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With the various things we have learned about quadratic forms so far, let us

return to the basic representation problem of determining what values a given form

Q(x,y) = ax2 + bxy + cy2 can take on when x and y are integers, or in other

words, which numbers can be represented as ax2 + bxy + cy2 for some choice of

integers x and y . Remember that it suffices to restrict attention to the values of Q

appearing in the topograph since these are the values for primitive pairs (x,y) , and

to get all other values one just multiplies the values in the topograph by arbitrary

squares. With this in mind we will adopt the following convention in the rest of the

book:

When we say that a form Q represents a number n we mean that n = Q(x,y)

for some primitive pair of integers (x,y) ≠ (0,0) .

This differs from the traditional terminology in which any solution of n = Q(x,y) is

called a representation of n , without requiring (x,y) to be a primitive pair, and when

(x,y) is primitive it is called a proper or primitive representation of n . However,

since we will rarely consider the case that (x,y) is not a primitive pair, it will save

many words not to have to insert the extra modifier for every representation.

We will focus on forms that are either elliptic or hyperbolic, as these are the most

interesting cases.

6.1 Three Levels of Complexity

In this section we will look at a series of examples to try to narrow down what sort

of answer one could hope to obtain for the representation problem. The end result

will be a reasonable guess that will be verified in the rest of this chapter and the next

one, at least for fundamental discriminants. For nonfundamental discriminants there

is sometimes a small extra wrinkle that seems to be rather subtle and more difficult

to analyze.

As a first example let us try to find a general pattern in the values of the form

x2+y2 . In view of the symmetry of the topograph for this form it suffices to look just

in the first quadrant of the topograph. Part of this quadrant is shown in the figure
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below, somewhat distorted to fit more numbers into the picture. What is shown is all

the numbers in the topograph that are less than 100.

At first glance it may be hard to detect any patterns here. Both even and odd numbers

occur, but none of the even numbers are divisible by 4 so they are all twice an odd

number, and in fact an odd number that appears in the topograph. Considering the

odd numbers, one notices they are all congruent to 1 mod 4 and not 3 mod 4, which

is the other possibility for odd numbers. On the other hand, not all odd numbers

congruent to 1 mod 4 appear in the topograph. Up to 100, the ones that are missing

are 9, 21, 33, 45, 49, 57, 69, 77, 81, and 93. Each of these has at least one prime

factor congruent to 3 mod 4, while all the odd numbers that do appear have all their

prime factors congruent to 1 mod 4. Conversely, all products of primes congruent

to 1 mod 4 are in the topograph.

This leads us to guess that the following might be true:

Conjecture. The numbers that appear in the topograph of x2 + y2 are precisely

the numbers n = 2ap1p2 · · ·pk where a ≤ 1 and each pi is a prime congruent to

1 mod 4 . Consequently, the values of the quadratic form Q(x,y) = x2 + y2 as x

and y range over all integers (not just the primitive pairs) are exactly the numbers

n = m2p1p2 · · ·pk where m is an arbitrary integer and each pi is either 2 or a

prime congruent to 1 mod 4 .

In both statements the index k denoting the number of prime factors pi is allowed

to be zero as well as any positive integer. The restriction a ≤ 1 in the first statement

disappears in the second statement since higher powers of 2 can occur when we

multiply by arbitrary squares. We will prove the conjecture later in the chapter.

A weaker form of the conjecture can be proved just by considering congruences

mod 4 as follows. An even number squared is congruent to 0 mod 4 and an odd

number squared is congruent to 1 mod 4, so x2 +y2 must be congruent to 0, 1, or

2 mod 4. Moreover, the only way that x2+y2 can be 0 mod 4 is for both x and y to

be even, which cannot happen for primitive pairs. Thus all numbers in the topograph

must be congruent to 1 or 2 mod 4. This says that the odd numbers in the topograph

are congruent to 1 mod 4 and the even numbers are each twice an odd number.

However, these simple observations say nothing about the role played by primes

and prime factorizations, nor do they include any positive assertions about which
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numbers actually are represented by x2 + y2 . It definitely takes more work to show

for example that every prime p = 4k+1 can be represented as the sum of two squares.

Let us look at a second example to see whether the same sorts of patterns occur,

this time for the form Q(x,y) = x2+2y2 . Here is a portion of its topograph showing

all values less than 100, with the lower half of the topograph omitted since it is just

the mirror image of the upper half:

Again the even values are just the doubles of the odd values. The odd prime values are

3,11,17,19,41,43,59,67,73,83,89,97 and the other odd values are all the products

of these primes. The odd prime values are not determined by their values mod 4

in this case, but instead by their values mod 8 since the primes we just listed are

exactly the primes less than 100 that are congruent to 1 or 3 mod 8. Apart from

this change, the answer to the representation problem for x2 + 2y2 is completely

analogous to the answer for x2 +y2 . Namely, the numbers represented by x2 + 2y2

are the numbers n = 2ap1p2 · · ·pk with a ≤ 1 and each pi a prime congruent to 1

or 3 mod 8. Using congruences mod 8 we could easily prove the weaker statement

that all numbers represented by x2 + 2y2 must be congruent to 1,2,3, or 6 mod 8,

so all odd numbers in the topograph must be congruent to 1 or 3 mod 8 and all even

numbers must be twice an odd number.

These two examples were elliptic forms, but the same sort of behavior can occur

for hyperbolic forms as we see in the next example, the form x2− 2y2 . The negative

values of this form happen to be just the negatives of the positive values, so we need

only show the positive values in the topograph:
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Here the primes that occur are 2 and primes congruent to ±1 mod 8. The nonprime

values that occur are the products of primes congruent to ±1 mod 8 and twice these

products. Again there is a weaker statement that can be proved using just congruences

mod 8.

In these three examples the guiding principle was to look at prime factorizations

and at primes modulo certain numbers, the numbers 4, 8, and 8 in the three cases.

Notice that these numbers are just the absolute values of the discriminants −4, −8,

and 8. Looking at primes mod |∆| turns out to be a key idea for all quadratic forms.

Another example of the same sort is the form x2+xy +y2 of discriminant −3.

This time it is the prime 3 that plays a special role rather than 2.

We only have to draw one-sixth of the topograph because of all the symmetries. Notice

that all the values are odd, so the prime 2 plays no role here. Since the discriminant

is −3 we are led to consider congruences mod 3. The primes in the topograph are

3 and the primes congruent to 1 mod 3 (which in particular excludes the prime 2),

namely the primes 7,13,19,31,37,43,61,67,73,79,97. The nonprime values are the

products of these primes with the restriction that the prime 3 never has an exponent

greater than 1. This is analogous to the prime 2 never having an exponent greater

than 1 in the preceding examples. In all four examples the “special” primes whose

exponents are restricted are just the prime divisors of the discriminant. This is a

general phenomenon, that primes dividing the discriminant behave differently from

primes that do not divide the discriminant.

A special feature of the discriminants −4, −8, 8, and −3 is that in each case all

forms of that discriminant are equivalent. We will see that the representation problem

always has the same type of answer for discriminants with a single equivalence class

of forms.

Before going on to the next level of complexity let us digress to describe a nice

property that forms of the first level of complexity have. As we know, if an equa-

tion Q(x,y) = n has an integer solution (x,y) then so does Q(x,y) = m2n for

every integer m . The converse is not always true however. For example the equation

2x2 + 7y2 = 9 has the solution (x,y) = (1,1) but 2x2 + 7y2 = 1 obviously has no

solution with x and y integers. Nevertheless, this converse property does hold for
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forms such as those in the preceding four examples where the numbers n for which

Q(x,y) = n has an integer solution are exactly the numbers that can be factored as

n = m2p1p2 · · ·pk for primes pi satisfying certain conditions and m an arbitrary

integer. This is because if a number n has a factorization of this type then we can

cancel any square factor of n and the result still has a factorization of the same type.

Let us apply this “square-cancellation” property in the case of the form x2+y2 to

determine the numbers n such that the circle x2 +y2 = n contains a rational point,

and hence, as in Chapter 0, an infinite dense set of rational points. Suppose first that

the circle x2 +y2 = n contains a rational point, so after putting the two coordinates

over a common denominator the point is (x,y) =
(
a/c ,

b/c
)
. The equation x2+y2 = n

then becomes a2 + b2 = c2n . This means that the equation x2 + y2 = c2n has

an integer solution. Then the square-cancellation property implies that the original

equation x2 + y2 = n has an integer solution. Thus we see that if there are rational

points on the circle x2 + y2 = n then there are integer points on it. This is not

something that is true for all quadratic curves, as shown by the example of the ellipse

2x2 + 7y2 = 1 which has rational points such as
(
1/3 ,

1/3

)
but no integer points.

From the solution to the representation problem for x2 +y2 we deduce that the

circle x2 + y2 = n contains rational points exactly when n = m2p1p2 · · ·pk where

m is an arbitrary integer and each pi is either 2 or a prime congruent to 1 mod 4.

The first few values of n satisfying this condition are 1,2,4,5,8,9,10,13,16,17,

18,20, · · · .

The Second Level of Complexity

For an example with slightly greater complexity consider discriminant 40 where

the class number is 2 and two nonequivalent forms are x2 − 10y2 and 2x2 − 5y2 .

The topographs below show the positive values less than 100.

The topographs are periodic and also have mirror symmetry so it suffices to show half

of one period. There is no need to show any more of the negative values since these
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will just be the negatives of the positive values.

For the form x2 − 10y2 the prime values less than 100 are 31,41,71,79,89.

These are the primes congruent to ±1 or ±9 mod 40, the discriminant. However, in

contrast to what happened in the previous examples, there are many nonprime values

of this form that are not products of these prime values. The prime factors of these

nonprime values are 2,3,5,13,37,43, none of which occur in the topograph of the

first form. Rather miraculously, these prime values are realized instead by the second

form 2x2 − 5y2 . The prime values this form takes on are 2 and 5, which are the

prime divisors of the discriminant 40, along with primes congruent to ±3 and ±13

mod 40, namely 3,13,37,43,53,67, and 83.

Apart from the primes 2 and 5 that divide the discriminant, the possible values

of primes mod 40 are ±1,±3,±7,±9,±11,±13,±17,±19 since even numbers and

multiples of 5 are excluded. There are sixteen different congruence classes here,

and exactly half of them, eight, are realized by one or the other of the two forms

x2 − 10y2 and 2x2 − 5y2 , with four classes realized by each form. The other eight

congruence classes are not realized by any form of discriminant 40 since every form

of discriminant 40 is equivalent to one of the two forms x2− 10y2 or 2x2− 5y2 , as

is easily checked by the methods from the previous chapter.

This turns out to be a general phenomenon valid for elliptic and hyperbolic forms

of any discriminant ∆ : If one excludes the primes that divide ∆ , then the prime values

of quadratic forms of discriminant ∆ are exactly the primes in half of the congruence

classes mod ∆ of numbers coprime to ∆ . This will be proved in Proposition 6.23.

Also, each form represents primes in the same number of congruence classes. For

∆ = 40 this is four congruence classes for each form.

The primes 2 and 5 that divide the discriminant occur in the topographs only to

the first power, and in fact no numbers in the topographs are divisible by 22 or 52 .

This is similar to what happened in the earlier examples where there was only one

prime dividing the discriminant. Apart from this restriction it appears that each prod-

uct of primes represented by Q1 or Q2 is also represented by Q1 or Q2 . The problem

is to decide which form represents which products. For numbers in the topographs

not divisible by 2 or 5 it seems that these numbers are subject to the same congru-

ence conditions as for primes, so they are congruent to ±1 or ±9 for Q1 and to ±3

or ±13 for Q2 .

If one includes numbers divisible by 2 or 5 the following statements seem to be

true, provided that numbers divisible by 22 or 52 are excluded:

The product of two numbers represented by Q1 is again represented by Q1 .

The product of two numbers represented by Q2 is represented by Q1 .

The product of a number represented by Q1 with a number represented by Q2

is represented by Q2 .
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To illustrate the first statement, the numbers 6, 9, and 10 appear in the topograph

of Q1 hence so do 6·9, 9·9, and 9·10, but not 6·10 since this is divisible by 22 .

For the second statement, the numbers 2, 3, and 5 are in the topograph of Q2 so

2·3, 3·3, 2·5, and 3·5 are in the topograph of Q1 but not 2·2 or 5·5. The product

2·3·5 is then in the topograph of Q2 by the third statement.

An abbreviated way of writing the three rules is by the formulas Q1Q1 = Q1 ,

Q2Q2 = Q1 , and Q1Q2 = Q2 . One can see that these are formally the same as the

rules for addition of integers mod 2 : 0 + 0 = 0, 1 + 1 = 0, and 0 + 1 = 1. The two

formulas Q1Q1 = Q1 and Q1Q2 = Q2 say that Q1 serves as an identity element for

this multiplication operation, and then the formula Q2Q2 = Q1 can be interpreted as

saying that Q2 is equal to its own inverse, so Q2 = Q
−1
2 .

This way of “multiplying” forms is more than just shorthand notation, and in

Chapter 7 we will develop a general method for forming products of primitive forms

of a fixed discriminant that will be a key ingredient in reducing the representation

problem to the special case of representing primes.

The various observations we have made so far about the two forms of discriminant

40 lead to the following:

Conjecture. The positive numbers represented by either Q1 or Q2 are exactly the

products 2a5bp1p2 · · ·pk where a,b ≤ 1 and each pi is a prime congruent to ±1 ,

±3 , ±9 , or ±13 mod 40 . The form Q1 represents the primes pi ≡ ±1 and ±9

while Q2 represents 2 , 5 , and the primes pi ≡ ±3 and ±13 . One can determine

which form will represent a product 2a5bp1p2 · · ·pk by the rule that if the number

of terms in the product that are represented by Q2 is even then the product is

represented by Q1 and if it is odd then the product is represented by Q2 .

For example, the topograph of Q1 contains the even powers of 3 while the topo-

graph of Q2 contains the odd powers. Another consequence is that the even values

in one topograph are just the doubles of the odd values in the other topograph.

This characterization of numbers represented by these two forms also implies

that no number is represented by both Q1 and Q2 . However, for some discriminants

it is possible for two nonequivalent forms of that discriminant to represent the same

nonzero number, as we will see.

The Conjecture will be proved piece by piece as we gradually develop the neces-

sary general theory. The first statement will be an application of Theorem 6.8 together

with later facts in Section 6.2. The second statement will be an application of Propo-

sition 6.19 and the rest of the Conjecture will use results from Chapter 7, particularly

Theorem 7.7.
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Let us look at another example where the representation problem has an answer

that is qualitatively similar to the preceding example but just a little more complicated,

the case of discriminant −84. Here there are twice as many equivalence classes of

forms, four instead of two, with topographs shown below.

The primes dividing the discriminant −84 are 2, 3, and 7, and these primes are each

represented by one of the forms. In fact the divisors of the discriminant that appear

in the topographs are 1,2,3,6,7,14,21, and 42 which are precisely the squarefree

divisors of the discriminant. These squarefree divisors of ∆ are exactly the numbers

appearing on reflector lines of mirror symmetries of the topographs. This was the

case also in the previous examples, as one can check, and is a general phenomenon

for fundamental discriminants as we saw in Propositions 5.6 and 5.7.

For the primes not dividing the discriminant, we will show in Section 6.3 that the

primes represented by each form are as follows:

For Q1 the primes p ≡ 1,25,37 mod 84.

For Q2 the primes p ≡ 19,31,55 mod 84.

For Q3 the primes p ≡ 11,23,71 mod 84.

For Q4 the primes p ≡ 5,17,41 mod 84.

This agrees with what is shown in the four topographs above, and one could expand

the topographs to get further evidence that these are the right answers. Passing from

primes to arbitrary numbers appearing in at least one of the topographs, these appear

to be exactly the products 2a3b7cp1 · · ·pk with a,b, c ≤ 1 and each pi one of the

other primes represented by Q1 , Q2 , Q3 , or Q4 .

One can work out hypothetical rules for multiplying the forms by considering

how products of two primes are represented. For example, 3 is represented by Q2

and 11 is represented by Q3 , while their product 3·11 = 33 is represented by Q4 , so
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we might guess that Q2Q3 = Q4 . Some other products that give the same conclusion

are 3·2 = 6, 3·23 = 69, 7·2 = 14, 7·11 = 77, and 31·2 = 62. In the same way one

can determine tentative rules for all the products QiQj , with the following results:

The principal form Q1 acts as the identity, so Q1Qi = Qi for each i .

QiQi = Q1 for each i so each Qi equals its own inverse.

The product of any two out of Q2 , Q3 , Q4 is equal to the third.

These multiplication rules are formally identical to how one would add pairs (m,n) of

integers mod 2 by adding their two coordinates separately. The form Q1 corresponds

to (0,0) and the first of the three rules above becomes (0,0)+ (m,n) = (m,n) . The

forms Q2 , Q3 , and Q4 correspond to (1,0) , (0,1) , and (1,1) in any order, and the

second rule above becomes (m,n)+(m,n) = (0,0) which is valid for addition mod 2,

while the third rule becomes the fact that the sum of any two of (1,0) , (0,1) , and

(1,1) is equal to the third if we do addition mod 2.

The multiplication rules determine which form represents a given number n by

replacing each prime in the prime factorization of n by the form Qi that represents

it, then multiplying out the resulting product using the three multiplication rules,

keeping in mind that 2, 3, and 7 can never occur with an exponent greater than 1.

