
In 1969, probably on the evening of Nov. 22, 
following Adrien’s Bourbaki lecture on the work of 

Frisch and Guenot,
I had a conversation with him that has influenced 

the rest of my life.

Walking back to the Luxembourg station, I complained
that I didn’t understand the Kodaira-Spencer cohomology 

classes that came up in deformation theory.

He invited me to a drink in the Café du Luxembourg, 
and the explanation he gave is somewhere in the

background of everything I have done since. 



I did not realize it at the time, but during this lecture
he touched on most of the research he performed in

the period 1960-1974.

I will try to reproduce what he told me, as a device
to tie together the main works of this period.



So how does cohomology appear
 in deformation theory?

We will describe this “informally”

first in terms of almost-complex structures
related to Dolbeault cohomology

and then in terms of deforming changes of coordinates
related to Čech cohomology.



The Dolbeault approach 

Let X be a complex manifold.

Let Φ(X) be the space of almost-complex
structures on X, and Φint(X) be the subset of

integrable almost-complex structures.

The deformation space Def(X) of X “is” the
quotient of Φint(X) by the action of Diff(X)

acting by pullback.

For now we ignore the difficulties involved in
giving Φint(X) any reasonable structure, and

proceed as if the above made sense.

Since X is a complex manifold, it corresponds
to a “base” almost complex structure

φ0 ∈ Φ(X), and a neighborhood of φ0 can be
identified with a neighborhood U of 0 in

A0,1
X (TX), as follows.

If α ∈ A0,1
X (TX), and uα : TX → TX is given

by

uα(ξ) = ξ + α(ξ)

then α corresponds to the almost-complex
structure where multiplication by i is given by

i •α ξ = u−1
α (iuα(ξ))

This is well defined on the (big) open set

U ⊂ A0,1
X (TX)

where uα is an isomorphism, and φ0

corresponds to α = 0.

In this chart, the condition for integrability is
written

F : α $→ ∂α− [α ∧ α]

The map

F : A0,1
X (TX)→ A0,2

X (TX)

is an “analytic” map with derivative ∂.



Trouble with this construction
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acting by pullback.

Consider the Hopf surface

X =
(

C2 −
[
0
0

])
/

[
2 0
0 2

]Z
.

Then Def(X) is not Hausdorff. The manifolds

Xt =
(

C2 −
[
0
0

])
/

[
2 t
0 2

]Z

are all diffeomorphic to X, and all isomorphic
when t "= 0, so correspond to a single point P

of Def(X).

But X is not isomorphic to Xt when t "= 0.
The point P ∈ Def(X) is not the base point of
Def(X) corresponding to X itself, but contains

the “base point” in its closure.
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Such forms are anti-linear bundle maps from TX to TX.
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then α corresponds to the almost-complex
structure where multiplication by i is given by

i •α ξ = u−1
α (iuα(ξ))

This is well defined on the (big) open set

U ⊂ A0,1
X (TX)

where uα is an isomorphism, and φ0

corresponds to α = 0.

In this chart, the condition for integrability is
written

F : α "→ ∂α− [α ∧ α]

The map

F : A0,1
X (TX)→ A0,2

X (TX)

is an “analytic” map with derivative ∂.

The space U ∩ Φint(X) is defined by the
equation

U ∩ Φint(X) := F−1(0).

Now recall that we want to quotient Φint(X)
by the action of Diff(X) acting by pull-back.

Again pretend that there are no difficulties
(non-Hausdorff quotients, etc) in taking this
quotient. Then a subspace transverse to the
orbit of φ0 should represent the quotient.

Let G : Diff(X)→ Φ(X) be the inclusion of
this orbit, i.e.,

G(f) = f∗φ0.

The derivative of G at the identity is the map

DG(id) : A0,0
X (TX)→ A0,1

X (TX)

given by

DG(id)(ξ) = −∂ξ.

The deformation space Def(X) is the quotient
of the space Φint(X) of integrable almost
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This leads to a sequence of spaces

Diff(X) G→ Φ(X) F→ A0,2
X (TX).

