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Model Selection

(1). Minimaz Estimation with Thresholding and its Application to Wavelet
Analysis (with J. T.Gene Hwang, 2003, revised for Ann. Stat.)

Many statistical problems involve selecting a model (a reduced model from the
full model) and use it to do estimation. Is it possible to do so and still come up
with an estimator always better than the naive estimator without model selection?
The James-Stein estimator allows us to do so. However, the James-Stein estimator
considers only one reduced model, the origin (cf. James and Stein, 1961). What
should be more desirable is to select a data chosen reduced model (of an arbitrary
dimension) and then do estimation. In Zhou and Hwang (2003), we construct such
estimators. We apply the estimators to the wavelet regression. In finite sample
settings, these estimators are minimax and perform the best among a class of well-
known estimators (cf. Donoho and Johnstone, 1994, 1995, Cai, 1999, etc.) which
do model selection and estimation at the same time. Some of our estimators are
also shown to be asymptotically optimal.

(2). Minimax Variable Selection in Linear Regression (with J. T. Gene Hwang,
forthcoming)

We extend the minimax estimators in Zhou and Hwang (2003) to normal linear
models under mean squared error loss or predictive mean squared error loss. The
ordinary least square (OLS) is the naive estimator based on the full model. Our
estimator truncates the components of OLS which are small ( i.e., give zero as the
estimate when the OLS estimate has a small magnitude) and preserves (or precisely
shrinks) the others. Simulation studies show the estimator improves substantially
upon the naive estimator (OLS) when the reduced model is correct. The novelty
here as compared to other estimators ( even to Zhou and Hwang (2003)) is that our
estimator is designed to do truncation even when the covariance is nondiagonal.

Following up on this project (joint with J.T. Gene Hwang): we will apply this
minimax estimation approach to an ANOVA model in microarray data analysis (cf.
Kerr, Martin, and Churchill, 2000).

Asymptotic Decision Theory

The following projects are supported by the National Science Foundation with
Grant DMS-0306497: Asymptotic equivalence of statistical experiments, 2003-2008.



Asymptotic equivalence has been shown by Le Cam (1986) to provide the ad-
equate framework for decision theoretic limit theorems. For finite dimensional
parameter spaces, sequences of rescaled (localized) experiments around a given
parameter converge to a Gaussian limit (local asymptotic normality, LAN). As
a consequence, optimal solutions for large classes of statistical decision problems
(estimation, testing) can be derived from the limit experiment. The LAN-theory
has become a centerpiece and a standard tool in asymptotic statistics (cf. van
der Vaart, 1998, Shiryaev and Spokoiny, 2000). An extension to infinite dimen-
sional parameter spaces and to a global approximation (without localization), in
the context of i.i.d. experiments has been given in Nussbaum (1996). Further re-
cent developments (Carter, 2001, 2002, Brown, Cai, Low and Zhang, 2002, Wang,
2002, Brown, Carter, Low and Zhang, 2003, etc.) justify a claim that asymptotic
equivalence theory is emerging as a recognizable research area in statistics. The
following are two forthcoming works.

(3). Asymptotic Equivalence of Spectral Density and Gaussian White Noise
(with G. Golubev, M. Nussbaum, forthcoming)

Dzhaparidze (1986) presents a comprehensive treatment of inference for spectral
densities of Gaussian stationary time series, based in part on the LAN-approach.
The validity of the local approximation by Gaussian experiments in parametric
cases suggests a global white noise approximation for nonparametric sets of spectral
densities. We establish asymptotic equivalence in the sense of Le Cam’s deficiency
distance to the problem of signal estimation in Gaussian white noise where the
signal is log-spectral density. The first step of the proof is the reduction of the sta-
tionary series to independent Gaussians with unkown, smoothly varying variances.
That nonparametric Gaussian scale model can be reduced to a Gaussian location
model via a multiresolution scheme involving Beta distributions, in the spirit of the
Hungrian construction for empirical processes. The asymptotic equivalence result
is established over a Besov (Sobolev) type space.

(4). Poissonization of I.I.D. Experiments (with M. G. Low, forthcoming)
Here the aim is to show that the experiments given by observations

Y1, Y2, - - -, Yn t.0.d. with law Pon Q

X, (+),a Poisson process on ) with intensity measure nP

are asymptotically equivalent over a parameter space (class of laws) P € P. Le Cam
(1974) proved that deficiency distance converges to 0 with rate n~1/4 for parametric
sets P; Mammen (1986) improved this rate to n~/2. In Le Cam (1986), p. 508,
conditions are given for general nonparametric sets P in terms of Hellinger metric
entropy; these conditions specialize to a bound for smoothness o > 1/2 (cf. also
Le Cam and Yang (2000), p. 73). This Poissonization result for nonparametric
i.i.d. experiments was used as a technical tool for the Gaussian approximation in
Nussbaum (1996). Based on the rationale that a Poisson approximation should be
valid under substantially weaker conditions than a Gaussian one, the question can
be asked whether Le Cam’s smoothness bound « > 1/2 is sharp. For densities



on [0, 1] we give a sharp Besov smoothness condition ap > 1/2 for poissonization.
The following quotation, referring to Gaussian and Poisson approximations, offers
an interesting perspective on our program: “Poisson experiments are less tractable
and less studied. They will loom large in the new century” (Le Cam and Yang
(2000), Preface to the Second Edition). The program of poissonization can be seen
as a first step towards an infinitely divisible approximation.