For example, for n = 70 = 2·5·7 we get the product Q3Q4Q2 which equals Q1

and so 70 is represented by Q1 , as the topograph shows. For n = 66 = 2·3·11

we get Q3Q2Q3 = Q2 and 66 is represented by Q2 . In general, for a number

n = 2a3b7cp1 · · ·pk we can determine which form represents n by the follow-

ing steps. First compute the number qi of prime factors of n represented by Qi .

Next compute the sum q1(0,0) + q2(1,0) + q3(0,1) + q4(1,1) = (q2 + q4, q3 + q4)

where (0,0), (1,0), (0,1), (1,1) correspond to Q1,Q2,Q3,Q4 respectively. The re-

sulting sum (r , s) mod 2 then tells which form represents n .

An interesting feature of all the forms at the first or second level of complexity

that we have examined so far is that their topographs have mirror symmetry. This is

actually a general phenomenon: Whenever all the forms of a given discriminant have

mirror symmetry, then one can determine which primes are represented by each form

just in terms of congruence conditions modulo the discriminant. And in fact this is

the only time when congruences modulo the discriminant determine how primes are

represented, at least if one restricts attention just to primitive forms. This will be

shown in Corollary 6.29. In Chapter 5 we called discriminants for which all primitive

forms have mirror symmetry fully symmetric discriminants, and we observed that

they are unfortunately rather rare, with only 101 negative discriminants known to

have this property, and probably no more.
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The Third Level of Complexity

A deeper degree of complexity is illustrated by the case ∆ = −56 where there

are three equivalence classes of forms, with topographs shown below. The first two

topographs have mirror symmetry but the third topograph does not, so the third

form counts twice when determining the class number for discriminant −56, which

is therefore 4 rather than 3.

The behavior of divisors of the discriminant is the same as in the previous examples.

Only the squarefree divisors appear, 1, 2, 7, and 14, and these are the numbers

appearing on the reflector lines.

In the examples at the first two levels of complexity it was possible to determine

which numbers are represented by a given form by looking at primes and which con-

gruence classes they fall into modulo the discriminant. The primes represented by a

given form were exactly the primes in certain congruence classes modulo the discrim-

inant. This is no longer true for discriminant −56 however. For example the primes

23 and 79 are congruent mod 56, and yet 23 is represented by Q1 = x
2+14y2 since
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Q1(3,1) = 23, while 79 is represented by Q2 = 2x2 + 7y2 since Q2(6,1) = 79.

Another nice property that held in the previous examples was that no number

appeared in more than one topograph for the given discriminant, but this too fails

for discriminant −56 since there are many nonprimes that occur in the topographs

of both Q1 and Q2 starting with 15,30,39,57,65,78,95,105,114,130, and 135.

Apart from the primes 2 and 7 that divide the discriminant −56, all other primes

belong to the following 24 congruence classes mod 56, corresponding to odd num-

bers less than 56 not divisible by 7 :

1 3 5 9 11 13 15 17 19 23 25 27 29 31 33 37 39 41 43 45 47 51 53 55

The six congruence classes whose prime elements are represented by Q1 or Q2 are

indicated by underlines, and the six congruence classes whose prime elements are

represented by Q3 are indicated by overlines. Primes not represented by any of the

three forms are in the remaining twelve congruence classes.

The new thing that happens in this example is that one cannot tell whether a

prime is represented by Q1 or Q2 just by considering congruence classes mod the

discriminant. We saw this for the pair of primes 23 and 79, and another such pair

visible in the topographs is 71 and 127. By extending the topographs we could find

many more such pairs. One might try using congruences modulo some other number

besides 56, but it is known that this does not help.

Congruences mod 56 suffice to tell which primes are represented by Q3 , but

there is a different sort of novel behavior involving Q3 when we look at representing

products of primes. To illustrate this, observe that the primes 3 and 5 are represented

by Q3 but their product 15 is represented by both Q1 and Q2 . This means there is

some ambiguity about whether the product Q3Q3 should be Q1 or Q2 . The same

thing happens in fact for any pair of coprime numbers represented by Q3 , for example

5 and 6 whose product is represented by both Q1 and Q2 .

For other products QiQj there seems to be no ambiguity. The principal form Q1

acts as the identity for multiplication, while Q2Q2 = Q1 and Q2Q3 = Q3 , although

this last formula is somewhat odd since it seems to imply that Q3 does not have a

multiplicative inverse since if it did, we could multiply the equation Q2Q3 = Q3 by

this inverse to get Q2 = Q1 .

There is a way out of these difficulties, discovered by Gauss. The troublesome

form Q3 is different from the other forms in this example and in the preceding

examples in that it does not have mirror symmetry. Thus the equivalence class of

Q3 splits into two proper equivalence classes, with Q3 having a mirror image form

Q4 = 3x2 − 2xy + 5y2 obtained from Q3 by changing the sign of either x or y and

hence changing the coefficient of xy to its negative. Using Q4 we can then resolve the

ambiguous product Q3Q3 by setting Q3Q3 = Q2 = Q4Q4 and Q3Q4 = Q1 so that Q4

is the inverse of Q3 . This means that each Qi has its inverse given by the mirror im-

age topograph since Q1 and Q2 have mirror symmetry and equal their own inverses.
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The rigorous justification for the formulas Q3Q3 = Q2 = Q4Q4 and Q3Q4 = Q1 will

come in Chapter 7, but for the moment one can check that these formulas are at least

consistent with the topographs.

Since Q2
3 = Q2 we have Q4

3 = Q
2
2 = Q1 . Multiplying the equation Q4

3 = Q1 by

Q4 , the inverse of Q3 , gives Q3
3 = Q4 . Thus all four proper equivalence classes of

forms are powers of the single form Q3 since Q2
3 = Q2 , Q3

3 = Q4 , and Q4
3 = Q1 . This

is corroborated by the representations of powers of 3 since 3 is represented by Q3 ,

32 by Q2
3 = Q2 , 33 by Q3

3 = Q4 , and 34 by Q4
3 = Q1 . Products of powers Qi3 are

computed by adding exponents mod 4 since Q4
3 is the identity. Thus multiplication

of the four forms is formally identical with addition of integers mod 4. The earlier

doubtful formula Q2Q3 = Q3 is resolved into the two formulas Q2Q3 = Q4 and

Q2Q4 = Q3 , which become Q2
3Q3 = Q

3
3 and Q2

3Q
3
3 = Q

5
3 = Q3 .

The appearance of the same number in two different topographs is easy to explain

now that we have two forms Q3 and Q4 representing exactly the same numbers. For

example, to find all appearances of the number 15 = 3·5 in the topographs we observe

that its prime factors 3 and 5 appear in the topographs of both Q3 and Q4 so 15

will appear in the topographs of Q3Q3 = Q2 , Q3Q4 = Q1 , and Q4Q4 = Q2 , although

this last formula gives no new representations.

The procedure for finding which forms represent a number n = 2a7bp1 · · ·pk

with a,b ≤ 1 and primes pi different from 2 or 7 is to replace each prime factor in

this product by a form Qj that represents it, then multiply out the resulting product of

forms Qj . There is also an extra condition that will be justified in Chapter 7: Whenever

a prime pi appears more than once in the prime factorization of n , we should replace

all of its appearances by the same Qj . For example, the forms representing 18 = 2·32

are just the products Q2Q
2
3 = Q1 and Q2Q

2
4 = Q1 and not Q2Q3Q4 = Q2 , as one can

see in the topographs. Similarly, 9 = 3·3 is represented only by Q2
3 = Q2 = Q

2
4 and

not by Q3Q4 = Q1 .

We will show in Chapter 7 that the set of proper equivalence classes of primitive

forms of fixed discriminant always has a multiplication operation compatible with

multiplying values of forms of that discriminant in the way illustrated by the preceding

examples. This multiplication operation gives this set the structure of a group, that

is, a set with an associative multiplication operation for which there is an element of

the set that functions as an identity for the multiplication, and such that each element

of the set has a multiplicative inverse in the set whose product with the given element

is the identity element. The set of proper equivalence classes of primitive forms with

this group structure is called the class group for the given discriminant. The identity

element is the class of the principal form, and the inverse of a class is obtained by

taking the mirror image topograph.

The class group has the additional property that the multiplication is commuta-

tive. This makes its algebraic structure much simpler than the typical noncommuta-
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tive group. An example of a noncommutative group that we have seen is the group

LF(Z) of linear fractional transformations, where the multiplication comes from mul-

tiplication of 2× 2 matrices, or equivalently, composition of the transformations.

For a given discriminant, if the numbers represented by two primitive forms can-

not be distinguished by congruences modulo the discriminant, then these two forms

are said to belong to the same genus. Thus in the preceding example of discriminant

−56 the two forms Q1 and Q2 are of the same genus while Q3 is of a different genus

from Q1 and Q2 , so there are two different genera (“genera” is the plural of “genus”).

Equivalent forms always belong to the same genus since their topographs contain

exactly the same numbers. The first two of the three levels of complexity we have

described correspond to the discriminants where there is only one equivalence class

in each genus. As we stated earlier, this desirable situation is also characterized by

the condition that all primitive forms of the given discriminant have mirror symmetry.

For larger discriminants there can be large numbers of genera and large numbers of

equivalence classes within a genus. However, for a fixed discriminant there are always

the same number of proper equivalence classes within each genus, as we will show in

Corollary 7.27. This is illustrated by the case ∆ = −56 where one genus consists of

Q1 and Q2 and the other genus consists of Q3 and Q4 .

Dirichlet’s Theorem on Primes in Arithmetic Progressions

The examples in this section show the significance of primes in certain congruence

classes for solving the representation problem. In the examples there seems to be no

shortage of primes in each of the relevant congruence classes. For example, for the

form x2+y2 the primes represented, apart from 2, seem to be the primes congruent

to 1 mod 4, the primes of the form 4k+ 1 starting with 5,13,17,29,37,41,53, · · ·.

The other possibility for odd primes is the sequence 3,7,11,19,23,31,43,47, · · ·,

primes of the form 4k+ 3, or equivalently 4k− 1.

Such sequences form arithmetic progressions an+ b for fixed positive integers

a and b and varying n = 0,1,2,3, · · · . It is natural to ask whether there are infinitely

many primes in each arithmetic progression an+b . For this to be true an obvious re-

striction is that a and b should be coprime since any common divisor of a and b will

divide every number an+b , so there could be at most one prime in the progression.

A famous theorem of Dirichlet from 1837 asserts that every arithmetic progres-

sion an+ b with a and b coprime contains an infinite number of primes. This can

be rephrased as saying that within each congruence class of numbers x ≡ b mod a

there are infinitely many primes whenever a and b are coprime. Dirichlet’s theorem

actually says more, that primes are approximately equally distributed among the var-

ious congruence classes mod a for a fixed a . For example, there are approximately

as many primes p = 4n+ 1 as there are primes p = 4n− 1.
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Dirichlet’s Theorem is not easy to prove, and a proof would require methods quite

different from anything else in this book so we will not be giving a proof. However

a few special cases of Dirichlet’s Theorem can be proved by elementary arguments.

The simplest case is the arithmetic progression 3,7,11, · · · of numbers n = 4n− 1,

using a variant of Euclid’s proof that there are infinitely many primes. First let us

recall how Euclid’s argument goes: Suppose that p1, · · · , pk is a finite list of primes,

and consider the number N = p1 · · ·pk + 1. This must be divisible by some prime

p , but p cannot be any of the primes pi on the list since dividing pi into N gives a

remainder of 1. Thus no finite list of primes can be complete and hence there must

be infinitely many primes.

To adapt this argument to primes of the form 4n−1, suppose that p1, · · · , pk is

a finite list of such primes, and consider the number N = 4p1 · · ·pk − 1. The prime

divisors of N must be odd since N is odd. If all these prime divisors were of the form

4n + 1 then N would be a product of numbers of the form 4n + 1 hence N itself

would have this form, contradicting the fact that N has the form 4n − 1. Hence N

must have a prime factor p = 4n− 1. This p cannot be any of the primes pi since

dividing pi into N gives a remainder of −1. Thus no finite list of primes 4n− 1 can

be a complete list.

This argument does not work for primes p = 4n + 1 since a number N =

4p1 · · ·pk + 1 can be a product of primes of the form 4n− 1, for example 21 = 3·7,

so one could not deduce that N had a prime factor p = 4n+ 1.

However, the quadratic form x2 + y2 can be used to show there are infinitely

many primes p = 4n+1. In Proposition 6.18 we will show that for each discriminant

∆ there are infinitely many primes represented by forms of discriminant ∆ . In the

case ∆ = −4 all forms are equivalent to the form x2+y2 , so this form must represent

infinitely many primes. None of these primes can be of the form 4n−1 since all values

of x2 + y2 are congruent to 0, 1, or 2 mod 4, as squares are always 0 or 1 mod 4.

Thus there must be infinitely many primes p = 4n+ 1.

The same arguments work also for primes p = 3n + 1 and p = 3n − 1. For

p = 3n − 1 one argues just as for 4n − 1, using numbers N = 3p1 · · ·pk − 1. For

p = 3n + 1 one uses the form x2 + xy + y2 of discriminant −3. Here again all

forms of this discriminant are equivalent so Proposition 6.18 says that x2 +xy +y2

represents infinitely many primes. All values of x2+xy+y2 are congruent to 0 or 1

mod 3 as one can easily check by listing the various possibilities for x and y mod 3.

Thus there are infinitely many primes p = 3n+ 1.

We can try these arguments for arithmetic progressions 5n± 1 and 5n± 2 but

there are problems. The Euclidean argument we have given fails in each case for much

the same reason that it failed for primes p = 4n+ 1. For the approach via quadratic

forms we would use the form x2 + xy −y2 of discriminant 5. This is the only form

of this discriminant, up to equivalence, so Proposition 6.18 implies that it represents
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infinitely many primes. The methods in the next section will show that the primes

represented by this form are the primes p = 5n ± 1, so there are infinitely many

primes p = 5n+1 or p = 5n−1 but we cannot be more specific than this. Dirichlet’s

Theorem says there are infinitely primes of each type, and in fact there are fancier

forms of the Euclidean argument that prove this, but these Euclidean arguments do

not work for the other cases p = 5n± 2.

We have just seen three quadratic forms that represent infinitely many primes, for

discriminants −4, −3, and 5, and Proposition 6.18 provides other examples for each

discriminant with class number 1. (Nonprimitive forms obviously cannot represent

infinitely many primes, so these forms can be ignored.) For discriminants with larger

class numbers Proposition 6.18 only implies that there is at least one form represent-

ing infinitely many primes. However there is another hard theorem of Dirichlet which

does say that each primitive form of nonsquare discriminant represents infinitely

many primes.

Exercises

1. For the form Q(x,y) = x2 + xy −y2 do the following things:

(a) Draw enough of the topograph to show all the values less than 100 that occur

in the topograph. This form is hyperbolic and it takes the same negative values as

positive values, so you need not draw all the negative values.

(b) Make a list of the primes less than 100 that occur in the topograph, and a list of

the primes less than 100 that do not occur.

(c) Characterize the primes in the two lists in part (b) in terms of congruence classes

mod |∆| where ∆ is the discriminant of Q .

(d) Characterize the nonprime values in the topograph in terms of their factorizations

into primes in the lists in part (b).

(e) Summarize the previous parts by giving a simple criterion for determining the

numbers n such that Q(x,y) = n has an integer solution (x,y) , primitive or not.

The criterion should say something like Q(x,y) = n is solvable if and only if n =

m2p1 · · ·pk where each pi is a prime such that . . .

(e) Check that all forms having the same discriminant as Q are equivalent to Q .

2. Do the same things for the form x2 + xy + 2y2 , except that this time you only

need to consider values less than 50 instead of 100.

3. For discriminant ∆ = −24 do the following:

(a) Verify that the class number is 2 and find two quadratic forms Q1 and Q2 of

discriminant −24 that are not equivalent.
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(b) Draw topographs for Q1 and Q2 showing all values less than 100. (You do not

have to repeat parts of the topographs that are symmetric.)

(c) Divide the primes less than 100 into three lists: those represented by Q1 , those

represented by Q2 , and those represented by neither Q1 nor Q2 . (No primes are

represented by both Q1 and Q2 .)

(d) Characterize the primes in the three lists in part (c) in terms of congruence classes

mod |∆| = 24.

(e) Characterize the nonprime values in the topograph of Q1 in terms of their factor-

izations into primes in the lists in part (c), and then do the same thing for Q2 . Your

answers should be in terms of whether there are an even or an odd number of prime

factors from certain of the lists.

(f) Summarize the previous parts by giving a criterion for which numbers n the equa-

tion Q1(x,y) = n has an integer solution and likewise for the equation Q2(x,y) = n .

4. This problem will show how things can be more complicated than in the previous

problems.

(a) Show that the number of equivalence classes of forms of discriminant −23 is 2

while the number of proper equivalence classes is 3, and find reduced forms Q1 and

Q2 of discriminant −23 that are not equivalent.

(b) Draw the topographs of Q1 and Q2 up to the value 70. (Again you do not have to

repeat symmetric parts.)

(c) Find a number n that occurs in both topographs, and find the x and y values that

give Q1(x1, y1) = n = Q2(x2, y2) . (This sort of thing never happens in the previous

problems.)

(d) Find a prime p1 in the topograph of Q1 and a different prime p2 in the topograph

of Q2 such that p1 and p2 are congruent mod |∆| = 23. (This sort of thing also

never happens in the previous problems.)

5. Show there are infinitely many primes of the form 6m− 1 by an argument similar

to the one used for 4m− 1.

