b, c) for which the sum of the first and third coordinates is 1. This

point lies inside the ellipse E and has rational coordinates. Conversely, every point in-

side E with rational coordinates is the radial projection of a unique primitive positive

elliptic form, obtained by multiplying the coordinates of the point by the least com-

mon multiple of their denominators. Thus the rational points inside E parametrize

primitive positive elliptic forms. We will use the notation [a, b, c] to denote both the

form ax2 + bxy + cy2 and the corresponding rational point
(
a/a+c ,

b/a+c ,
c/a+c

)
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inside E .

The figure below shows some examples, including a few parabolic forms on E

itself. The lines radiating out from the points [1,0,0] and [0,0,1] consist of the

points [a, b, c] with a fixed ratio b/c or b/a respectively. The ratios a/c are fixed along

vertical lines. For most points inside E any two out of these three ratios determine

the third since b/a ·a/c = b/c . The exceptions are the points on the segment between

[1,0,0] and [0,0,1] where b/a and b/c are both 0 but a/c can be anything.

Of special interest are the reduced primitive elliptic forms [a, b, c] , which are the

ones satisfying 0 ≤ b ≤ a ≤ c where a , b , and c have no common divisor. These

correspond to the rational points in the shaded triangle in the figure with vertices

[1,1,1] , [1,0,1] , and [0,0,1] . The edges of the triangle correspond to one of the

three inequalities 0 ≤ b ≤ a ≤ c becoming an equality, so b = 0 for the lower

edge, a = c for the vertical edge, and a = b for the hypotenuse. Thus the three

edges correspond to the reduced forms with mirror symmetry, the forms [a,0, c] for

the bottom edge, [a, b,a] for the left edge, and [a,a, c] for the diagonal edge. The

vertices [1,0,1] and [1,1,1] correspond to the reduced elliptic forms with more than

one mirror symmetry, and hence also rotational symmetry. Points in the interior of

the triangle correspond to forms with no symmetry.
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Just as rational points inside the ellipse E correspond to primitive positive elliptic

forms, the rational points on E itself correspond to primitive positive parabolic forms.

As we saw in Section 5.2, every parabolic form is equivalent to a form ax2 for some

nonzero integer a . For this to be primitive means that a = ±1, so every positive

primitive parabolic form is equivalent to x2 . Equivalent forms can be obtained from

each other by a change of variables, replacing (x,y) by (px + qy, rx + sy) for

integers p,q, r , s satisfying ps − qr = ±1. For the form x2 this means that the

primitive positive parabolic forms are the forms (px+qy)2 = p2x2+2pqxy+q2y2

for coprime integers p and q . In [a, b, c] notation this is [p2,2pq,q2] , defining a

point on the ellipse E .

More concisely, we could label the rational point on E corresponding to the form

(px + qy)2 just by the fraction p/q . Thus at the left and right sides of E we have

the fractions 1/0 and 0/1 corresponding to the forms x2 and y2 , while at the top and

bottom of E we have 1/1 and ---1/1 corresponding to (x+y)2 and (x−y)2 = (−x+y)2 .

Changing the signs of both p and q does not change the form (px + qy)2 or the

fraction p/q .

In the first quadrant of the ellipse the fractions p/q increase monotonically from 0/1

to 1/1 since the ratio b/c equals 2p/q and b is increasing while c is decreasing so 2p/q

is increasing, and hence so is p/q . Similarly in the second quadrant the values of p/q

increase from 1/1 to 1/0 since we have b/a = 2q/p which decreases as b decreases and

a increases. In the lower half of the ellipse we have just the negatives of the values

in the upper half since the sign of b has changed from plus to minus.

This labeling of the rational points of E by fractions p/q seems very similar to the

labeling of vertices in the circular Farey diagram. As we saw in Section 1.1, if the Farey

diagram is drawn with 1/0 at the top of the unit circle in the xy-plane, then the point

on the unit circle labeled p/q has coordinates (x,y) =
(
2pq/p2 +q2 ,p

2 ---q2
/p2 +q2

)
.