Following up on this project — Infinitely Divisible Approximations for Nonpara-
metric i.i.d. Experiments (joint with Nussbaum): The asymptotic equivalence of
density estimation and Gaussian white noise has been established in Nussbaum
(1996), where for a nonparametric class of densities a common support [0,1] is as-
sumed. The question we pose here is: Can the condition “bounded away from zero”
be weakened or removed? It can be seen that if an additional location parameter is
introduced, then the Gaussian white noise approximation fails. This paper shows
that the correct approximation in this case is an infinitely divisible experiment that
is a Gaussian/Poisson mixture. In analogy to results for endpoint estimation, the
tail rates of the densities are crucial for the shape of the approximation. A theory
of infinitely divisible experiments has been developed in the monograph of Janssen,
Milbrodt and Strasser (1985), with a view to parametric models and local limits.
Our focus here is on nonparametric i.i.d. models and global asymptotic equivalence
(cf. Nussbaum and Zhou, Talk at Purdue, 2003)

Future Research: We will study explicit Markov kernels to establish asymptotic
equivalence theory for generalized linear models and location type regression model
The LAN type results have been established for many models, including long
memory process and hidden Markov models (cf. Hallin et al, 1999, Bickel and
Ritov, 1996, Golubev and Khasminski, 1998). That suggests a global asymptotic
equivalence theory for those stochastic models. The applications of asymptotic
equivalence theory are very promising. They include looking for optimal constants
and convergence rates in minimax estimation (cf. Korostelev and Nussbaum, 1999) ,
and precise Kolmogrov e-entropy and Kolmogrov complexity in information theory
(cf. Donoho, 2003, Le Cam Lecture, Donoho, 2002, Yang and Barron, 1999), etc.

Function Estimation

(5). SURE Approach to Block James-Stein Thresholding in Wavelet Regression
(with T. T. Cal, forthcoming).

The wavelet methodology has demonstrated considerable success in terms of
spatial adaptivity and asymptotic optimality. In particular, block thresholding
rules have been shown to possess impressive properties. The estimators make
simultaneous decisions to retain or to discard all the coefficients within a block
and increase estimation accuracy by utilizing information about neighboring coef-
ficients. The idea of block thresholding can be traced back to Efromovich (1985)
in orthogonal series estimators. In the context of nonparametric regression local
block thresholding has been studied in, for example, in Hall, Kerkyacharian, and
Picard (1998), Cai (1999), and Efromovich (2002). In this joint paper with Cai we
propose Sure+BlockJS approach, which chooses block sizes and thresholding levels



adaptively, i.e., uses data to determine the block sizes and theresholding levels to
be used. It can be proved that the IMSE of Sure+BlockJS is asymptotically better
than methods proposed in Donoho and Johnstone (1994, 1995), Cai (1999), etc.

Future research — exact asymptotic adaptation for wavelet estimation: Exact
adaptation in the minimax sense was introduced by Pinsker(1980). In this direction
one can cite papers by Efromovich and Pinsker(1984), Nussbaum (1985), Golubev
and Nussbaum (1992), Korostelev (1993), Donoho (1994), Beran (1996), Lepskii
and Spokoiny (1997), Tsybakov (1997), etc. Nearly optimal and optimal conver-
gence rates have been achieved for Besov class By, when p < 2 (cf. Donoho and
Johnstone, 1994, 1995, 1998), but the exact adaptive minimax estimators are still

unknown.

(6). A Root-unroot Transform and Wavelet Block Thresholding Approach to
Adaptive Density Estimation (with L. D. Brown, T. T. Cai, R. Zhang, L. H. Zhao
among others, forthcoming).

This paper describes an algorithm for nonparametric density estimation using a
root-unroot paradigm. The paradigm involves several easily implemented steps as
follows: suitably bin the data; calculate the square root of the normalized binned
data; apply wavelet block thresholding approach. Then ”unroot” in a suitable
fashion. The binning step involves only an insignificant loss of information. It can
be proved that this procedure can achieve the optimal minimax convergence rate
adaptively over a broad range of Besov spaces using a quantile coupling inequality
(cf. Komlos, Major, Tusnady, 1975). The methodology is equally suitable for
nonparametrically estimating the intensity of an inhomogeneous Poisson process.

Following up on this project (joint with L. D. Brown and T. T. Cai): Simi-
lar paradigms have been found for nonparametric generalized linear models. For
a location type regression with heavy tail, we can also find a transformation to
Gaussian regression.

Machine Learning

(7). Global Geometry of SVM Classifiers (with D. Zhou, B. Xiao, and R. Dali,
2002)

We construct an alternative geometry framework for Support Vector Machine
(SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions
and solutions of SVM classifiers are all constructed clearly by a purely geometric
fashion. Now all kinds of SVM formulations and their dual descriptions including
the arbitrary-norm cases are only different expressions of the underlying common
geometric essentials. Compared with the optimization theory in SVM classifiers, we
don’t need redundant involved computations any more. Instead, every step in our
theory is guided by elegant geometric intuitions. Our framework can make people
understand SVM in a totally visual fashion. In addition, it is also helpful to expose
the correlations between SVM and other learning algorithms.
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