6. Consider a discriminant ∆ = q2 , q > 0, corresponding to 0-hyperbolic forms. Us-

ing the description of the topographs of such forms obtained in the previous chapter,

show:

(a) Every number is represented by at least one form of discriminant ∆ , so in particular

all primes are represented.

(b) The primes represented by a given form of discriminant ∆ are exactly the primes

in certain congruence classes mod q (and hence also mod ∆ ).

(c) For q = 1, 2, 7, and 15 determine the class number for discriminant ∆ = q2 and

find which primes are represented by the forms in each equivalence class.
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6.2 Representations in a Fixed Discriminant

The problem of determining the numbers represented by a given form is dif-

ficult in general, so in this section we will consider the somewhat easier question of

determining which numbers n are represented by at least one form of a given discrim-

inant ∆ , without specifying which form this will be. We refer to this as representing

n in discriminant ∆ .

On several occasions we will make use of the following fact: A form Q represents

a number a if and only if Q is equivalent to a form ax2+bxy+cy2 with leading co-

efficient a . To see this, note first that the form ax2+bxy+cy2 obviously represents

a when (x,y) = (1,0) , hence any form equivalent to ax2 + bxy + cy2 also repre-

sents a . Conversely, if a form Q represents a then a appears in the topograph of

Q , and by applying a suitable linear fractional transformation we can bring the region

where a appears to the 1/0 region, changing Q to an equivalent form ax2+bxy+cy2

where c is the new label on the 0/1 region and b is the new label on the edge between

the 1/0 and 0/1 regions.

Here is our first use of this principle:

Proposition 6.1. If a number n is represented in discriminant ∆ then so is every

divisor of n .

Thus for representations in a given discriminant, if we find which primes are

represented and then which products of these primes are represented, we will have

found all numbers that are represented.

Proof: If n is represented in discriminant ∆ then there is a form nx2 + bxy + cy2

of discriminant ∆ . If n factors as n = n1n2 then n1 is represented by the form

n1x
2 + bxy +n2cy

2 which has the same discriminant as nx2 + bxy + cy2 . ⊔⊓

There is a simple congruence criterion for when a number is represented in a

given discriminant:

Proposition 6.2. There exists a form of discriminant ∆ that represents n if and

only if ∆ is congruent to a square mod 4n .

Note that if n is negative then “mod 4n” means the same thing as “mod 4|n|”

since being divisible by a number d is equivalent to being divisible by −d when we

are considering both positive and negative numbers.

Proof: Suppose n is represented by a form Q of discriminant ∆ , so n appears in the

topograph of Q . If we look at an edge of the topograph bordering a

region labeled n then we obtain an equation ∆ = h2−4nk where h is

the label on the edge and k is the label on the region on the opposite
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side of this edge. The equation ∆ = h2−4nk implies the congruence ∆ ≡ h2 mod 4n

so ∆ is a square mod 4n .

Conversely, suppose that ∆ is the square of some integer h mod 4n . This means

that h2−∆ is an integer times 4n , or in other words h2−∆ = 4nk for some k . This

equation can be rewritten as ∆ = h2 − 4nk , so the form nx2 + hxy + ky2 has

discriminant ∆ , and this form represents n when (x,y) = (1,0) . ⊔⊓

Let us see what this proposition implies about representing small numbers n .

For n = 1 it says that there is a form of discriminant ∆ representing 1 if and only

if ∆ is a square mod 4. The squares mod 4 are 0 and 1, and we already know that

discriminants of forms are always congruent to 0 or 1 mod 4. So we conclude that for

every possible value of the discriminant there exists a form that represents 1. This is

not new information, however, since the principal forms x2+dy2 and x2+xy+dy2

represent 1 and there is a principal form in each discriminant.

In the next case n = 2 the possible values of the discriminant mod 4n = 8 are

0,1,4,5, and the squares mod 8 are 0,1,4 since 02 = 0, (±1)2 = 1, (±2)2 = 4,

(±3)2 ≡ 1, and (±4)2 ≡ 0. Thus 2 is not represented by any form of discriminant

∆ when ∆ ≡ 5 mod 8, but for all other discriminants there is a form representing 2.

Explicit forms representing 2 are 2x2−ky2 for ∆ = 8k , 2x2+xy−ky2 for ∆ = 8k+1,

and 2x2 + 2xy − ky2 for ∆ = 8k+ 4.

Moving on to the next case n = 3, the discriminants mod 12 are 0,1,4,5,8,9

and the squares mod 12 are 0,1,4,9 since 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 =

9, (±4)2 ≡ 4, (±5)2 ≡ 1, and (±6)2 ≡ 0. The excluded discriminants are thus

those congruent to 5 or 8 mod 12. Again explicit forms are easily given, the forms

3x2 + hxy − ky2 with ∆ = 12k+ h2 for h = 0,1,2,3.

We could continue in this direction, exploring which discriminants have forms

that represent a given number, but this is not really the question we want to answer,

which is to start with a given discriminant and decide which numbers are represented

in this discriminant. The sort of answer we are looking for, based on the various

examples we looked at earlier, is also a different sort of congruence condition, with

congruence modulo the discriminant rather than congruence mod 4n . So there is

more work to be done before we would have the sort of answer we want. Nevertheless,

the representability criterion in Proposition 6.2 is the starting point.

Our approach will be to reduce the representation problem in discriminant ∆ first

to the case of representing prime powers and then to representing primes themselves.

Here is the first step.

Proposition 6.3. If two coprime numbers m and n are both represented in dis-

criminant ∆ then so is their product mn .

Applying this repeatedly, we see that if a number n has the prime factorization

n = p
e1

1 · · ·p
ek
k for distinct primes pi , and if p

ei
i is represented in discriminant ∆ for
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each i , then n is represented in discriminant ∆ .

The main ingredient in the proof of the proposition will be the following:

Lemma 6.4. If a number x is a square mod m1 and also a square mod m2 where

m1 and m2 are coprime, then x is a square mod m1m2 .

For example, the number 2 is a square mod 7 (since 32 ≡ 2 mod 7) and also mod

17 (since 62 ≡ 2 mod 17) so 2 must also be a square mod 7·17 = 119. And in fact

2 ≡ 112 mod 119.

Proof: This will be a consequence of the Chinese Remainder Theorem. If x is a square

mod m1 and also a square mod m2 then there are numbers a1 and a2 such that

x ≡ a2
1 mod m1 and x ≡ a2

2 mod m2 . If m1 and m2 are coprime then by the

Chinese Remainder Theorem there is a number a that is congruent to a1 mod m1

and to a2 mod m2 , hence a2 ≡ a2
1 mod m1 and a2 ≡ a2

2 mod m2 . Thus x ≡ a2

mod m1 and mod m2 . This implies x ≡ a2 mod m1m2 since the difference x − a2

is divisible by both m1 and m2 and hence by their product m1m2 since m1 and m2

are coprime. This shows that x is a square mod m1m2 . ⊔⊓

Proof of Proposition 6.3: Let m and n be coprime. At least one of them must be

odd, say n is odd. If m and n are represented in discriminant ∆ then ∆ is a square

mod 4m and mod 4n , hence also mod n . Since 4m and n are coprime, the lemma

then says that ∆ is a square mod 4mn , so mn is represented in discriminant ∆ . ⊔⊓

Next we try to reduce further from prime powers to primes themselves. This is

possible for most primes by the following more technical result:

Lemma 6.5. If a number x is a square mod p for an odd prime p not dividing x ,

then x is also a square mod pr for each r > 1 . The corresponding statement for

the prime p = 2 is that if an odd number x is a square mod 8 then x is also a

square mod 2r for each r > 3 .

For example, 2 is a square mod 7 since 2 ≡ 32 mod 7, so 2 is also a square mod

72 , namely 2 ≡ 102 mod 49. It is also a square mod 73 = 343 since 2 ≡ 1082 mod

343. Likewise it must be a square mod 74 , mod 75 , etc. The proof of the lemma will

give a method for refining the initial congruence 2 ≡ 32 mod 7 to each subsequent

congruence 2 ≡ 102 mod 49, 2 ≡ 1082 mod 343, etc.

For the prime p = 2 we have to begin with squares mod 8 since 3 is a square

mod 2 but not mod 4, while 5 is a square mod 4 but not mod 8.

Proof of Lemma 6.5: We will show that if x is a square mod pr then it is also a

square mod pr+1 , assuming r ≥ 1 in the case that p is odd and r ≥ 3 in the case

p = 2. By induction this will prove the lemma.

We begin by assuming that x is a square mod pr , so there is a number y such

that x ≡ y2 mod pr or in other words pr divides x − y2 , say x − y2 = pr l for
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some integer l . We would like to find a number z such that x ≡ z2 mod pr+1 , so

it is reasonable to look for a z with z ≡ y mod pr , or in other words z = y + kpr

for some k . Thus we want to choose k so that x ≡
(
y + kpr

)2
mod pr+1 . In other

words we want pr+1 to divide x −
(
y + kpr

)2
. This can be rewritten as:

x −
(
y + kpr

)2
= x −

(
y2 + 2kpry + k2p2r )

= x −y2 − 2kpry − k2p2r

= pr l− 2kpry − k2p2r since x −y2 = pr l

= pr
(
l− 2ky − k2pr

)

For this to be divisible by pr+1 means that p should divide l−2ky −k2pr . Since we

assume r ≥ 1 this is equivalent to p dividing l−2ky , or in other words, l−2ky = pq

for some integer q . Rewriting this as l = 2yk+pq , we see that this linear Diophantine

equation with unknowns k and q always has a solution when p is odd since 2y and

p are coprime if p is odd, in view of the fact that p does not divide y since x ≡ y2

mod pr and we assume x is not divisible by p . This finishes the induction step in

the case that p is odd.

When p = 2 this argument breaks down at the last step since the equation l =

2yk+ pq becomes l = 2yk+ 2q and this will not have a solution when l is odd. To

modify the proof so that it works for p = 2 we would like to get rid of the factor 2

in the equation l = 2yk + pq which arose when we squared y + kpr . To do this,

suppose that instead of trying z = y + k·2r we try z = y + k·2r−1 . Then we would

want 2r+1 to divide x −
(
y + k·2r−1)2

. Again this can be rewritten:

x −
(
y + k·2r−1)2

= x −y2 − k·2ry − k222r−2

= 2r l− k·2ry − k222r−2 since x − y2 = 2r l

= 2r
(
l− ky − k22r−2)

Assuming r ≥ 3, this means 2 should divide l− ky , or in other words l = yk+ 2q

for some integer q . The number y is odd since y2 ≡ x mod 2r and x is odd by

assumption. This implies the equation l = yk+ 2q has a solution (k, q) . ⊔⊓

Proposition 6.6. If a prime p not dividing the discriminant ∆ is represented by a

form of discriminant ∆ then every power of p is also represented by a form of

discriminant ∆ .

Proof: First we consider odd primes p . If p is represented in discriminant ∆ then

∆ is a square mod 4p and hence mod p . The preceding lemma then says that ∆ is a

square mod each power pr . From this it follows by Lemma 6.4 that ∆ is also a square

mod 4pr since ∆ is always a square mod 4. Thus by Proposition 6.2 all powers of p

are represented in discriminant ∆ .

For p = 2 the argument is almost the same. In this case the representability of 2

implies that ∆ is a square mod 4·2 = 8 so the lemma implies that ∆ is also a square

mod 4·2r for all r ≥ 1 so all powers of 2 are represented. ⊔⊓
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In the examples for the representation problem that we looked at in the preceding

section we saw that primes that divide the discriminant behave differently from primes

that do not, and the differences begin at this point:

Proposition 6.7. Each prime dividing the discriminant ∆ is represented in discrim-

inant ∆ . If a prime p divides ∆ but not the conductor of ∆ then no form of

discriminant ∆ represents p2 or any higher power of p .

Recall that the conductor for discriminant ∆ is the largest positive number d such

that ∆ = d2∆′ for some discriminant ∆′ . This ∆′ is then a fundamental discriminant.

Fundamental discriminants are those with conductor 1.

Proof: The representability of primes dividing ∆ follows from Proposition 5.7, but it

can also be deduced from the congruence criterion of Proposition 6.2 as follows. For

a prime p dividing ∆ we have ∆ ≡ 0 mod p so ∆ is a square mod p , namely 02 .

When p is odd it follows that ∆ is also a square mod 4p since ∆ is always a square

mod 4. Hence p is represented in discriminant ∆ in this case. If p is 2 and divides

∆ then ∆ ≡ 0 mod 4 so ∆ = 8k or 8k + 4. Thus ∆ ≡ 0 or 4 mod 8 and so ∆ is a

square mod 8, which means that 2 is represented in discriminant ∆ .

Suppose now that p is a prime dividing ∆ and some form of discriminant ∆
represents p2 . This form is equivalent to a form p2x2 + bxy + cy2 with p dividing

∆ = b2 − 4p2c so p must divide b2 . Since p is prime it must then divide b , so in

fact p2 divides b2 . Therefore p2 divides ∆ = b2 − 4p2c and we have ∆ = p2∆′ for

some integer ∆′ .
Consider first the case that p is odd. Then p2 ≡ 1 mod 4 so ∆ ≡ ∆′ mod 4.

This means that ∆′ is also a discriminant, so by the definition of the conductor, p

divides the conductor. Thus if p divides ∆ but not the conductor then p2 cannot be

represented by any form of discriminant ∆ .

In the case that p = 2 the assumption that p divides ∆ means that ∆ is even

and hence so is b . The discriminant equation ∆ = b2 − 4p2c is now ∆ = b2 − 4·22c

so ∆ ≡ b2 mod 16. The only squares of even numbers mod 16 are 0 and 4, as one

sees by checking 02 , (±2)2 , (±4)2 , (±6)2 , and (±8)2 , so ∆ is either 16k = 4(4k)

or 16k + 4 = 4(4k + 1) . In both cases ∆ is 4 times a discriminant so 2 divides the

conductor.

Once we know that p2 is not represented in discriminant ∆ then neither is any

multiple of p2 by Proposition 6.1, and in particular higher powers of p are not rep-

resented. ⊔⊓

Here is a summary of what we have shown so far in the case of fundamental

discriminants:

Theorem 6.8. If ∆ is a fundamental discriminant then the numbers n > 1 that

are represented by at least one form of discriminant ∆ are exactly the numbers
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that factor as a product n = p
e1

1 p
e2

2 · · ·p
ek
k of powers of distinct primes pi each

of which is represented by some form of discriminant ∆ , with the restriction that

ei ≤ 1 for primes pi dividing ∆ .

The situation for nonfundamental discriminants is more complicated and will be

described later in Theorem 6.11.

Quadratic Reciprocity

For the problem of determining which primes are represented in a given discrim-

inant we already know when 2 is represented and we know that primes dividing the

discriminant are always represented. After these special cases what remains are the

odd primes not dividing the discriminant, which can be regarded as the generic case.

An odd prime p will be represented in discriminant ∆ exactly when ∆ is a square

mod p . Let us introduce some convenient notation for this condition. For p an odd

prime and a an integer not divisible by p , define the Legendre symbol
(
a
p

)
by

(
a
p

)
=

{
+1 if a is a square mod p

−1 if a is not a square mod p

Using this notation we can say:

An odd prime p that does not divide ∆ is represented in discriminant ∆ if and

only if
(∆
p

)
= +1 .

It will therefore be useful to know how to compute
(
a
p

)
. The following four basic

properties of the Legendre symbol make this a feasible task:

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(2)
(

---1
p

)
= +1 if p ≡ 1 mod 4 and

(
---1
p

)
= −1 if p ≡ 3 mod 4.

(3)
(

2
p

)
= +1 if p ≡ ±1 mod 8 and

(
2
p

)
= −1 if p ≡ ±3 mod 8.

(4) If p and q are distinct odd primes then
(
p
q

)
=
(
q
p

)
unless p and q are both

congruent to 3 mod 4, in which case
(
p
q

)
= −

(
q
p

)
.

Property (1), applied repeatedly, reduces the calculation of
(
a
p

)
to the calculation of(

q
p

)
for the various prime factors q of a , along with

(
---1
p

)
when a is negative. Note

that
(
q2

p

)
= +1 so we can immediately reduce to the case that |a| is a product of

distinct primes. Property (2) will be used when dealing with negative discriminants,

and property (3) will be used for certain even discriminants.

Property (4) is called quadratic reciprocity. This is by far the most subtle of the

four properties, and proving it is considerably more difficult than for the other three

properties. We will give a proof in Section 6.4, obtaining proofs of the first three

properties along the way.

For a quick illustration of the usefulness of these properties let us see how they

can be used to compute the values of Legendre symbols. Suppose for example that
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one wanted to know whether 78 was a square mod 89. The naive approach would

be to list the squares of all the numbers ±1, · · · ,±44 and see whether any of these

was congruent to 78 mod 89, but this would be rather tedious. Since 89 is prime

we can instead evaluate
(

78
89

)
using the basic properties of Legendre symbols. First

we factor 78 to get
(

78
89

)
=
(

2
89

)(
3

89

)(
13
89

)
. By property (3) we have

(
2

89

)
= +1 since

89 ≡ 1 mod 8. Next, reciprocity gives
(

3
89

)
=
(

89
3

)
and

(
13
89

)
=
(

89
13

)
since 89 ≡ 1

mod 4. After this we use the fact that
(
a
p

)
depends only on the value of a mod p to

reduce
(

89
3

)
to
(

2
3

)
and

(
89
13

)
to
(

11
13

)
. Using property (3) again, we have

(
2
3

)
= −1,

confirming the obvious fact that 2 is not a square mod 3. For
(

11
13

)
, reciprocity says

this equals
(

13
11

)
. This reduces to

(
2
11

)
= −1. Summarizing, we have:

(
78
89

)
=

(
2
89

)(
3

89

)(
13
89

)
=
(
+1
)(
−1
)(
−1
)
= +1

Thus we see that 78 is a square mod 89, even though we have not found an actual

number x such that x2 ≡ 78 mod 89.