After rotating the circle to put 1/0 on the left side by replacing (x,y) by (−y,x)
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this becomes
(
q2 ---p2

/p2 +q2 , 2pq/p2 +q2
)
. Here the y-coordinate 2pq/p2 +q2 is the

same as the b-coordinate of the point of E labeled p/q , which is the point (a, b, c) =
(
p2

/p2 +q2 , 2pq/p2 +q2 ,q
2
/p2 +q2

)
. Since the vertical coordinates of points in either

the left or right half of the unit circle or the ellipse E determine the horizontal coor-

dinates uniquely, this means that the labeling of points of E by fractions p/q is really

the same as in the circular Farey diagram.

Change of Variables

Let us return now to the general picture of how forms ax2 + bxy + cy2 are

represented by points (a, b, c) in R
3 . As we know, a change of variables by a linear

transformation T sends (x,y) to T(x,y) = (px + qy, rx + sy) , where p,q, r , s

are integers with ps − qr = ±1. This change of variables transforms each form into

an equivalent form. To see the effect of this change of variables on the coefficients

(a, b, c) of a form Q(x,y) = ax2 + bxy + cy2 we do a simple calculation:

Q(px + qy, rx + sy) = a(px + qy)2 + b(px + qy)(rx + sy)+ c(rx + sy)2

= (ap2 + bpr + cr 2)x2 + (2apq + bps + bqr + 2crs)xy

+ (aq2 + bqs + cs2)y2

This means that the (a, b, c) coordinates of points in R3 are transformed according

to the following formula:

T∗(a, b, c) =
(
p2a+ prb + r 2c,2pqa+ (ps + qr)b + 2rsc, q2a+ qsb + s2c

)

For fixed values of p,q, r , s this T∗ is a linear transformation of the variables a,b, c .

Its matrix is: 

p2 pr r 2

2pq ps + qr 2rs
q2 qs s2




Since T∗ is a linear transformation, it takes lines to lines and planes to planes, but T∗

also has another special geometric property. Since equivalent forms have the same

discriminant, this means that each surface defined by an equation b2−4ac = k for k

a constant is taken to itself by T∗ . In particular, the double cone b2−4ac = 0 is taken

to itself, and in fact each of the two cones separately is taken to itself since one cone

consists of positive parabolic forms and the other cone of negative parabolic forms (as

one can see just by looking at the coefficients a and c ), and positive parabolic forms

are never equivalent to negative parabolic forms. When k > 0 the surface b2−4ac = k

is a hyperboloid of one sheet and when k < 0 it is a hyperboloid of two sheets. In the

case of two sheets the lattice points on one sheet give positive elliptic forms and the

lattice points on the other sheet give negative elliptic forms.

Since T∗ takes lines through the origin to lines through the origin and the double

cone b2−4ac = 0 to itself, this means that T∗ gives a transformation of the ellipse E
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to itself, taking rational points to rational points since rational points on E correspond

to lattice points on the cones. Regarding E as the boundary circle of the Farey diagram,

we know that linear fractional transformations give symmetries of the Farey diagram,

also taking rational points on the boundary circle to rational boundary points. And

in fact, the transformation of this circle defined by T∗ is exactly one of these linear

fractional transformations. This is because T∗ takes the parabolic form (dx+ey)2 to

the form
(
d(px+qy)+e(rx+sy)

)2
=
(
(dp+er)x+(dq+es)y

)2
so in the fractional

labeling of points of E this says T∗(d/e) =
pd+re/qd+se which is a linear fractional

transformation. If we write this using the variables x and y instead of d and e it

would be T∗(x/y) =
px+ry/qx+sy . This is not quite the same as the linear fractional

transformation T(x/y) =
px+qy/rx+sy defined by the original change of variables

T(x,y) = (px + qy, rx + sy) , but rather T∗ is obtained from T by transposing the

matrix of T , interchanging the off-diagonal terms q and r .

Via radial projection, the transformation T∗ determines a transformation not just

of E but also of the interior of E in the plane a+ c = 1. This transformation, which

we still call T∗ for simplicity, takes lines inside E to lines inside E since T∗ takes

planes through the origin to planes through the origin.

This leads us to consider a linear version of the Farey

diagram in which each circular arc of the original Farey

diagram is replaced by a straight line segment joining

the two endpoints of the circular arc. These line seg-

ments divide the interior of E into triangles, just as the

original Farey diagram divides the disk into curvilinear

triangles. The transformation T∗ takes each of these tri-

angles onto another triangle, analogous to the way that

linear fractional transformations provide symmetries of

the original Farey diagram.