The corresponding sequence of derivatives is

A0,0
X (TX) −∂→ A0,1

X (TX) ∂→ A0,2
X (TX),

i.e., the beginning of the Dolbeault resolution
of TX.

Thus, Def(X) “should” be a space with Zariski
tangent space H1(X,TX), and defined in

H1(X, TX) by an equation

F : H1(X, TX)→ H2(X, TX)

with leading term the quadratic cup-bracket

α $→ [α ∧ α].
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The derivative of G at the identity is the map

DG(id) : A0,0
X (TX)→ A0,1

X (TX)

given by

DG(id)(ξ) = −∂ξ.

The deformation space Def(X) is the quotient
of the space Φint(X) of integrable almost
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Summary

The space U ∩ Φint(X) is defined by the
equation

U ∩ Φint(X) := F−1(0).

Now recall that we want to quotient Φint(X)
by the action of Diff(X) acting by pull-back.

Again pretend that there are no difficulties
(non-Hausdorff quotients, etc) in taking this
quotient. Then a subspace transverse to the
orbit of φ0 should represent the quotient.

Let G : Diff(X)→ Φ(X) be the inclusion of
this orbit, i.e.,

G(f) = f∗φ0.

The derivative of G at the identity is the map

DG(id) : A0,0
X (TX)→ A0,1

X (TX)

given by

DG(id)(ξ) = −∂ξ.

The deformation space Def(X) is the quotient
of the space Φint(X) of integrable almost
complex structures on X by the action of

Diff(X).

This leads to a sequence of spaces

Diff(X) G→ Φ(X) F→ A0,2
X (TX).

The corresponding sequence of derivatives is

A0,0
X (TX) −∂→ A0,1

X (TX) ∂→ A0,2
X (TX),

i.e., the beginning of the Dolbeault resolution
of TX.

Thus, Def(X) “should” be a space with Zariski
tangent space H1(X,TX), and defined in

H1(X, TX) by an equation

F : H1(X, TX)→ H2(X, TX)

with leading term the quadratic cup-bracket

α $→ [α ∧ α].



Now recall that we want to quotient Φi(X) by
the action of Diff(X) acting by pull-back.

Again pretend that there are no difficulties
(non-Hausdorff quotients, etc) in taking this
quotient. Then a subspace transversal to the

orbit of φ0 should represent the quotient.

Let G : Diff(X)→ Φ(X) be the inclusion of
this orbit, i.e.,

G(f) = f∗φ0.

The derivative of G at the identity is the map

DG(id) : A0,0
X (TX)→ A0,1

X (TX)

given by

DG(id)(ξ) = −∂ξ.

The deformation space Def(X) is the quotient
of the space Φi(X) of integrable almost

complex structures on X by the action of
Diff(X).

This leads to a sequence of spaces

Diff(X) G→ Φ(X) F→ A0,2
X (TX).

The corresponding sequence of derivatives is

A0,0
X (TX) −∂→ A0,1

X (TX) ∂→ A0,2
X (TX),

i.e., the beginning of the Dolbeault resolution
of TX.

Thus, Def(X) “should” be a space with Zariski
tangent space H1(X,TX), and defined in

H1(X, TX) by an equation

F : H1(X, TX)→ H2(X, TX)

with leading term the quadratic cup-bracket

α #→ [α ∧ α].



The Čech approach
A smooth proper family Xt of manifolds

parametrized by a manifold T is a manifold X
together with a map p : X→ T such that for

every x ∈ X, there exists a neighborhood
T ′ ⊂ T of t := p(x), a neighborhood U of x in
p−1(t) and an isomorphism f : T ′ × U → X to

its image such that the diagram

T ′ × U
f−→ X

↓ ↓ p
T ′ ↪→ T

commutes.

Saying that the family is smooth is precisely
saying that there exist

and that ξi,j are vector-fields on Ui ∩ Uj , such
that ξj,k + ξi,j = ξi,k, i.e., a 1- Čech cocycle

with values in the sheaf of holomorphic
vector-fields.
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p−1(t) and an isomorphism f : T ′ × U → X to

its image such that the diagram

T ′ × U
f−→ X

↓ ↓ p
T ′ ↪→ T

commutes.