In this example we used the fact that the modulus 89 was prime, but we have

already seen how to reduce to the case of prime moduli. For example, if we wanted

to determine whether 78 is a square mod 88 we know this is the case exactly when it

is a square mod 8 and mod 11. The squares mod 8 are 0, 1, and 4 whereas 78 ≡ 6

mod 8 so 78 is not a square mod 8 and therefore not mod 88 either, even though

78 ≡ 1 mod 11 so 78 is a square mod 11.

Returning now to quadratic forms, let us see what the basic properties of Legendre

symbols tell us about which primes are represented by some of the forms discussed

at the beginning of the chapter. In the first four cases the class number is 1 so we will

be determining which primes are represented by the given form, and Theorem 6.8

will then say exactly which numbers are represented by this form, confirming the

conjectures made when we looked at the topographs.

Example: x2 + y2 with ∆ = −4. This form obviously represents 2, the only prime

dividing ∆ , and it represents an odd prime p exactly when
(

---4
p

)
= +1. Using the first

of the four properties we have
(

---4
p

)
=
(

---1
p

)(
2
p

)(
2
p

)
=
(

---1
p

)
, and the second property

says this is +1 exactly for primes p = 4k + 1. Thus we see the primes represented

by x2 + y2 are 2 and the primes p = 4k+ 1.

Example: x2 + 2y2 with ∆ = −8. Again the only prime dividing ∆ is 2, and it

is represented. For odd primes p we have
(

---8
p

)
=
(

---1
p

)(
2
p

)3
=
(

---1
p

)(
2
p

)
. In the four

cases p ≡ 1,3,5,7 mod 8 this is, respectively, (+1)(+1) , (−1)(−1) , (+1)(−1) , and

(−1)(+1) . We conclude that the primes represented by the form x2 +2y2 are 2 and

primes congruent to 1 or 3 mod 8.

Example: x2−2y2 with ∆ = 8. The only prime dividing ∆ is 2 which is represented

when (x,y) = (2,1) . For odd primes p we have
(

8
p

)
=
(

2
p

)3
=
(

2
p

)
so property (3)

implies that the primes represented by x2 − 2y2 are 2 and p ≡ ±1 mod 8.
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Example: x2 +xy +y2 with ∆ = −3. The only prime dividing the discriminant is 3

and it is represented. The prime 2 is not represented since ∆ ≡ 5 mod 8. For primes

p > 3 we can evaluate
(

---3
p

)
using quadratic reciprocity:

(
---3
p

)
=
(

---1
p

)(
3
p

)
=




(+1)

(
p
3

)
if p = 4k+ 1

(−1)
(
−
(
p
3

))
if p = 4k+ 3

So we get
(
p
3

)
in both cases. Since

(
p
3

)
only depends on p mod 3, we have

(
p
3

)
= +1

if p ≡ 1 mod 3 and
(
p
3

)
= −1 if p ≡ 2 mod 3. (Since p ≠ 3 we do not need to

consider the possibility p ≡ 0 mod 3.) The conclusion is that the primes represented

by x2 + xy +y2 are 3 and the primes p ≡ 1 mod 3.

Example: ∆ = 40. Here all forms are equivalent to either x2 − 10y2 or 2x2 − 5y2 .

The primes dividing 40 are 2 and 5 so these are represented by one form or the

other, and in fact both are represented by 2x2 − 5y2 as the topographs showed. For

other primes p we have
(

40
p

)
=
(

2
p

)3(5
p

)
=
(

2
p

)(
p
5

)
. The factor

(
2
p

)
depends only on

p mod 8 and
(
p
5

)
depends only on p mod 5, so their product depends only on p

mod 40. The following table lists all the possibilities for congruence classes mod 40

not divisible by 2 or 5 :

1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39(
2
p

)
+1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1

(
p
5

)
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

The product
(

2
p

)(
p
5

)
is +1 in exactly the eight cases p ≡ 1,3,9,13,27,31,37,39

mod 40. We conclude that these are the eight congruence classes containing primes

(other than 2 and 5) represented by one of the two forms x2−10y2 and 2x2−5y2 .

This agrees with our earlier observations based on the topographs. However, we have

yet to verify our earlier guesses as to which congruence classes are represented by

which form. We will see how to do this in the next section.

In the examples above we were able to express
(∆
p

)
in terms of Legendre symbols(

---1
p

)
,
(

2
p

)
, and

(
p
pi

)
for odd primes pi dividing ∆ . The following result shows that

this can be done for all ∆ :

Proposition 6.9. Let the nonzero integer ∆ be factored as ∆ = ε2sp1 · · ·pk for

ε = ±1 , s ≥ 0 , and each pi an odd prime. (We allow k = 0 when ∆ = ε2s .) Then

for odd primes p not dividing ∆ the Legendre symbol
(∆
p

)
has the value given in

the following table :
∆

(∆
p

)

22l(4m+ 1)
(
p
p1

)
· · ·

(
p
pk

)

22l(4m+ 3)
(

---1
p

)(
p
p1

)
· · ·

(
p
pk

)

22l+1(4m+ 1)
(

2
p

)(
p
p1

)
· · ·

(
p
pk

)

22l+1(4m+ 3)
(

---1
p

)(
2
p

)(
p
p1

)
· · ·

(
p
pk

)
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Proof: For ∆ = ε2sp1 · · ·pk quadratic reciprocity gives

(∆
p

)
=
(
ε
p

)(
2
p

)s(p1
p

)
· · ·

(pk
p

)
=
(
ε
p

)(
2
p

)s(ω
p

)(
p
p1

)
· · ·

(
p
pk

)

where ω is +1 or −1 according to whether there are an even or an odd number of

factors pi ≡ 3 mod 4. The exponent s in this formula can be replaced by 0 or 1

according to whether s is even or odd. In the first and third rows of the table the odd

part of ∆ is 4m+ 1 so we have ε =ω and therefore
(
ε
p

)(
ω
p

)
= 1. In the second and

fourth rows the factor 4m + 1 is replaced by 4m + 3 and we have ε = −ω , hence(
ε
p

)(
ω
p

)
=
(

---1
p

)
. ⊔⊓

Corollary 6.10. The representability of an odd prime p in discriminant ∆ depends

only on the congruence class of p mod ∆ .

Proof: The class of p mod ∆ determines its class mod pi for each i and this deter-

mines
(
p
pi

)
. For the terms

(
---1
p

)
and

(
2
p

)
in the last three rows of the table, note first

that l must be at least 1 in these rows since ∆ is a discriminant. In the second row

the class of p mod ∆ determines its class mod 4 so it determines
(

---1
p

)
. In the third

and fourth rows the class of p mod ∆ determines its class mod 8 so both
(

---1
p

)
and(

2
p

)
are determined. Thus in all cases the factors of

(∆
p

)
are determined by the class

of p mod ∆ so
(∆
p

)
is determined. ⊔⊓

Complications for Nonfundamental Discriminants

Our next result generalizes Theorem 6.8 to cover all discriminants. As one can

see, the general statement is considerably more complicated than for fundamental

discriminants.

Theorem 6.11. A number n > 1 is represented by at least one form of discriminant

∆ exactly when n factors as a product n = p
e1

1 p
e2

2 · · ·p
ek
k of powers of distinct

primes pi each of which is represented by some form of discriminant ∆ , where

ei ≤ 1 for primes pi dividing ∆ but not the conductor, while for primes p = pi

dividing the conductor the allowed exponents e = ei are given by the following

rules. First write ∆ = psq with ps the highest power of p dividing ∆ . Then if p is

odd the allowable exponents e are those for which either

(a) e ≤ s or

(b) e > s , s is even, and
(
q
p

)
= +1 .

If p = 2 then the allowable exponents e are those for which either

(a) e ≤ s − 2 or

(b) s is even and e is as in the following table:

q mod 8 1 3 5 7

e all ≤ s − 1 ≤ s ≤ s − 1
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Examples will be given following the proof. The main part of the proof is con-

tained in a lemma:

Lemma 6.12. Suppose that a number x divisible by a prime p factors as psq where

p does not divide q , so ps is the largest power of p dividing x . Then :

(a) x is a square mod pr for each r ≤ s .

(b) If r > s and s is odd then x is not a square mod pr .

(c) If r > s and s is even then x is a square mod pr if and only if q is a square

mod pr−s .

Proof: Part (a) is easy since x is 0 mod ps hence also mod pr if r ≤ s , and 0 is

always a square mod anything.

For (b) we assume r > s and s is odd. Suppose psq is a square mod pr , so

psq = y2 + lpr for some integers y and l . Then ps divides y2 + lpr and it divides

lpr (since r > s ) so ps divides y2 . Since s is assumed to be odd and the exponent of

p in y2 must be even, this implies ps+1 divides y2 . It also divides lpr since s+1 ≤ r ,

so from the equation psq = y2 + lpr we conclude that p divides q , contrary to the

definition of q . This contradiction shows that psq is not a square mod pr when

r > s and s is odd, so statement (b) is proved.

For (c) we assume r > s and s is even. As in part (b), if psq is a square mod pr

we have an equation psq = y2 + lpr and this implies that ps divides y2 . Since s

is now even, this means y2 = psz2 for some number z . Canceling ps from psq =

y2 + lpr yields an equation q = z2 + lpr−s , which says that q is a square mod pr−s .

Conversely, if q is a square mod pr−s we have an equation q = z2+ lpr−s and hence

psq = psz2 + lpr . Since s is even, this says that psq is a square mod pr . ⊔⊓

Proof of Theorem 6.11: As in the proof of Theorem 6.8 the question reduces to rep-

resenting powers of primes. We know from Proposition 6.6 that all powers of a prime

not dividing the discriminant ∆ are represented if the prime itself is represented. By

Proposition 6.7 we also know that primes p dividing ∆ are represented, and their

powers pe with e > 1 cannot be represented unless p divides the conductor. For the

remaining case of primes dividing the conductor we will apply the preceding lemma

with x = ∆ .

For odd p dividing ∆ we need to determine when ∆ is a square mod pe . By the

lemma the times this happens are when e ≤ s , or when e > s and s is even and q is

a square mod pe−s . When e > s this last condition amounts just to q being a square

mod p by Lemma 6.5, or in other words
(
q
p

)
= +1.

When p = 2 we need to determine when ∆ is a square mod 4·2e = 2e+2 . By the

lemma this happens only when e ≤ s − 2 or when s is even and q (which is odd) is

a square mod 2e+2−s . If e = s − 1 then e + 2 − s = 1 and every q is a square mod

2e+2−s = 2. If e = s then e + 2− s = 2 and q is a square mod 2e+2−s = 4 only when
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q = 4k+ 1. And if e ≥ s + 1 then e + 2 − s ≥ 3 and q is a square mod 2e+2−s only

when it is a square mod 8, which means q = 8k+ 1. ⊔⊓

Let us look at two examples illustrating some of the more subtle possibilities

in the preceding theorem. The examples involve the rather simple forms x2 + ny2

whose discriminant −4n is sometimes not a fundamental discriminant such as when

n is congruent to 3 mod 4. The examples will be the cases n = 3,7.

Example: ∆ = −12 with conductor 2. The two forms here are Q1 = x
2 + 3y2 and

the nonprimitive form Q2 = 2x2 + 2xy + 2y2 .

The primes represented in discriminant −12 are 2, 3, and primes p with
(

---12
p

)
=(

---3
p

)
=
(

---1
p

)(
3
p

)
=
(
p
3

)
= +1, so these are the primes p ≡ 1 mod 3. By Theorem 6.11

the numbers represented in discriminant −12 are the numbers n = 2a3bp1 · · ·pk

with a ≤ 2, b ≤ 1, and each pi a prime congruent to 1 mod 3. (When we apply the

theorem for pi = 2 we have s = 2 and q = −3.) We can in fact determine which

of Q1 and Q2 is giving these representations. The form Q2 is twice x2 + xy + y2

and we have already determined which numbers the latter form represents, namely

the products 3bp1 · · ·pk with b ≤ 1 and each prime pi ≡ 1 mod 3. Thus, of the

numbers represented by Q1 or Q2 , the numbers represented by Q2 are those with

a = 1. None of these numbers with a = 1 are represented by Q1 since x2 + 3y2 is

never 2 mod 4, as x2 and y2 must be 0 or 1 mod 4.

Example: ∆ = −28 with conductor 2 again. Here the only two forms up to equiva-

lence are Q1 = x
2 + 7y2 and Q2 = 2x2 + 2xy + 4y2 which is not primitive.

The primes represented in discriminant −28 are 2, 7, and odd primes p with
(

---28
p

)
=(

---1
p

)(
7
p

)
=
(
p
7

)
= +1 so p ≡ 1,2,4 mod 7. According to Theorem 6.11 the numbers
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represented by Q1 or Q2 are the numbers n = 2a7bp1 · · ·pk with b ≤ 1 and each

pi an odd prime congruent to 1, 2, or 4 mod 7. There is no restriction on a since

when we apply the theorem with pi = 2 we have s = 2 and q = −7 = 8l+ 1.

We can say exactly which numbers are represented by Q2 since it is twice the

form x2 + xy + 2y2 of discriminant −7, which is a fundamental discriminant of

class number 1 so Theorem 6.8 tells us which numbers this form represents. These

are the numbers 7bp1 · · ·pk with b ≤ 1 and primes pi ≡ 1,2,4 mod 7, including

now the possibility pi = 2. Thus Q2 represents exactly the numbers 2a7bp1 · · ·pk

with a ≥ 1, b ≤ 1 and odd primes pi ≡ 1,2,4 mod 7. Hence Q1 must represent

at least the numbers 2a7bp1 · · ·pk with a = 0, b ≤ 1, and odd primes pi ≡ 1,2,4

mod 7. These numbers are all odd since a = 0, but Q1 also represents some even

numbers since x2 + 7y2 is even whenever both x and y are odd.

From the topograph we might conjecture that Q1 represents exactly the numbers

2a7bp1 · · ·pk with a ≠ 1,2 and the same conditions on b and the primes pi as

before. For example one can see that 8, 16, 32, 64, and 128 are represented. It is

not difficult to exclude a = 1 and a = 2 by considering the values of x2+7y2 mod 4

and mod 8. To see that Q1 represents all the predicted numbers with a ≥ 3 we use

the following result.

Proposition 6.13. For a prime p , if a product pkq with k > 0 is represented by a

primitive form of discriminant ∆ then pk+2q is represented by a primitive form of

discriminant p2∆ .

Applying this to the case at hand with p = 2, the form x2+xy +2y2 represents

all the products 2a7bp1 · · ·pk as above with a ≥ 1, so x2+7y2 represents all these

products with a ≥ 3.

Proof: Suppose we have a primitive form of discriminant ∆ representing pkq , so the

topograph of this form has a region labeled pkq . If k > 0 then at least one of the

regions adjacent to this region must have a label not divisible by p , otherwise a vertex

in the boundary of this region would have all three adjacent labels divisible by p so

the form would be p times another form, making it nonprimitive. Thus the given

form is equivalent to a form pkqx2+bxy +cy2 with c not divisible by p . The form

pk+2qx2 + pbxy + cy2 has discriminant p2∆ and is primitive since its coefficients

are not all divisible by p , nor are they divisible by any other prime since such a prime

would have to divide q , b , and c making the previous form pkqx2 + bxy + cy2

nonprimitive. ⊔⊓

For nonfundamental discriminants Theorem 6.11 says nothing about whether the

representing forms are primitive. As we will see in Theorem 7.7, determining the

numbers represented by primitive forms of a given discriminant also reduces to the

special case of representing prime powers by primitive forms. Namely, a product of

powers p
ki
i of distinct primes pi is represented by a primitive form exactly when each
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of the prime powers p
ki
i is represented by a primitive form. Most prime powers are

represented only by primitive forms, according to the following easy result:

Proposition 6.14. A form of discriminant ∆ representing a power pk of a prime p

not dividing the conductor of ∆ is primitive.

Proof: If a form Q representing pk is not primitive it is a multiple of another form

by some integer d > 1. This number d divides every number represented by Q so in

particular d divides pk and hence p divides d . Since d divides the conductor, this

means that p divides the conductor. Thus if p does not divide the conductor then Q

must be primitive. ⊔⊓

For primes dividing the conductor one can get some idea of the complications

that can occur from the table on the next page. This lists all the equivalence classes of

forms, both primitive and nonprimitive, for nonfundamental negative discriminants

up to −99, along with the prime powers pk represented by these forms for primes

p dividing the conductor d . To save space the table uses the abbreviated notation

[a, b, c] for the form ax2 + bxy + cy2 .

Some information in the table can be deduced from the earlier Proposition 6.13,

such as the fact that if nonprimitive forms of a given discriminant represent all powers

pk with k ≥ 1 then primitive forms of that discriminant represent all powers pk with

k ≥ 3. This statement is optimal for some discriminants such as −28 and −60 but

not for others such as −72 and −99 where p2 is also represented by a primitive form.