Suppose we divide each triangle of the linear Farey diagram into six smaller trian-

gles as in the figure at the right, by adding diagonals to each quadrilateral formed by

two adjacent triangles of the Farey diagram. The trans-

formation T∗ takes each of these small triangles onto

another small triangle since it takes lines to lines. One

of these small triangles is the triangle defined by the in-

equalities 0 ≤ b ≤ a ≤ c that we considered earlier. The

fact that every positive primitive elliptic form is equiv-

alent to exactly one reduced form, corresponding to a

rational point in this special triangle, is now visible ge-

ometrically as the fact that there is always exactly one

transformation T∗ taking a given small triangle to this

one special small triangle.
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Elliptic forms whose topograph contains a source edge are equivalent to forms

ax2 + cy2 so these are the forms corresponding to rational points on the edges of

the original linear Farey diagram, before the subdivision into smaller triangles. These

are the forms whose topograph has a symmetry reflecting across a line perpendicular

to the source edge. (This line is just the edge in the Farey diagram containing the

given form.) The other type of reflectional symmetry in the topograph of an elliptic

form is reflection across an edge of the topograph. Forms with this sort of symmetry

correspond to rational points in the dotted edges in the preceding figure, the edges

we added to subdivide the Farey diagram into the smaller triangles. The dotted edges

are of two types according to whether the two equal values of the form in the three

regions surrounding the source vertex occur for the smallest value of the form (wide

dotted edges) or the next-to-smallest value of the form (narrow dotted edges). The

wide dotted edges form the dual tree of the Farey diagram.

Hyperbolic and 0-Hyperbolic Forms

Hyperbolic and 0-hyperbolic forms correspond to integer lattice points that lie

outside the two cones. For a point (a, b, c) outside the double cone there are exactly

two planes in R3 that are tangent to the double cone and pass through (a, b, c) . Each

of these planes is tangent to the double cone along a line through the origin. The

two tangent planes through (a, b, c) are determined by their intersection with the

plane a + c = 1, which consists of two lines

tangent to the ellipse E . These two lines can

either intersect or be parallel. The latter pos-

sibility occurs when the point (a, b, c) lies in

the plane a+ c = 0, so the two tangent planes

intersect in a line in this plane. For example, if

the point (a, b, c) we start with happens to lie

on the b-axis, then the tangent planes are the

ab-plane and the bc-plane. These intersect the plane a + c = 1 in the two vertical

tangent lines to the ellipse E .

Our goal will be to show the following:

Proposition 5.11. Let Q(x,y) = ax2+bxy+cy2 be a form of positive discriminant,

either hyperbolic or 0 -hyperbolic. Then the two points where the tangent lines to E

determined by (a, b, c) touch E are the points diametrically opposite the two points

that are the endpoints of the separator line in the topograph of Q in the case that

Q is hyperbolic, or the two points labeling the regions in the topograph of Q where

Q takes the value zero in the case that Q is 0 -hyperbolic.

Proof: We begin with a few preliminary remarks that will allow us to treat the hyper-

bolic and 0-hyperbolic cases in the same way. A form Q(x,y) = ax2 + bxy + cy2
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of positive discriminant can always be factored as (px+qy)(rx+ sy) with p,q, r , s

real numbers since if a = 0 we have the factorization y(bx + cy) and if a ≠ 0 then

the associated quadratic equation ax2+bx+c = 0 has positive discriminant so it has

two distinct real roots α and β . This leads to the factorization ax2 + bxy + cy2 =

a(x−αy)(x−βy) which can be rewritten as (px+qy)(rx+sy) by incorporating a

into either factor. If Q is hyperbolic then the discriminant is not a square and hence

the factorization (px+qy)(rx+ sy) will involve coefficients that are quadratic irra-

tionals. If Q is 0-hyperbolic then the discriminant is a square so the roots α and β

are rational and we obtain a factorization of Q as (px + qy)(rx + sy) with rational

coefficients. In fact we can take p,q, r , s to be integers in this case since we know

every 0-hyperbolic form is equivalent to a form y(bx + cy) so we can obtain the

given form Q from y(bx+cy) by replacing x and y by certain linear combinations

dx + ey and fx + gy with integer coefficients d, e, f , g .