In the table one can see that primitive forms represent powers of primes dividing

the conductor but not these primes themselves. As we will show in Proposition 6.15,

a prime can only be represented by a single equivalence class of forms of a given dis-

criminant, and a prime p dividing the conductor for discriminant ∆ is represented by

p times the principal form of discriminant ∆/p2 , so p is represented by a nonprimi-

tive form and hence cannot also be represented by a primitive form. The uniqueness

of forms representing primes holds also for powers of primes that do not divide the

conductor, but we see from the table that this uniqueness may not hold for primes

that do divide the conductor, even if we restrict attention just to primitive forms, as

for example in the case ∆ = −32 where 23 is represented by two nonequivalent prim-

itive forms, or discriminants −72 and −99 where there are infinitely many different

powers pk represented by different primitive forms.

The entries in the table where Theorem 6.11 says that only finitely many powers

pk are represented can be checked just by drawing topographs, but in the other cases

one must use general theory. We already explained the first case ∆ = −28 in the

earlier analysis of the form x2 + 7y2 . For the next case ∆ = −60 the methods in the

next section will suffice. A technique for handling the last few cases in the table will

be explained at the end of Chapter 8.
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∆ d Q prim. pk Q nonprim. pk

−12 2 [1,0,3] 22 2[1,1,1] 21

−16 2 [1,0,4] 22,23 2[1,0,1] 21,22

−27 3 [1,1,7] 32,33 3[1,1,1] 31,32

−28 2 [1,0,7] 23,24,25, · · · 2[1,1,2] 21,22,23, · · ·

−32 2 [1,0,8] 23 2[1,0,2] 21,22

[3,2,3] 22,23

−36 3 [1,0,9] 32 3[1,0,1] 31

[2,2,5] 32

−44 2 [1,0,11] — 2[1,1,3] 21

[3,2,4] 22

−48 4 [1,0,12] 24 2[1,0,3] 21,23

[3,0,4] 22,24 4[1,1,1] 22

−60 2 [1,0,15] 24,26,28,210, · · · 2[1,1,4] 21,23,25,27, · · ·

[3,0,5] 23,25,27,29, · · · 2[2,1,2] 22,24,26,28, · · ·

−63 3 [1,1,16] — 3[1,1,2] 31

[2,1,8] 32

[4,1,4] 32

−64 4 [1,0,16] 24,25 2[1,0,4] 21,23,24

[4,4,5] 22,24,25 4[1,0,1] 22,23

−72 3 [1,0,18] 33,34,35,36, · · · 3[1,0,2] 31,32,33,34, · · ·

[2,0,9] 32,33,34,35, · · ·

−75 5 [1,1,19] 52 5[1,1,1] 51

[3,3,7] 52

−76 2 [1,0,19] — 2[1,1,5] 21

[4,2,5] 22

−80 2 [1,0,20] — 2[1,0,5] 21

[4,0,5] 22 2[2,2,3] 22

[3,2,7] 23

−92 2 [1,0,23] 25,28,211,214, · · · 2[1,1,6] 21,24,27,210, · · ·

[3,2,8] 23,24,26,27, · · · 2[2,1,3] 22,23,25,26,28,29, · · ·

−96 2 [1,0,24] — 2[1,0,6] 21

[3,0,8] 23 2[2,0,3] 22

[5,2,5] 23

[4,4,7] 22

−99 3 [1,1,25] 33,34,35,36, · · · 3[1,1,3] 31,32,33,34, · · ·

[5,1,5] 32,33,34,35, · · ·
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Unique Representability for Primes and Prime Powers

In Section 6.1 we saw examples where two nonequivalent forms of the same dis-

criminant both represent the same number. However, this does not happen for rep-

resentations of 1 or primes or powers of most primes:

Proposition 6.15. If Q1 and Q2 are two forms of the same discriminant that both

represent the same prime p or both represent 1 , then Q1 and Q2 are equivalent.

The same conclusion holds when Q1 and Q2 both represent the same power pk of

an odd prime p that does not divide the discriminant.

The last statement is also true for p = 2 but the proof is more difficult so we will

wait until the next chapter to deduce this from a more general result, Theorem 7.7.

Examples showing that powers of primes dividing the discriminant can be represented

by nonequivalent forms of the same discriminant can be found in the table on the

previous page. In these examples the prime in question divides the conductor, not

just the discriminant, but this has to be the case since for primes p dividing the

discriminant but not the conductor the only power pk represented by a form of the

given discriminant is p itself, by Proposition 6.7.

Proof: Suppose that Q is a form representing a number p that is either 1 or a prime.

The topograph of Q then has a region labeled p , and we have seen that the h - labels

on the edges adjacent to this p -region form an arithmetic progression with increment

2p when these edges are all oriented in the same direction. We have the discriminant

formula ∆ = h2 − 4pq where h is the label on one of these edges and q is the

value of Q for the region on the other side of this edge. Since p is nonzero the

equation ∆ = h2 − 4pq determines q in terms of ∆ and h . This implies that ∆
and the arithmetic progression determine the form Q up to equivalence since the

progression determines p , and any h -value in the progression then determines the

q -value corresponding to this h -value, so Q is equivalent to px2 + hxy + qy2 .

In the case that p = 1 the increment in the arithmetic progressions is 2 so the

two possible progressions of h -values adjacent to the p -region are the even numbers

and the odd numbers. We know that h has the same parity as ∆ , so ∆ determines

which of the two progressions we have. As we saw in the preceding paragraph, this

implies that the form is determined by ∆ , up to equivalence.

Now we consider the case that p is prime. Let Q1 and Q2 be two forms of the

same discriminant ∆ both representing p . For Q1 choose an edge in its topograph

adjacent to the p -region, with h - label h1 and q - label q1 . For the form Q2 we simi-

larly choose an edge with associated labels h2 and q2 . Both h1 and h2 have the same

parity as ∆ . We have ∆ = h2
1 − 4pq1 = h

2
2 − 4pq2 and hence h2

1 ≡ h
2
2 mod 4p . This

implies h2
1 ≡ h

2
2 mod p , so p divides h2

1−h
2
2 = (h1+h2)(h1−h2) . Since p is prime,

it must divide one of the two factors and hence we must have h1 ≡ ±h2 mod p . By
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changing the orientations of the edges in the topograph for Q1 or Q2 if necessary,

we can assume that h1 ≡ h2 mod p .

If p is odd we can improve this congruence to h1 ≡ h2 mod 2p since we know

that h1 − h2 is divisible by both p and 2 (since h1 and h2 have the same parity),

hence h1 − h2 is divisible by 2p . The congruence h1 ≡ h2 mod 2p implies that the

arithmetic progression of h -values adjacent to the p -region for Q1 is the same as

for Q2 since 2p is the increment for both progressions. By what we showed earlier,

this implies that Q1 and Q2 are equivalent.

When p = 2 this argument needs to be modified slightly. We still have h2
1 ≡ h

2
2

mod 4p so when p = 2 this becomes h2
1 ≡ h

2
2 mod 8. Since 2p = 4 the four possible

arithmetic progressions of h -values are h ≡ 0, 1, 2, or 3 mod 4. We can interchange

the possibilities 1 and 3 just by reorienting the edges, leaving only the possibilities

h ≡ 0, 1, or 2 mod 4. These are distinguished from each other by the congruence

h2
1 ≡ h2

2 mod 8 since (4k)2 ≡ 0 mod 8, (4k + 1)2 ≡ 1 mod 8, and (4k + 2)2 ≡ 4

mod 8.

Finally we have the case that Q1 and Q2 both represent the power pk of an odd

prime p not dividing ∆ , with k > 1. Following the line of proof above we see that

pk divides h2
1 − h

2
2 = (h1 + h2)(h1 − h2) . If pk divides either factor we can proceed

exactly as before to show that Q1 and Q2 are equivalent since we assume p is odd,

hence also pk . If pk does not divide either factor then both factors are divisible by

p , hence p divides their sum 2h1 . Since p is odd this implies that p divides h1 ,

and so p divides ∆ = h2
1− 4pkq1 . Thus if p does not divide ∆ then the case that pk

divides neither h1 + h2 nor h1 − h2 does not arise. ⊔⊓

The same argument shows another interesting fact:

Proposition 6.16. If the topograph of a form has two regions with the same label

n where n is either 1 , a prime, or a power of an odd prime not dividing the dis-

criminant, then there is a symmetry of the topograph that takes one region labeled

n to the other. Similarly, for positive discriminants and for the same numbers n ,

if there is one region labeled n and another labeled −n then there is a skew sym-

metry taking one region to the other.

Proof: Suppose first that there are two regions having the same label n . As we saw

in the proof of the preceding proposition, each of these regions is adjacent to an edge

with the same label h and hence the labels q across these edges are also the same.

This means there is a symmetry taking one region labeled n to the other.

The other case is that one region is labeled n and the other −n . The topographs

of the given form Q and its negative −Q then each have a region labeled n so there

is an equivalence from Q to −Q taking the n -region for Q to the n -region for −Q .

This equivalence can be regarded as a skew symmetry of Q taking the n -region to

the −n -region. ⊔⊓
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For the last result in this section we will use a variant of Euclid’s proof that there

are infinitely many primes to prove the following general statement:

Proposition 6.18. For each discriminant ∆ the set of primes represented in discrim-

inant ∆ is infinite.

Proof: In each discriminant ∆ there is a form Q(x,y) = x2 + bxy + cy2 represent-

ing 1. We can assume c is nonzero since in the topograph of Q there will always be

at least one region adjacent to the 1 region that is not labeled by 0. (Only parabolic

and 0-hyperbolic forms can have a 0 region and they have at most two 0 regions.) Let

p1, · · · , pk be any finite list of primes. We allow repetitions on this list so we can make

k as large as we like just by repeating some pi often enough. Let P be the product

p1 · · ·pk and consider the number n = Q(1, P) = 1+bP+cP2 . This is represented by

Q since (1, P) is a primitive pair. If k is large enough we will have |n| > 1 since |cP2|

will be much larger than |1+ bP | . Any prime p dividing n will also be represented

by some form of discriminant ∆ . This p must be different from any of the primes

pi on the initial list since dividing pi into n = 1 + P + cP2 gives a remainder of 1,

whereas p divides n evenly. Thus we have shown that for any finite list of primes

there is another prime not on the list that is represented in discriminant ∆ . Hence

the set of primes represented in discriminant ∆ must be infinite. ⊔⊓

Exercises

1. Determine discriminants ∆ for which there exists a quadratic form of discriminant

∆ that represents 5, and also the discriminants for which there does not exist a form

representing 5. When 5 is represented, find a form that gives the representation.

2. The following is a generalization of Lemma 6.4. Let P(x) be a polynomial with

integer coefficients and let n be an integer. Show that if the congruence P(x) ≡ n

has a solution mod m1 and also a solution mod m2 where m1 and m2 are coprime,

then it has a solution mod m1m2 . Give an example where this fails without the

coprimeness condition.

3. Verify that the statement of quadratic reciprocity is true for the following pairs of

primes (p, q) : (3,5) , (3,7) , (3,13) , (5,13) , (7,11) , and (13,17) .

4. Evaluate the following Legendre symbols:
(

30
101

)
,
(

99
101

)
,
(

506
967

)
.

5. Show that
(
a
p

)
can always be computed just from the four basic properties of

Legendre symbols.

6. Determine which numbers in the range from 40 to 50 are squares mod 132.
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7. (a) Using quadratic reciprocity determine which primes are represented by some

form of discriminant 17.

(b) Show that all forms of discriminant 17 are equivalent to the form x2+xy −4y2 .

(c) Draw enough of the topograph of x2 + xy − 4y2 to show all values between −70

and 70, and verify that the primes that occur are precisely the ones predicted by your

answer in part (a).

8. Determine which primes are represented by at least one form of the following

discriminants: (a) 21 (b) −19 (c) −20 (d) −24.

9. Show that every prime is represented by at least one of the forms x2+y2 , x2+2y2 ,

and x2 − 2y2 .

10. Consider forms Q = ax2+bxy+cy2 of discriminant ∆ . Show that the following

three conditions are equivalent:

(1) The coefficients a , b , and c of Q are all odd.

(2) Q represents only odd numbers.

(3) ∆ ≡ 5 mod 8.

11. For which fundamental discriminants ∆ is there a form of discriminant ∆ repre-

senting |∆|? What about nonfundamental discriminants?

12. In terms of their prime factorizations, which numbers are sums of two nonzero

squares? Which squares are sums of two nonzero squares?

13. Show that if the form x2 +ny2 represents 2k with n odd and k > 0 then n ≡ 7

mod 8 except when (n, k) = (1,1) and (3,2) .

14. Show that for each prime p dividing the conductor for discriminant ∆ there is at

least one primitive form of discriminant ∆ that represents a power of p . Hint : Use

induction on the highest power of p dividing the conductor, along with Theorem 6.11

and Propositions 6.13 and 6.14.

15. This exercise involves using quadratic reciprocity to apply Legendre’s Theorem

(Theorem 2.6) on rational points on quadratic curves.

(a) Determine the values of n for which the curve 2x2 + ny2 = 1 contains rational

points, assuming n is odd and squarefree. For each of the first three positive values

of n for which the curve contains rational points find two of these rational points

that lie in the first quadrant.

(b) For the same equation show that the case that n is even and squarefree reduces

to the case n is odd and squarefree.

(c) Determine the values of n for which the curve 3x2 + ny2 = 1 contains rational

points, assuming n is odd, squarefree, and coprime to 3.
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6.3 Genus and Characters

In the previous section we obtained a reasonably complete answer to the ques-

tion of which numbers are represented by at least one form of a given discriminant.

Legendre symbols determine which primes are represented, and in a fairly simple way

this determines which nonprimes are represented. For discriminants of class number

1 this gives a complete answer to the question of which numbers are represented by

a given form.

The main goal of the present section is to see how Legendre symbols, along with a

few extensions of them for the special prime 2, can give additional information when

the class number is not 1. In particular, in favorable cases we will be able to determine

fully which forms represent which primes. Underlying this method is the following

basic result:

Proposition 6.19. Let Q be a form of discriminant ∆ and let p be an odd prime

dividing ∆ . Then the Legendre symbol
(
n
p

)
has the same value for all numbers n

in the topograph of Q that are not divisible by p .

Before proving this let us see how it applies in the case ∆ = 40 with p = 5. The

class number here is 2 corresponding to the forms x2 − 10y2 and 2x2 − 5y2 .

According to the proposition, for each of the two forms the value of
(
n
5

)
must be the

same for all numbers n in the topograph not divisible by 5. To determine the value

of
(
n
5

)
for each form it therefore suffices to compute it for a single number n . The

simplest thing is just to compute it for (x,y) = (1,0) or (0,1) . Choosing (1,0) , for

x2− 10y2 we have
(

1
5

)
= +1 and for 2x2− 5y2 we have

(
2
5

)
= −1. The proposition

then says that all numbers n in the topograph of x2 − 10y2 not divisible by 5 have(
n
5

)
= +1, hence n ≡ ±1 mod 5, while for 2x2 − 5y2 we have

(
n
5

)
= −1, hence

n ≡ ±2 mod 5. Thus the last digits of the numbers in the topograph of x2 − 10y2

must be 0, 1, 4, 5, 6, or 9 and for 2x2−5y2 the last digits must be 0, 2, 3, 5, 7, or 8.
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Note that the congruences n ≡ ±1 and n ≡ ±2 mod 5 are consistent with the fact

that for both forms the negative values are just the negatives of the positive values.

(The proposition holds for negative as well as positive numbers in topographs.)

We know that
(

40
p

)
=
(

2
p

)(
p
5

)
must equal +1 for primes p ≠ 2,5 represented by

either form, so for x2 − 10y2 this product must be (+1)(+1) while for 2x2 − 5y2 it

must be (−1)(−1) .

1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39
(

2
p

)
+1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1

(
p
5

)
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

Q1 Q2 Q1 Q2 Q2 Q1 Q2 Q1

From the table we can see exactly which primes each of these two forms represents,

namely x2 − 10y2 represents primes p ≡ 1,9,31,39 mod 40 while 2x2 − 5y2 rep-

resents primes p ≡ 3,13,27,37 mod 40.

Proof of Proposition 6.19: For an edge in the topograph labeled h with adjacent

regions labeled n and k we have ∆ = h2 − 4nk . If p is a prime dividing ∆ this

implies that 4nk ≡ h2 mod p . Thus if neither n nor k is divisible by p and p is

odd then the Legendre symbol
(

4nk
p

)
is defined and

(
4nk
p

)
=
(
h2

p

)
= +1. Since

(
4nk
p

)
=
(

4
p

)(
n
p

)(
k
p

)
and

(
4
p

)
= +1 this implies

(
n
p

)
=
(
k
p

)
. In other words, the

symbol
(
n
p

)
takes the same value on any two adjacent regions of the topograph of Q

labeled by numbers not divisible by p . To finish the proof we will use the following

fact:

Lemma 6.20. Given a form Q and a prime p dividing the discriminant of Q , then

any two regions in the topograph of Q where the value of Q is not divisible by p

can be connected by a path passing only through such regions.

Assuming this, Proposition 6.19 easily follows since we have seen that the value

of
(
n
p

)
is the same for any two adjacent regions with label not divisible by p . ⊔⊓

Proof of the Lemma: Let us call regions in the topograph of Q whose label is not

divisible by p good regions, and the other regions bad regions. We can assume that

at least one region is good, otherwise there is nothing to prove. What we will show

is that no two bad regions can be adjacent. Thus a path in the topograph from one

good region to another cannot pass through two consecutive bad regions, and if it

does pass through a bad region then a detour around this region allows this bad

region to be avoided, creating a new path passing

through one fewer bad region as in the figure at the

right. By repeating this detouring process as often

as necessary we eventually obtain a path avoiding

bad regions entirely, still starting and ending at the

same two given good regions.
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To see that no two adjacent regions are bad, suppose this is false, so there are

two adjacent regions whose Q values n and k are both divisible by p . If the edge

separating these two regions is labeled h then we have an equation ∆ = h2−4nk , and

since we assume p divides ∆ this implies that p divides h as well as n and k . Thus

the form nx2 + hxy + ky2 , which is equivalent to Q , is equal to p times another

form. This implies that all regions in the topograph of Q are bad. This contradicts

an earlier assumption so we conclude that there are no adjacent bad regions. ⊔⊓

A useful observation is that the value of
(
n
p

)
for numbers n in the topograph of

a form ax2 + bxy + cy2 with discriminant divisible by p can always be determined

just by looking at the coefficients a and c . This is because a and c appear in adjacent

regions of the topograph, so if both these coefficients were divisible by p , this would

imply that b was also divisible by p since p divides b2 − 4ac , so the whole form

would be divisible by p . Excluding this uninteresting possibility, we see that at least

one of a and c is not divisible by p and we can use this to compute
(
n
p

)
.

Let us look at another example, the discriminant ∆ = −84 = −22·3·7 with three

different prime factors. For this discriminant there are four equivalence classes of

forms: Q1 = x2 + 21y2 , Q2 = 3x2 + 7y2 , Q3 = 2x2 + 2xy + 11y2 , and Q4 =

5x2 + 4xy + 5y2 . The topographs of these forms were shown in Section 6.1. To see

which odd primes are represented in discriminant −84 we compute:

(
---84
p

)
=
(

---1
p

)(
3
p

)(
4
p

)(
7
p

)
=
(

---1
p

)(
3
p

)(
7
p

)
=
(

---1
p

)(
p
3

)(
p
7

)

As in the example of ∆ = 40 we can make a table of the values of these Legendre

symbols for the 24 numbers mod 84 that are not divisible by the prime divisors

2,3,7 of 84. Using the fact that the squares mod 3 are (±1)2 = 1 and the squares

mod 7 are (±1)2 = 1, (±2)2 = 4, and (±3)2 ≡ 2, we obtain the following table:

1 5 11 13 17 19 23 25 29 31 37 41(
---1
p

)
+1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 +1

(
p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1

(
p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q1 Q4 Q3 Q4 Q2 Q3 Q1 Q2 Q1 Q4

43 47 53 55 59 61 65 67 71 73 79 83
(

---1
p

)
−1 −1 +1 −1 −1 +1 +1 −1 −1 +1 −1 −1(

p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1

(
p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q2 Q3

The twelve cases when the product
(

---1
p

)(
p
3

)(
p
7

)
is +1 give the congruence classes

of primes not dividing ∆ that are represented by one of the four forms, and we can

determine which form it is by looking at the values of
(
p
3

)
and

(
p
7

)
for each of the four
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forms. As noted earlier, these values can be computed directly from the coefficients

of x2 and y2 that are not divisible by 3 for
(
p
3

)
or by 7 for

(
p
7

)
. For example, for

Q2 = 3x2+7y2 the coefficient of y2 tells us that
(
p
3

)
=
(

7
3

)
= +1 and the coefficient

of x2 tells us that
(
p
7

)
=
(

3
7

)
= −1. Thus the pair

(
p
3

)
,
(
p
7

)
is +1,−1 for Q2 . In a

similar way we find that
(
p
3

)
,
(
p
7

)
is +1,+1 for Q1 = x

2 + 21y2 , while it is −1,+1

for Q3 = 2x2 + 2xy + 11y2 and −1,−1 for Q4 = 5x2 + 4xy + 5y2 . This allows us

to determine which congruence classes of primes are represented by which form, as

indicated in the table, since the product
(

---1
p

)(
p
3

)(
p
7

)
must be +1.

Another case we looked at was ∆ = −56 where there were three inequivalent

forms Q1 = x
2 + 14y2 , Q2 = 2x2 + 7y2 , and Q3 = 3x2 + 2xy + 5y2 . Here we have(

---56
p

)
=
(

---1
p

)(
2
p

)(
7
p

)
=
(

2
p

)(
p
7

)
. The table of values for these Legendre symbols for

congruence classes of numbers mod 56 not divisible by 2 or 7 is:

1 3 5 9 11 13 15 17 19 23 25 27(
2
p

)
+1 −1 −1 +1 −1 −1 +1 +1 −1 +1 +1 −1

(
p
7

)
+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(
Q1

Q2

)
Q3 Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

) (
Q1

Q2

)
Q3

29 31 33 37 39 41 43 45 47 51 53 55(
2
p

)
−1 +1 +1 −1 +1 +1 −1 −1 +1 −1 −1 +1

(
p
7

)
+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(

Q1

Q2

)
Q3

From the table we see that
(

2
p

)(
p
7

)
is (+1)(+1) for p ≡ 1,9,15,23,25,39 mod 56 and

(−1)(−1) for p ≡ 3,5,13,19,27,45 mod 56. Thus the primes that are represented

in discriminant −56 are the primes in these twelve congruence classes, along with 2

and 7, the prime divisors of 56. Moreover, since
(
p
7

)
has the value +1 for numbers in

the topographs of Q1 and Q2 not divisible by 7, and the value −1 for numbers in the

topograph of Q3 not divisible by 7, we can deduce that primes p ≡ 1,9,15,23,25,39

mod 56 are represented by Q1 or Q2 while primes p ≡ 3,5,13,19,27,45 mod 56

are represented by Q3 . However the values of the Legendre symbols in the table do

not allow us to distinguish between Q1 and Q2 .

Each row in one of the tables above can be regarded as a function assigning a

number ±1 to each congruence class of numbers n coprime to the discriminant ∆ .

Such a function is called a character and the table is called a character table. There

is one column in the table for each congruence class of numbers coprime to ∆ so the

number of columns is ϕ(|∆|) where ϕ is the Euler phi function from Section 2.3. For

each odd prime p dividing ∆ there is a character given by the Legendre symbol
(
n
p

)
.

There is sometimes also a character associated to the prime 2 in a somewhat less

transparent way. In the example ∆ = −84 this is the character defined by the first

row of the table, which assigns the values +1 to numbers n = 4k + 1 and −1 to
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numbers n = 4k+ 3. We will denote this character by χ4 to indicate that its values

χ4(n) = ±1 depend only on the value of n mod 4. Thus χ4(p) =
(

---1
p

)
when p is

an odd prime, but χ4(n) is defined for all odd numbers n , not just primes. One can

check that an explicit formula for χ4 is χ4(n) = (−1)(n−1)/2 although we will not be

needing this formula.

In the example with ∆ = −56 the character corresponding to the prime 2 is given

by the row labeled
(

2
p

)
. This character associates the value +1 to an odd number

n ≡ ±1 mod 8 and the value −1 when n ≡ ±3 mod 8. We will denote it by χ8 since

its values χ8(n) = ±1 depend only on n mod 8. We have χ8(p) =
(

2
p

)
for all odd

primes p , but χ8(n) is defined for all odd numbers n . There is again an explicit

formula χ8(n) = (−1)(n
2−1)/8 that we will not use.

By analogy we can also introduce the notation χp for the earlier character defined

by χp(n) =
(
n
p

)
for p an odd prime and n not divisible by p .

As another example illustrating the use of characters let us determine which pow-

ers of 2 are represented by the two forms x2 + 15y2 and 3x2 + 5y2 of discriminant

−60. This is not a fundamental discriminant since it is 4 times the fundamental dis-

criminant −15, so the conductor is 2 which is why the question of determining the

forms representing powers of 2 is more subtle, as we saw in the previous section. In

both the discriminants −15 and −60 we have the characters χ3 and χ5 and we can

use either one of these for this application so we will use χ3 .

First consider discriminant −15 where the class number is 2 corresponding to the

two forms x2+xy +4y2 and 2x2+xy +2y2 . The second form represents 2 which

does not divide the discriminant −15 so all powers of 2 are represented by one or the

other of these two forms. To determine which form it is for each power we use the

character χ3 . This has the value +1 on numbers not divisible by 3 in the topograph

of x2 +xy + 4y2 since 1 is one of these numbers and χ3(1) = +1. Similarly χ3 has

the value −1 for the other form 2x2 + xy + 2y2 since 2 appears in the topograph

of this form and χ3(2) = −1. We have χ3(2
k) = (−1)k since χ3(2

k) =
(

2k

3

)
=
(

2
3

)k
.

Hence x2 + xy + 4y2 represents only the even powers of 2 and 2x2 + xy + 2y2

represents only the odd powers.

For discriminant −60 the class number is also 2, corresponding to the forms

x2 + 15y2 and 3x2 + 5y2 . Obviously neither of these forms represents 2 or 4.

However by Proposition 6.13 each power 2k with k ≥ 3 is represented by at least one

of the two forms since all powers 2k with k ≥ 1 are represented by one of the forms

of discriminant −15. The value of χ3 for x2+15y2 is +1 since this form represents

1 and χ3(1) = +1, and the value of χ3 for 3x2+5y2 is −1 since this form represents

5 and χ3(5) = −1. From this it follows as before that x2 + 15y2 represents just the

even powers of 2 starting with 24 and 3x2 + 5y2 represents just the odd powers

starting with 23 . This is the answer that was given in the large table in the preceding

section.
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Characters for the Prime 2

Let us consider now how characters can be associated to the prime 2 in general.

Since characters arise from primes that divide the discriminant, this means we are

interested in even discriminants, and the characters we are looking for should assign

a value ±1 to each number not divisible by 2, that is, to each odd number. We would

like the analogue of Proposition 6.19 to hold, so characters for the prime 2 should

take the same value on all odd numbers in the topograph of a form of the given

discriminant. By Lemma 6.20 this just means that the characters should have the

same value for odd numbers in adjacent regions of the topographs.

Even discriminants are multiples of 4 so can be written as ∆ = 4δ . For adjacent

regions in a topograph with labels n and k we have ∆ = h2 − 4nk where h is the

label on the edge between the two regions. Since ∆ is even, so is h and we can write

h = 2l . The discriminant equation then becomes 4δ = 4l2 − 4nk or just δ = l2 −nk .

There will be six different cases. The first two are when δ is odd, which means

that ∆ is divisible by 4 but not 8. In these two cases we consider congruences mod 4,

the highest power of 2 dividing ∆ . Since δ is odd and both n and k are odd, the

equation δ = l2 − nk implies that l must be even, so l2 ≡ 0 mod 4 and we have

nk ≡ −δ mod 4. Multiplying both sides of this congruence by k , we get n ≡ −δk

mod 4 since k2 ≡ 1 mod 4, k being odd. Multiplying the congruence n ≡ −δk by k

again gives the previous congruence nk ≡ −δ so the two congruences are equivalent.

Case 1: δ = 4m−1. The congruence condition n ≡ −δk mod 4 is then n ≡ k mod 4.

Thus Lemma 6.20 implies that the character χ4 assigning +1 to integers 4s + 1 and

−1 to integers 4s − 1 has the same value for all odd numbers in the topograph of

a form of discriminant ∆ = 4(4m − 1) . We might try reversing the values of χ4 ,

assigning the value +1 to integers 4s − 1 and −1 to integers 4s + 1, but this just

gives the function −χ4 which does not really give any new information that χ4 does

not give. In practice χ4 turns out to be more convenient to use than −χ4 would be.

An example for the case δ = 4m − 1 is the discriminant ∆ = −84 considered

earlier, where the first row of the character table gave the values for χ4 .

Case 2: δ = 4m + 1. The difference from the previous case is that the congruence

condition is now n ≡ −k mod 4. This means the mod 4 value of odd numbers in the

topograph is not constant, and so we do not get a character for the prime 2. As an

example, consider the form x2 + 3y2 with ∆ = −12 and δ = −3.
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Here there are odd numbers in the topograph congruent to both 1 and 3 mod 4.

The situation is not improved by considering odd numbers mod 8 instead of mod 4

since the topograph contains numbers congruent to each of 1,3,5,7 mod 8. Trying

congruences modulo higher powers of 2 does not help either.

The absence of a character for the prime 2 when δ = 4m + 1 could perhaps

have been predicted from the calculation of
(∆
p

)
. Since δ is odd we have ∆ =

4δ = 4p1 · · ·pr for odd primes p1, · · · , pr and so
(∆
p

)
=
(
p1
p

)
· · ·

(
pr
p

)
. This equals(

p
p1

)
· · ·

(
p
pr

)
since the number of primes pi congruent to 3 mod 4 is even when

δ = 4m+ 1. Thus the value of
(∆
p

)
depends only on the characters associated to the

odd prime factors of ∆ .

There remain the cases that δ is even. The next two cases are when ∆ is divisible

by 8 but not by 16. After that is the case that ∆ is divisible by 16 but not by 32,

and finally the case that ∆ is divisible by 32. In all these cases we will consider

congruences mod 8, so the equation δ = l2 −nk becomes δ ≡ l2 −nk mod 8. Since

δ is now even while n and k are still odd, this congruence implies l is odd, and so

l2 ≡ 1 mod 8 and the congruence can be written as nk ≡ 1− δ mod 8. Since k2 ≡ 1

mod 8 when k is odd, we can multiply both sides of the congruence nk ≡ 1−δ by k

to obtain the equivalent congruence n ≡ (1− δ)k mod 8.

Case 3: δ ≡ 2 mod 8. The congruence is then n ≡ −k mod 8. It follows that in the

topograph of a form of discriminant ∆ = 4(8m+ 2) either the odd numbers must all

be congruent to ±1 mod 8 or they must all be congruent to ±3 mod 8. Thus the

character χ8 which takes the value +1 on numbers 8s±1 and −1 on numbers 8s±3

has a constant value, either +1 or −1, for all odd numbers in the topograph.

An example for this case is ∆ = 40. Here the two rows of the character table

computed earlier in this section gave the values for χ8 and χ5 .

Case 4: δ ≡ 6 mod 8. Now the congruence n ≡ (1− δ)k mod 8 becomes n ≡ −5k ,

or equivalently n ≡ 3k mod 8. This implies that all odd numbers in the topograph

of a form of discriminant ∆ = 4(8m + 6) must be congruent to 1 or 3 mod 8, or

they must all be congruent to 5 or 7 mod 8. The character associated to the prime

2 in this case has the value +1 on numbers 8s + 1 and 8s + 3, and the value −1 on

numbers 8s + 5 and 8s + 7. We have not encountered this character previously, so

let us give it the new name χ′8 . However, it is not entirely new since it is actually just

the product χ4χ8 as one can easily check by evaluating this product on 1,3,5, and 7.

A simple example is ∆ = −8 with class number 1. Here we have
(∆
p

)
=
(

---8
p

)
=(

---1
p

)(
2
p

)
which equals +1 for p ≡ 1,3 mod 8 and −1 for p ≡ 5,7 mod 8 so this is

just the character χ′8 .

Another example is ∆ = 24 where there are the two forms Q1 = x
2 − 6y2 and

Q2 = 6x2 − y2 . We have
(∆
p

)
=
(

24
p

)
=
(

2
p

)(
3
p

)
=
(

2
p

)(
---1
p

)(
p
3

)
. The character table

has the following form:
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1 5 7 11 13 17 19 23

χ′8 +1 −1 −1 +1 −1 +1 +1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1

Thus Q1 represents primes p ≡ 1,19 mod 24 and Q2 represents primes p ≡ 5,23

mod 24.

Case 5: δ ≡ 4 mod 8. Now we have the congruence n ≡ −3k mod 8. Thus in

the topograph of a form of discriminant ∆ = 4(8m + 4) all odd numbers must be

congruent to 1 or 5 mod 8, or they must all be congruent to 3 or 7 mod 8. More

simply, one can say that all odd numbers in the topograph must be congruent to 1

mod 4 or they must all be congruent to 3 mod 4. Thus we obtain the character χ4

again.

An example is ∆ = −48 where we have the two forms Q1 = x2 + 12y2 and

Q2 = 3x2 + 4y2 as well as a pair of nonprimitive forms Q3 = 2x2 + 6y2 and Q4 =

4x2 + 4xy + 4y2 . We have
(∆
p

)
=
(

---3
p

)
=
(

---1
p

)(
3
p

)
=
(
p
3

)
. This is the character χ3 .

We also have the character χ4 that we just described. Here is the character table:

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47

χ4 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

The columns repeat every four columns since
(

---1
p

)
and

(
p
3

)
are determined by the

value of p mod 12. In contrast with earlier examples, the representability of a prime

p > 3 in discriminant −48 is determined by one character, χ3 , and the other character

χ4 serves only to decide which of the forms Q1 and Q2 achieves the representation.

The character χ4 says nothing about the nonprimitive forms Q3 and Q4 whose values

are all even. On the other hand, from χ3 we can deduce that all values of Q3 not

divisible by 3 must be congruent to 2 mod 3 while for Q4 they must be congruent

to 1 mod 3. This could also have been deduced from applying χ3 to the associated

primitive forms x2 + 3y2 and x2 + xy + y2 .