The points where the tangent planes touch the double cone correspond to forms

of discriminant zero, with coefficients that may not be integers or even rational. A

simple way to construct two such forms from a given form Q = (px + qy)(rx+ sy)

is just to take the squares of the two linear factors, so we obtain the forms (px+qy)2

and (rx+sy)2 , each of discriminant zero. We will show that each of these two forms

lies on the line of tangency for one of the two tangent planes determined by Q .

To do this for the case of (px+qy)2 we consider the line L in R3 passing through

the two points corresponding to the forms (px+qy)(rx+ sy) and (px+qy)2 . We

claim that L consists of the forms

Qt(x,y) = (px + qy)
[
(1− t)(rx + sy)+ t(px + qy)

]

as t varies over all real numbers. When t = 0 or t = 1 we obtain the two forms

Q0 = (px + qy)(rx + sy) and Q1 = (px + qy)
2 so these forms lie on L . Also, we

can see that the forms Qt do form a straight line in R3 by rewriting the formula for

Qt(x,y) as ax2 + bxy + cy2 with the coefficients a,b, c given by:

(a, b, c) =
(
pr(1− t)+ p2t, (ps + qr)(1− t)+ 2pqt, qs(1− t)+ q2t

)

This defines a line since p,q, r , s are constants, so each coordinate is a linear function

of t . Since the forms Qt factor as the product of two linear factors, they have non-

negative discriminant for all t . This means that the line L does not go into the interior

of either cone. It also does not pass through the origin since if it did, it would have

to be a subset of the double cone since it contains the form Q1 which lies in the

double cone. From these facts we deduce that L must be a tangent line to the double

cone. Hence the plane containing L and the origin must be tangent to the double cone

along the line containing the origin and Q1 . The same reasoning shows that the other

tangent plane that passes through (px + qy)(rx + sy) intersects the double cone

along the line containing the origin and (rx + sy)2 .
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The labels of the points of E corresponding to the two forms (px + qy)2 and

(rx+sy)2 are p/q and r/s according to the convention we have adopted. On the other

hand, when the form (px+qy)(rx+sy) is hyperbolic the ends of the separator line

in its topograph are at the two points where this form is zero, which occur when x/y

is ---q/p and ---s/r . These are the negative reciprocals of the previous two points p/q

and r/s so they are the diametrically opposite points in E . Similarly, when the form

(px+qy)(rx+sy) is 0-hyperbolic the vertices of the Farey diagram where it is zero

are at ---q/p and ---s/r , again diametrically opposite p/q and r/s . ⊔⊓

It might have been nicer if the statement of the previous proposition did not

involve passing to diametrically opposite points, but to achieve this we would have had

to use a different rule for labeling the points of E , with the label p/q corresponding

to the form (qx−py)2 instead of (px+qy)2 . This 180 degree rotation of the labels

would put the negative labels in the upper half of E rather than the lower half, which

does not seem like a good idea.

Next let us investigate how hyperbolic and 0-hyperbolic forms are distributed

over the lattice points outside the double cone b2−4ac = 0. This is easier to visualize

if we project such points radially into the plane a+ c = 1. This only works for forms

ax2+bxy+cy2 with a+c > 0, but the forms with a+c < 0 are just the negatives of

these so they give nothing essentially new. The forms with a+ c = 0 will be covered

after we deal with those with a+ c > 0.

Forms with a + c > 0 that are hyperbolic or 0-hyperbolic correspond via radial

projection to points in the plane a + c = 1 outside the ellipse E . As we have seen,

each such point determines a pair of tangent lines to E intersecting at the given point.

For a 0-hyperbolic form (px + qy)(rx + sy) the points of tangency in E have

rational labels p/q and r/s . We know that every 0-hyperbolic form is equivalent to

a form y(rx + sy) with a = 0, so p/q =
0/1 and one line of tangency is the vertical

line tangent to E on the right side. The form y(rx + sy) corresponds to the point

(0, r , s) in the plane a = 0 tangent to the double cone. Projecting radially into the

vertical tangent line to E , we obtain the points (0, r/s ,1) , where r/s is an arbitrary

rational number. Thus 0-hyperbolic forms are dense in this vertical tangent line to E .