Case 6: δ ≡ 0 mod 8, so ∆ is a multiple of 32. In this case the congruence n ≡ (1−δ)k

mod 8 becomes simply n ≡ k mod 8. Thus all odd numbers in the topograph of a

form of discriminant ∆ = 32m must lie in the same congruence class mod 8. The two

characters χ4 and χ8 can now both occur independently, as shown in the following

chart listing their values on the four classes 1,3,5,7 mod 8 :

1 3 5 7

χ4 +1 −1 +1 −1

χ8 +1 −1 −1 +1

As an example consider the discriminant ∆ = −32. Here there are two primitive

forms Q1 = x
2 + 8y2 and Q2 = 3x2 + 2xy + 3y2 along with one nonprimitive form

Q3 = 2x2 + 4y2 . We have
(∆
p

)
=
(

---2
p

)
=
(

---1
p

)(
2
p

)
with the two factors being the



Section 6.3 — Genus and Characters 43

two independent characters for the prime 2. The full character table is then just a

four-fold repetition of the previous shorter table:

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

χ4 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

χ8 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

This finishes the analysis of the six cases for characters associated to the prime 2.

To summarize we have:

Proposition 6.21. The characters associated to the prime 2 are given in the follow-

ing table :

∆ 4(4m+ 1) 4(4m+ 3) 8(4m+ 1) 8(4m+ 3) 16(2m+ 1) 32m

χ — χ4 χ8 χ′8 = χ4χ8 χ4 χ4, χ8

We have now defined a set of characters for each discriminant ∆ , with one char-

acter for each odd prime dividing ∆ and either zero, one, or two characters for the

prime 2 when ∆ is even. The character table for discriminant ∆ has one row for each

of these characters.

If one restricts attention to fundamental discriminants then the only relevant

columns in the table in the preceding proposition are the second, third, and fourth

columns on the right. Thus the characters for the prime 2 that arise in the three cases

of fundamental discriminants are exactly χ4 , χ8 , and χ′8 .

A nice property satisfied by characters is that they are multiplicative, so χ(mn) =

χ(m)χ(n) for all m and n for which χ is defined. For the characters χp associated to

odd primes p this is just the basic property
(
mn
p

)
=
(
m
p

)(
n
p

)
of Legendre symbols.

For the prime 2 the characters χ4 and χ8 are multiplicative as well. For χ4 this

holds since χ4(1·1) = +1 = χ4(1)χ4(1) , χ4(1·3) = −1 = χ4(1)χ4(3) , and χ4(3·3) =

+1 = χ4(3)χ4(3) . Similarly for χ8 we have χ8(±1· ± 1) = +1 = χ8(±1)χ8(±1) ,

χ8(±1· ± 3) = −1 = χ8(±1)χ8(±3) , and χ8(±3· ± 3) = +1 = χ8(±3)χ8(±3) . The

multiplicativity of χ′8 follows since χ′8 = χ4χ8 .

In fact χ4 , χ8 , and χ′8 are the only multiplicative functions from the odd integers

mod 8 to {±1} , apart from the trivial function assigning +1 to all four of 1,3,5,7.

To see this, note first that each of 3,5,7 has square equal to 1 mod 8 and the product

of any two of 3,5,7 is the third, mod 8. This means that a multiplicative function χ

from odd integers mod 8 to {±1} is completely determined by the two values χ(3)

and χ(5) since χ(1) = χ(3)χ(3) and χ(7) = χ(3)χ(5) . For χ4 the values on 3 and 5

are −1,+1, for χ8 they are −1,−1, and for χ′8 = χ4χ8 they are +1,−1. The only

other possibility is +1,+1 but this leads to the trivial character.
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As we know, an odd prime p is represented in discriminant ∆ exactly when(∆
p

)
= +1. This criterion can also be expressed in terms of characters via the following

restatement of Proposition 6.9 in different notation:

Proposition 6.22.
(∆
p

)
= X∆(p) for X∆ the product of characters given in the table

below, where ∆ = ε2sp1 · · ·pk for ε = ±1 with each pi an odd prime. ⊔⊓

∆
(∆
p

)
X∆

22l(4m+ 1)
(
p
p1

)
· · ·

(
p
pk

)
χp1

· · · χpk

22l(4m+ 3)
(

---1
p

)(
p
p1

)
· · ·

(
p
pk

)
χ4χp1

· · · χpk

22l+1(4m+ 1)
(

2
p

)(
p
p1

)
· · ·

(
p
pk

)
χ8χp1

· · · χpk

22l+1(4m+ 3)
(

---1
p

)(
2
p

)(
p
p1

)
· · ·

(
p
pk

)
χ′8χp1

· · · χpk

The value X∆(n) = ±1 is defined whenever n is coprime to ∆ . If n is repre-

sented in discriminant ∆ then X∆(n) = +1 since each prime factor p of n is then

represented, so X∆(p) = +1, and X∆(n) is the product of these terms X∆(p) since

X∆ is multiplicative, being a product of multiplicative functions. If n is not a prime

it can happen that X∆(n) = +1 even when n is not represented in discriminant ∆ .

For example for ∆ = −4 we have X∆(21) = χ4(21) = χ4(3)χ4(7) = (−1)(−1) = +1

but 21 is not represented by the form x2 +y2 , the only form in this discriminant up

to equivalence.

Next let us verify that some of the special features of the character tables in the

earlier examples hold in general.

Proposition 6.23. (a) The columns of a character table contain all possible combi-

nations of +1 and −1 , and each such combination occurs in the same number of

columns.

(b) If the discriminant ∆ is not a square then half of the columns have X∆(n) = +1

and half have X∆(n) = −1 for numbers n in the congruence class corresponding

to the column.

For example, if ∆ is a fundamental discriminant then X∆ is just the product of all

the characters in the character table, so the combinations of ±1’s that give X∆ = +1

in these cases are the combinations with an even number of −1’s. This need not be

true for nonfundamental discriminants as the earlier example ∆ = −48 shows.

From statement (b) in the proposition we immediately deduce:

Corollary 6.24. For hyperbolic and elliptic forms, the primes not dividing the dis-

criminant ∆ that are represented in discriminant ∆ are the primes in exactly half

of the congruence classes mod ∆ of numbers coprime to ∆ .

For the proof of Proposition 6.23 we will need the following fact:
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Lemma 6.25. For a power pr of an odd prime p exactly half of the pr − pr−1

congruence classes mod pr of numbers a not divisible by p satisfy
(
a
p

)
= +1 .

Proof: First we do the case r = 1. The p− 1 nonzero congruence classes mod p are

±1,±2, · · · ,±1/2

(
p−1

)
. The two numbers +a and −a in each pair ±a have the same

square, so there are at most 1/2

(
p−1

)
different nonzero squares mod p . In fact there

are exactly this many since if a2 ≡ b2 mod p then p divides a2−b2 = (a−b)(a+b) ,

so since p is prime it must divide either a−b or a+b which means that either a ≡ b

or a ≡ −b mod p . Thus exactly half of the p−1 nonzero congruence classes mod p

are squares, so the lemma is proved when r = 1.

Now suppose r > 1. The value of
(
a
p

)
depends only on the congruence class of

a mod p so there are the same number of numbers a with
(
a
p

)
= +1 in each of the

intervals [0, p] , [p,2p] , [2p,3p] , etc. There are pr−1 of these intervals in [0, pr ] .

Thus half of the pr−1(p − 1) = pr − pr−1 congruence classes mod pr of numbers a

not divisible by p have
(
a
p

)
= +1 and half have

(
a
p

)
= −1. ⊔⊓

Proof of Proposition 6.23: Let us write ∆ = ε 2sp
r1

1 · · ·p
rk
k where ε = ±1, s ≥ 0,

and the pi ’s are the distinct odd prime divisors of ∆ . Thus the characters for this

discriminant are χp1
, · · · , χpk and either zero, one, or two characters associated to

the prime 2 when s > 0.

To prove statement (a) choose numbers ai realizing any combination of preas-

signed values χpi(ai) = ±1. When s > 0 we also choose a number 1, 3, 5, or 7 to

realize any preassigned pair of values for χ4 and χ8 , hence for any preassigned val-

ues for the characters associated to the prime 2. By the Chinese Remainder Theorem

there is a number a congruent to each ai mod p
ri
i and to the chosen number 1,3,5,7

mod 8. The number a is coprime to ∆ since it is nonzero mod pi for each i and is

odd when s > 0. Thus the column in the character table corresponding to a realizes

the chosen values for all the characters.

To prove the second half of statement (a) we will count the number of columns

in the character table realizing a given combination of values ±1 and see that this

number does not depend on which combination is chosen. By the preceding lemma

the number of choices for ai mod p
ri
i in the previous paragraph is 1/2p

ri−1
i (pi−1) , so

the Chinese Remainder Theorem implies that when s = 0 the number of congruence

classes mod ∆ realizing a given combination of values ±1 is the product of these

numbers 1/2p
ri−1
i (pi − 1) . When s > 0 but there is no character for the prime 2,

the product of the numbers 1/2p
ri−1
i (pi − 1) is multiplied by 2s−1 since this is the

number of odd congruence classes mod 2s . If there is one character for the prime 2

the number 2s−1 is cut in half, and if there are two characters for the prime 2 it is cut

in half again. Thus in all cases the number of columns realizing a given combination

of ±1’s is independent of the combination.

For (b), consider the definition of X∆ which has four different cases depending
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on the prime factorization of ∆ . If ∆ is a square then the applicable formula is the

first of the four formulas since an odd square is 1 mod 4, and in fact the formula

degenerates to just the constant +1 since its terms all cancel out, as each prime factor

of ∆ occurs to an even power. When ∆ is not a square, the terms in the first of the

four formulas do not all cancel out, and in the other three formulas there is also at

least one term remaining after cancellations, either χ4 , χ8 , or χ′8 .

In view of property (a), to prove (b) it will suffice to show that when ∆ is not

a square, the set of combinations of values ±1 in columns of the character table

that give X∆ = +1 has the same number of elements as the set of combinations

that give X∆ = −1. But this is obviously true since we can interchange these two

sets by choosing one term in the formula for X∆ that remains after cancellation and

switching the sign of the value ±1 for this term, keeping the values for the other

characters unchanged. ⊔⊓

Genus

Recall the concept of genus that was introduced informally in Section 6.1. The

idea was that if two forms of the same discriminant cannot be distinguished by looking

only at their values modulo the discriminant then they should be regarded as having

the same genus. Here it is best to restrict attention just to primitive forms. We can

now give this notion a more precise definition by saying that two primitive forms of

discriminant ∆ have the same genus if each character for discriminant ∆ takes the

same value on the two forms, where the value of a character on a form means its value

on all numbers in the topograph not divisible by the prime associated to the character.

In fact there is always a single number in the topograph that can be used to

evaluate all the characters, according to the following general result:

Proposition 6.26. Given a positive integer n and a primitive form Q that represents

at least one positive number, then Q represents a positive number coprime to n .

For the application to evaluating characters we choose n = |∆| for ∆ the discrim-

inant of Q , which we assume is nonzero.

Proof: Let Q = ax2 + bxy + cy2 . We can replace Q by any equivalent form so we

can arrange that a > 0 and c > 0 by choosing two adjacent regions in the topograph

of Q with positive labels a and c . We can also assume b ≥ 0 since changing the sign

of b produces an equivalent form.

The case n = 1 is trivial since every positive number is coprime to 1, so we may

assume n > 1. Suppose first that n is a prime p . One of the following three cases

will apply:

(1) If p does not divide a let (x,y) be a primitive pair with p dividing y but

not x . Then p will not divide ax2 + bxy + cy2 . For example we could take

(x,y) = (1, p) .
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(2) If p divides a but not c let (x,y) be a primitive pair with p dividing x but

not y . Then p will not divide ax2 + bxy + cy2 . For example we could take

(x,y) = (p,1) .

(3) If p divides both a and c then it will not divide b since Q is primitive. In this

case let (x,y) be a primitive pair with neither x nor y divisible by p . Then p

will not divide ax2 + bxy + cy2 . For example we could take (x,y) = (1,1) .

This finishes the proof when n is prime. For a general n let p1, · · · , pk be its distinct

prime divisors. For each pi let (xi, yi) be (1, pi) , (pi,1) , or (1,1) according to which

of the three cases above applies to pi . Now let x = x1 · · ·xk and y = y1 · · ·yk .

Then x and y are coprime since no pi is a factor of both x and y . If the number

ax2+bxy+cy2 is not coprime to n it will be divisible by some pi . If case (1) applies

to pi then pi divides y but not x so pi does not divide ax2+bxy + cy2 . Likewise

if cases (2) or (3) apply to pi then pi does not divide ax2 + bxy + cy2 . Thus no pi

can divide ax2+bxy +cy2 . Finally, ax2+bxy +cy2 is positive since x and y are

positive as are the coefficients except possibly b which is either positive or zero. ⊔⊓

The number of genera in discriminant ∆ is at most 2κ where κ is the number of

characters in discriminant ∆ . In all the character tables we have looked at, only half

of the 2κ possible combinations of ±1’s were actually realized by forms, and in fact

this is true generally:

Theorem 6.27. If ∆ is not a square then the number of genera of primitive forms

of discriminant ∆ is 2κ−1 where κ is the number of characters in discriminant ∆ .

This turns out to be fairly hard to prove. The original proof by Gauss required

a somewhat lengthy digression into the theory of quadratic forms in three variables.

An exposition of this proof can be found in the book by Flath listed in the Bibliogra-

phy. We will give a different proof that deduces the result rather quickly from things

we have already done, together with Dirichlet’s Theorem about primes in arithmetic

progressions discussed at the end of Section 6.1, which we will not prove. We will

not need the full strength of Dirichlet’s Theorem, and in fact all we will actually need

is that each congruence class of numbers x ≡ b mod a contains at least one prime

greater than 2 if a and b are coprime. One might think this would be easier to prove

than that there are infinitely many primes in the congruence class, but this seems not

to be the case.

Proof of Theorem 6.27 using Dirichlet’s Theorem: We have seen that for each prim-

itive form Q of discriminant ∆ there is a number n coprime to ∆ that is represented

by Q . Then X∆(n) is defined, and we saw when we defined X∆ that X∆(n) = +1

when n is represented by a form of discriminant ∆ . In the proof of Proposition 6.23

we showed that exactly half of the 2κ possible combinations of ±1’s have X∆ = +1,

so the number of genera of forms is at most 2κ−1 .
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To show that the number of genera is at least 2κ−1 consider a combination of ±1’s

with X∆ = +1. By Proposition 6.23 this combination occurs in some column of the

character table. This column corresponds to some number n coprime to ∆ . By Dirich-

let’s Theorem there exists a prime p congruent to n mod ∆ . We have X∆(p) = +1, so

since p is prime this implies that p is represented by some form of discriminant ∆ .

This form must be primitive, otherwise every number it represents would be divisible

by some number d > 1 dividing ∆ so it could not represent p which is coprime to ∆ .

Thus every combination of ±1’s with X∆ = +1 is realized by some primitive form, so

the number of genera is at least 2κ−1 . ⊔⊓

From this theorem we can deduce two very strong corollaries.

Corollary 6.28. For a nonsquare discriminant the number of genera is equal to the

number of equivalence classes of primitive forms that have mirror symmetry.

This may seem a little surprising since there is no apparent connection between

genera and mirror symmetry. A possible explanation might be that each genus con-

tains exactly one equivalence class of primitive forms with mirror symmetry, but this

is not always true. For example when ∆ = −56 we saw in Section 6.1 that there are

two genera and two equivalence classes of mirror symmetric forms, but both these

forms belong to the same genus. The true explanation will come in Chapter 7 when

we study the class group.

Proof: For a nonsquare discriminant the number of equivalence classes of primitive

forms with mirror symmetry was computed in Theorem 5.9 to be 2k−1 in most cases,

where k is the number of distinct prime divisors of ∆ . The exceptions are discrim-

inants ∆ = 4(4m + 1) when 2k−1 is replaced by 2k−2 , and ∆ = 32m when 2k−1 is

replaced by 2k . In the nonexceptional cases we have k = κ , the number of charac-

ters in discriminant ∆ since there is one character for each prime dividing ∆ . When

∆ = 4(4m+1) there is no character for the prime 2 so κ = k−1, and when ∆ = 32m

there are two characters for the prime 2 so κ = k+ 1. The result follows. ⊔⊓

Corollary 6.29. For a nonsquare discriminant, each genus of primitive forms con-

sists of a single equivalence class of forms if and only if all the topographs of

primitive forms have mirror symmetry.

Proof: Let E(∆) be the set of equivalence classes of primitive forms of discriminant

∆ and let G(∆) be the set of genera of primitive forms of discriminant ∆ . There

is a natural function Φ :E(∆)→G(∆) assigning to each equivalence class of forms

the genus of these forms. The function Φ is onto since there is at least one form in

each genus, by the definition of genus. If all primitive forms of discriminant ∆ have

mirror symmetry then Corollary 6.28 says that the sets E(∆) and G(∆) have the same

number of elements. Then since Φ is onto it must also be one-to-one. This means

that each genus consists of a single equivalence class of forms.



Section 6.4 — Proof of Quadratic Reciprocity 49

Conversely, if each genus consists of a single equivalence class then Φ is one-

to-one. Since Φ is also onto, this means it is a one-to-one correspondence so E(∆)
and G(∆) have the same number of elements. By Corollary 6.28 this means that

the equivalence classes of primitive forms with mirror symmetry account for all the

elements of E(∆) , and the proof is complete. ⊔⊓

Exercises

1. For the following discriminants determine the class number and a form in each

class, then use a character table to determine which primes are represented by each

of the forms, at least to the extent that this can be determined by characters. Also

determine the various genera.