Choosing any rational number r/s , the other tangent line for the form y(rx+ sy) is

tangent to E at the point labeled r/s .

An arbitrary 0-hyperbolic form (px + qy)(rx + sy) is obtained from one with

p/q =
0/1 by applying a linear fractional transformation T taking 0/1 to p/q , so the

vertical tangent line to E at 0/1 is taken to the tangent line at p/q , and the dense set of

0-hyperbolic forms in the vertical tangent line is taken to a dense set of 0-hyperbolic

forms in the tangent line at p/q . Thus we see that the 0-hyperbolic forms in the plane

a + c = 1 consist of all the rational points on all the tangent lines to E at rational

points p/q of E .
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In the case of a hyperbolic form ax2+bxy +cy2 with a+c > 0 the two tangent

lines intersect E at a pair of conjugate quadratic irrationals, the negative reciprocals of

the roots α and α of the equation ax2+bx+c = 0. Since α determines α uniquely,

one tangent line determines the other uniquely, unlike the situation for 0-hyperbolic

forms whose rational tangency points p/q and r/s can be varied independently. A

consequence of this uniqueness for hyperbolic forms is that each of the two tangent

lines contains only one rational point, the intersection point of the two lines. This is

because any other rational point would correspond to another form having one of its

tangent lines the same as for ax2 + bxy + cy2 and the other tangent line different,

contradicting the previous observation that each tangent line for a hyperbolic form

determines the other. (The hypothetical second form would also be hyperbolic since

the common tangency point for the two forms is not a rational point on E .)

The points in the plane a + c = 1 that correspond to 0-hyperbolic forms are

dense in the region of this plane outside E since for an arbitrary point in this region

we can first take the two tangent lines to E through this point and then take a pair

of nearby lines that are tangent at rational points of E since points in E with rational

labels are dense in E . It is also true that points in the plane a+c = 1 that correspond

to hyperbolic forms are dense in the region outside E . To see this we can proceed

in two steps. First consider the case of a point in this region whose two tangent

lines to E are tangent at irrational points of E . These two irrational points are the

endpoints of an infinite strip in the Farey diagram that need not be periodic. However

we can approximate this strip by a periodic strip by taking a long finite segment of

the infinite strip and then repeating this periodically at each end. This means that the

given point in the region outside E lies arbitrarily close to points corresponding to

hyperbolic forms. Finally, a completely arbitrary point in the region outside E can be

approximated by points whose tangent lines to E touch E at irrational points since

irrational numbers are dense in real numbers.

It remains to consider hyperbolic and 0-hyperbolic forms (px + qy)(rx + sy)

corresponding to points (a, b, c) in the plane a + c = 0. Such a form determines

a line through the origin in this plane, and the tangent planes to the double cone

that intersect in this line intersect the plane a + c = 1 in two parallel lines tangent

to E at two diametrically opposite points p/q and ---q/p . This means that the form is

(px+qy)(qx−py) , up to a constant multiple. If p/q is rational this is a 0-hyperbolic

form. Examples are:

xy with vertical tangents to E at 1/0 and 0/1 .

x2 −y2 = (x +y)(x −y) with horizontal tangents to E at 1/1 and ---1/1 .

2x2 − 3xy − 2y2 = (2x + y)(x − 2y) with parallel tangents at 2/1 and ---1/2 .

If p/q and ---q/p are conjugate quadratic irrationals then we have a hyperbolic form

ax2 + bxy + cy2 = a(x −α)(x −α) where αα = −1 since c = −a when a+ c = 0.

Thus α and α are negative reciprocals of each other that are interchanged by 180
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degree rotation of E . As examples we have:

x2 + xy − y2 =
(
x −

−1+
√

5

2
y
)(
x −

−1−
√

5

2
y
)

2x2 + xy − 2y2 = 2
(
x −

−1+
√

17

4
y
)(
x −

−1−
√

17

4
y
)

One can consider a pair of parallel tangent lines to E as the limit of a pair of inter-

secting tangents where the point of intersection moves farther and farther away from

E in a certain direction which becomes the direction of the pair of parallel tangents.