(a) −24 (b) 24 (c) −39 (d) −96

2. Determine which primes are represented by each of the following forms:

(a) x2 + 8y2 (b) x2 + 9y2 (c) x2 + 25y2 (d) x2 − 12y2 and 12x2 −y2

3. Show that each genus consists of a single equivalence class of forms for the fol-

lowing discriminants: (a) −168 (b) −660 (c) 105

4. Find the smallest positive discriminant for which the number of genera is 16. How

does the answer change if only fundamental discriminants are allowed?

5. Show that for a positive nonsquare discriminant ∆ , if the principal form represents

−1 then all odd primes p dividing ∆ must satisfy p ≡ 1 mod 4. Hint : Use χp .

6. Use Propositions 6.1 and 6.26 to show that in each nonzero discriminant there

exists a form that represents an infinite number of primes.

6.4 Proof of Quadratic Reciprocity

First let us show that quadratic reciprocity can be expressed more concisely as a

single formula: (
p
q

)(
q
p

)
= (−1)

p−1
2
·q−1

2

Here p and q are distinct odd primes. Since they are odd, the fractions
p−1

2
and

q−1
2

are integers. The only way the exponent
p−1

2
·
q−1

2
can be odd is for both factors to

be odd, so
p−1

2
= 2k+ 1 and

q−1
2
= 2l+ 1, which is equivalent to saying p = 4k+ 3

and q = 4l+ 3. Thus the only time that the right side of the formula shown above is

−1 is when p and q are both congruent to 3 mod 4, and quadratic reciprocity is the

assertion that the left side of the formula has exactly this property.

There will be three main steps in the proof of quadratic reciprocity. The first is

to derive an explicit algebraic formula for
(
a
p

)
due originally to Euler. The second
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step is to use this formula to give a somewhat more geometric interpretation of
(
a
p

)

in terms of the number of dots in a certain triangular pattern. Then the third step is

the actual proof of quadratic reciprocity using symmetry properties of the patterns

of dots. This proof is due to Eisenstein, first published in 1844, simplifying an earlier

proof by Gauss who was the first to give a full proof of quadratic reciprocity.

Step 1. In what follows we will always use p to denote an odd prime, and the symbol

a will always denote an arbitrary nonzero integer not divisible by p . When we write

a congruence such as a ≡ b this will always mean congruence mod p , even if we do

not explicitly say that the modulus is p .

Euler’s formula is (
a
p

)
≡ a

p−1
2 mod p

For example, for p = 11 Euler’s formula says
(

2
11

)
≡ 25 = 32 ≡ −1 mod 11 and(

3
11

)
≡ 35 = 243 ≡ +1 mod 11. These are the correct values since the squares mod

11 are (±1)2 = 1, (±2)2 = 4, (±3)2 = 9, (±4)2 ≡ 5, and (±5)2 ≡ 3.

Euler’s formula determines the value of
(
a
p

)
uniquely since +1 and −1 are not

congruent mod p if p > 2. It is not immediately obvious that the number a
p−1

2

should always be congruent to either +1 or −1 mod p , but when we prove Euler’s

formula we will see that this has to be true.

As a special case, taking a = −1 in Euler’s formula gives the calculation of
(

---1
p

)
:

(
−1
p

)
= (−1)

p−1
2 =

{
+1 if p = 4k+ 1

−1 if p = 4k+ 3

Before proving Euler’s formula we will need to derive a few preliminary facts

about congruences modulo a prime p . First let us note that each of the numbers

a = 1,2, · · · , p − 1 has a multiplicative inverse mod p . This is a special case of the

fact that each number coprime to a number n has a multiplicative inverse mod n as

we saw in Section 2.3. (This was because the equation ax + ny = 1 has an integer

solution (x,y) whenever a and n are coprime.) Any two choices for an inverse to

a mod p are congruent mod p since if ax ≡ 1 and ax′ ≡ 1 then multiplying both

sides of ax′ ≡ 1 by x gives xax′ ≡ x , and xa ≡ 1 so we conclude that x ≡ x′ .

Which numbers equal their own inverse mod p? If a·a ≡ 1, then we can rewrite

this as a2 − 1 ≡ 0, or equivalently (a + 1)(a − 1) ≡ 0. This is certainly a valid con-

gruence if a ≡ ±1, so suppose that a 6≡ ±1. The factor a+ 1 is then not congruent

to 0 mod p so it has a multiplicative inverse mod p , and if we multiply the congru-

ence (a + 1)(a − 1) ≡ 0 by this inverse, we get a − 1 ≡ 0 so a ≡ 1, contradicting

the assumption that a 6≡ ±1. This argument shows that the only numbers among

1,2, · · · , p − 1 that are congruent to their inverses mod p are 1 and p − 1.

An application of this fact is a result known as Wilson’s Theorem :

(p − 1)! ≡ −1 mod p whenever p is prime.
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To see why this is true, observe that in the product (p− 1)! = (1)(2) · · · (p−1) each

factor other than 1 and p−1 can be paired with its multiplicative inverse mod p and

these two terms multiply together to give 1 mod p , so the whole product is congruent

to just (1)(p − 1) mod p . Since p − 1 ≡ −1 mod p this gives Wilson’s Theorem.

Now let us prove the following congruence known as Fermat’s Little Theorem :

ap−1 ≡ 1 mod p whenever p is an odd prime not dividing a .

To show this, note first that the numbers a,2a,3a, · · · , (p−1)a are all distinct mod p

since we know that a has a multiplicative inverse mod p , so in a congruence ma ≡ na

we can multiply both sides by the inverse of a to deduce that m ≡ n . Let us call this

property that ma ≡ na implies m ≡ n the cancellation property for congruences

mod p .

It follows from the cancellation property that the set {a,2a,3a, · · · , (p − 1)a}

is the same mod p as {1,2,3, · · · , p − 1} since both sets have p − 1 elements and

neither set contains numbers that are 0 mod p . (If ma ≡ 0 then multiplying by the

inverse of a gives m ≡ 0.) If we take the product of all the numbers in each of these

two sets we obtain the following congruence:

(a)(2a)(3a) · · · (p − 1)a ≡ (1)(2)(3) · · · (p − 1) mod p

We can cancel the factors 2,3, · · · , p− 1 from both sides by repeated applications of

the cancellation property. The result is the congruence ap−1 ≡ 1 claimed by Fermat’s

Little Theorem.

Now we can prove Euler’s formula for
(
a
p

)
. The first case is that

(
a
p

)
= +1. Then

a ≡ x2 for some x 6≡ 0 and a
p−1

2 ≡ xp−1 so by Fermat’s Little Theorem we have

a
p−1

2 ≡ 1. Thus Euler’s formula
(
a
p

)
≡ a

p−1
2 is valid in this case since both sides

are +1.

The other case is that
(
a
p

)
= −1 so a is not a square mod p . Observe first that the

congruence xy ≡ a has a solution y mod p for each x 6≡ 0 since x has an inverse

x−1 mod p so we can take y = x−1a . Moreover the solution y is unique mod p since

xy1 ≡ xy2 implies y1 ≡ y2 by the cancellation property. Since we are in the case that

a is not a square mod p the solution y of xy ≡ a satisfies y 6≡ x . Thus the numbers

1,2,3, · · · , p − 1 are divided up into
p−1

2
pairs {x1, y1}, {x2, y2}, · · · , {x p−1

2
, y p−1

2
}

with xiyi ≡ a for each i . Multiplying these
p−1

2
pairs together, we get:

a
p−1

2 ≡ x1y1x2y2 · · ·x p−1
2
y p−1

2

The product on the right is just a rearrangement of (1)(2)(3) · · · (p−1) , and Wilson’s

Theorem says that this product is congruent to −1 mod p . Thus we see that Euler’s

formula
(
a
p

)
≡ a

p−1
2 holds also when

(
a
p

)
= −1, completing the proof in both cases.
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A consequence of Euler’s formula is the multiplicative property of Legendre sym-

bols that we stated and used earlier in the chapter:
(
ab
p

)
=

(
a
p

)(
b
p

)

This holds since (ab)
p−1

2 = a
p−1

2 b
p−1

2 .

Step 2. Our goal here will be to express the Legendre symbol
(
a
p

)
in more geometric

terms. To begin, consider a rectangle in the first quadrant of the xy-plane that is p

units wide and a units high, with one corner at the origin and the opposite corner at

the point (p,a) . The picture at the right shows

the case (p,a) = (7,5) . We will be interested

in points that lie strictly in the interior of the

rectangle and whose coordinates are integers.

Points satisfying the latter condition are called

lattice points. The number of lattice points in

the interior is then (p−1)(a−1) since their x-

coordinates can range from 1 to p−1 and their

y-coordinates from 1 to a−1, independently.

The diagonal of the rectangle from (0,0) to (p,a) does not pass through any of

these interior lattice points since we assume that the prime p does not divide a , so

the fraction a/p , which is the slope of the diagonal, is in lowest terms. (If there were

an interior lattice point on the diagonal, the slope of the diagonal would be a fraction

with numerator and denominator smaller than a and p .) Since there are no interior

lattice points on the diagonal, exactly half of the lattice points inside the rectangle

lie on each side of the diagonal, so the number of lattice points below the diagonal is
1
2

(
p − 1

)(
a− 1

)
. This is an integer since p is odd, which makes p − 1 even.

A more refined question one can ask is how many lattice points below the diagonal

have even x-coordinate and how many have odd x-coordinate. Here there is no

guarantee that these two numbers must be equal, and indeed if they were equal then

both numbers would have to be
1
4

(
p − 1

)(
a − 1

)
but this fraction need not be an

integer, for example when p = 7 and a = 4.

We denote the number of lattice points that are below the diagonal and have even

x-coordinate by the letter e . The cases p = 7 and p = 13 are illustrated in the figures

on the next page, with a ranging from 1 to 6 when p = 7 and from 1 to 12 when

p = 13. The corresponding values of e count the number of black dots below the line

from the origin to the point (p,a) . The values of
(
a
p

)
are also listed. The way that

e varies with a seems somewhat unpredictable, but one can observe that
(
a
p

)
is +1

when e is even and −1 when e is odd in these examples with p = 7 and p = 13.

We will show that this simple relationship between e and
(
a
p

)
holds in general:

(
a
p

)
= (−1)e
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To prove the formua
(
a
p

)
= (−1)e we first derive a formula for e . The segment of

the vertical line x = u between the x-axis and the diagonal has length u·a/p =
ua/p

since the slope of the diagonal is a/p . If u is a positive integer, the number of lattice

points on this line segment is
⌊
ua/p

⌋
, the greatest integer n ≤ ua/p . If we add

up these numbers of lattice points for u running through the set of even numbers

E = {2,4, · · · , p − 1} we get:

e =
∑

E

⌊
ua/p

⌋

The way to compute
⌊
ua/p

⌋
is to apply the division algorithm for integers, dividing

p into ua to obtain
⌊
ua/p

⌋
as the quotient with a remainder that we denote r(u) .
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Thus we have:

ua = p
⌊
ua/p

⌋
+ r(u) (1)

The formula ua = p
⌊
ua/p

⌋
+ r(u) implies that

⌊
ua/p

⌋
has the same parity as r(u)

since u is even and p is odd. Hence
∑
E

⌊
ua/p

⌋
has the same parity as

∑
E r(u) . Since

e =
∑
E

⌊
ua/p

⌋
, this implies that the number (−1)e that we are interested in can be

computed as:

(−1)e = (−1)
∑
E r(u) (2)

With this last expression in mind we will focus our attention on the remainders r(u) .

The number r(u) lies strictly between 0 and p and can be either even or odd,

but in both cases we can say that (−1)r(u)r(u) is congruent to an even number in

the interval (0, p) since if r(u) is odd, so is (−1)r(u)r(u) and then adding p to this

gives an even number between 0 and p . Thus there is always an even number s(u)

between 1 and p that is congruent to (−1)r(u)r(u) mod p . Obviously s(u) is unique

since no two numbers in the interval (0, p) are congruent mod p .

A key fact about these even numbers s(u) is that they are all distinct as u varies

over the set E . For suppose we have s(u) = s(v) for another even number v in E .

Thus r(u) ≡ ±r(v) mod p , which implies au ≡ ±av mod p in view of the equa-

tion (1) above. We can cancel the a from both sides of the congruence au ≡ ±av to

get u ≡ ±v . However we cannot have u ≡ −v because the number between 0 and p

that is congruent to −v is p − v , so we would have u = p − v which is impossible

since u and v are even while p is odd. Thus we must have u ≡ +v , hence u = v

since these are numbers strictly between 0 and p . This shows that the numbers s(u)

are all distinct.

Now consider the product of all the numbers (−1)r(u)r(u) as u ranges over the

set E . Written out, this is:

[
(−1)r(2)r(2)

][
(−1)r(4)r(4)

]
· · ·

[
(−1)r(p−1)r(p − 1)

]
(3)

By equation (1) we have r(u) ≡ ua mod p , so this product is congruent mod p to:

[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]

On the other hand, by the definition of the numbers s(u) the product (3) is congruent

mod p to [s(2)][s(4)] · · · [s(p−1)] . There are 1/2

(
p−1

)
factors here and they are all

distinct even numbers in the interval (0, p) as we showed in the previous paragraph,

so they are just a rearrangement of the numbers 2,4, · · · , p − 1. Thus we have the

following congruence:

[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]
≡ (2)(4) · · · (p − 1) mod p

Canceling the factors 2,4, · · · , p − 1 from both sides of this congruence gives:

(−1)
∑
E r(u)a

p−1
2 ≡ 1 mod p
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Both the factors (−1)
∑
E r(u) and a

p−1
2 are ±1 mod p and their product is 1 so they

must be equal mod p (using the fact that 1 and −1 are not congruent modulo an odd

prime). By Euler’s formula we have a
p−1

2 ≡
(
a
p

)
mod p , so from the earlier formula (2)

we conclude that
(
a
p

)
= (−1)e . This finishes Step 2.

Step 3. Now we specialize the value of a to be an odd prime q distinct from p . As

in Step 2 we consider lattice points in the interior of a p × q rectangle.

From Step 2 we know that
(
q
p

)
= (−1)e where e is the number of lattice points

with even x-coordinate inside the rectangle and below the diagonal. Suppose that we

divide the rectangle into two equal halves separated by the vertical line x = p/2 which

does not pass through any lattice points since p is odd. This vertical line cuts off two

smaller triangles from the two large triangles above and below the diagonal of the

rectangle. In the figure above, these smaller triangles are the shaded triangles. Call

the lower small triangle L and the upper one U , and let l and u denote the number

of lattice points with even x-coordinate in the interiors of L and U respectively. Note

that u has the same parity as the number of lattice points with even x-coordinate in

the interior of the quadrilateral below U in the right half of the rectangle since each

column of lattice points inside the rectangle has q− 1 points, an even number. Thus

e has the same parity as l+u , hence (−1)e = (−1)l+u .

The next thing to notice is that rotating the triangle U by 180 degrees about the

center of the rectangle carries it onto the triangle L . This rotation takes the lattice

points inside U with even x-coordinate onto the lattice points inside L with odd x-

coordinate. Thus we obtain the formula
(
q
p

)
= (−1)t where t is the total number of

lattice points inside the triangle L .

Reversing the roles of p and q , we can also say that
(
p
q

)
= (−1)t

′

where t′ is

the number of lattice points inside the triangle L′ with edges on the diagonal of the
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rectangle, the horizontal line y = q/2 , and the y-axis. Then t + t′ is the number of

lattice points in the interior of the small rectangle formed by L and L′ together. This

number is just
p−1

2
·
q−1

2
. Thus we have

(
q
p

)(
p
q

)
= (−1)t(−1)t

′

= (−1)t+t
′

= (−1)
p−1

2 ·q−1
2

which finally finishes the proof of quadratic reciprocity. ⊔⊓

We can also use the geometric interpretation of
(
a
p

)
to prove the formula for

(
2
p

)

that was given in Section 6.2, namely:
(

2
p

)
=

{
+1 if p = 8k± 1

−1 if p = 8k± 3

We have shown that
(

2
p

)
= (−1)e where e is the number of lattice points inside a

p × 2 rectangle lying below the diagonal and having even x-coordinate, as indicated

in the following figure which shows the diagonals for p = 3,5,7, · · · ,17 :

Another way to describe e is to say that it is equal to the number of even integers

in the interval from p/2 to p . We do not need to assume that p is prime in order

to count these points below the diagonals, just that p is odd. One can see what the

pattern is just by looking at the figure: Each time p increases by 2 there is one more

even number at the right end of the interval
(
p/2, p

)
, and there may or may not be

one fewer even number at the left end of the interval, depending on whether p is

increasing from 4k− 1 to 4k+ 1 or from 4k+ 1 to 4k+ 3. It follows that the parity

of e depends only on the value of p mod 8 as in the table for p ≤ 17, so e is even

for p ≡ ±1 mod 8 and e is odd for p ≡ ±3 mod 8.

Exercises

1. As a sort of converse to Wilson’s Theorem, show that if n is not a prime then

(n − 1)! is not congruent to −1 mod n . More precisely, when n > 4 and n is not

prime, show that n divides (n − 1)! , so (n − 1)! ≡ 0 mod n . What happens when

n = 4?

2. In Step 2 of the proof of quadratic reciprocity there were figures depicting the

geometric interpretation of
(
a
7

)
and

(
a
13

)
. Draw analogous figures for

(
a
5

)
and

(
a
11

)
.
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3. Show that the calculation of the Legendre symbol
(

---1
p

)
can also be obtained using

the method in the proof of quadratic reciprocity involving counting certain lattice

points in a (p − 1)× p rectangle.