Suppose t0 ∈ T is a basepoint, such that
X = p−1(t0), that U = {Ui} is a finite cover by

open sets as above, and that T ′ ⊂ T is
sufficiently small that fi : T ′ × Ui → X is

defined for all i. Then the maps

fi,j(t) = fj(t) ◦ f−1
i (t)

provide parametrized “change of coordinate
maps”.



The corresponding sequence of derivatives is

A0,0
X (TX) −∂→ A0,1

X (TX) ∂→ A0,2
X (TX),

i.e., the beginning of the Dolbeault resolution
of TX.

Thus, Def(X) “should” be a space with Zariski
tangent space H1(X,TX), and defined in

H1(X, TX) by an equation

F : H1(X, TX) → H2(X, TX)

with leading term the quadratic cup-bracket

α "→ [α ∧ α].

A smooth proper family Xt of manifolds
parametrized by a manifold T is a manifold X
together with a map p : X → T such that for

every x ∈ X, there exists a neighborhood
T ′ ⊂ T of t := p(x), a neighborhood U of x in
p−1(t) and an isomorphism f : T ′ × U → X to

its image such that the diagram

T ′ × U
f−→ X

↓ ↓ p
T ′ ↪→ T

commutes.

Suppose t0 ∈ T is a base point, such that
X = p−1(t0), and that U = {Ui} is a cover by

open sets as above. and that T ′ ⊂ T is
sufficiently small that fi : T ′ × Ui is defined for

all i. Then the maps

fi,j(t) = fj(t) ◦ f−1
i (t)

provide parametrized “change of coordinate
maps” .

The domain of definition of fi,j(t) includes any
compact subset of Ui ∩ Uj for t sufficiently

close to t0. Thus we can consider the derivative

ξi,j =
d

dt
fi,j(t)|t=t0

which is a vector field on Ui ∩ Uj .



Differentiating the relation
fi,k(t) = fj,k(t) ◦ fi,j(t) leads to the relation

ξi,k = ξj,k + ξi,j

i.e., the ξi,j form a Čech 1-cocycle for the cover
U , with values in the sheaf TX of holomorphic

vector-fields on X.

Differentiating the relation
fi,k(t) = fj,k(t) ◦ fi,j(t) leads to the relation

ξi,k = ξj,k + ξi,j

i.e., the ξi,j form a Čech 1-cocycle for the cover
U , with values in the sheaf TX of holomorphic

vector-fields on X.

Note that the relation fi,k(t) = fj,k(t) ◦ fi,j(t)
contains further information, about the

brackets of the ξi,j in particular.

It is not hard to show that this construction
leads to the Kodaira-Spencer map

Tt0T → H1(X, TX)

which measures “how fast” the manifolds Xt

are deforming.

This makes it very tempting to try to define
Def(X) as a quotient of the space of gluing

maps

fi,j : Ui ∩ Uj → Ui ∩ Uj

by an appropriate equivalence relation. Adrien
eventually succeeded in doing this, and even in

doing it when X has singularities, but that
only happened in 1974, and it is time to
describe some of the steps along the way.

In the simplest case, this means finding classes
α ∈ H1(X,TX) such that [α ∧ α] &= 0.

But there are higher obstructions. Sometimes
the quadratic term of the equation

F : H1(X,TX) → H2(X, TX) defining
Def(X) ⊂ H1(X,TX) vanishes without F

vanishing. This leads to higher obstructions; as
far as I know these are the only examples of

such things in the literature.

Recall the informal definition

Def(X) = Φint(X)/Diff(X).
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which measures “how fast” the manifolds Xt

are deforming.

This makes it very tempting to try to define
Def(X) as a quotient of the space of gluing

maps

fi,j : Ui ∩ Uj → Ui ∩ Uj

by an appropriate equivalence relation. Adrien
eventually succeeded in doing this, and even in

doing it when X has singularities, but that
only happened in 1974, and it is time to
describe some of the steps along the way.

Roughly the description so far is the content
of that conversation at the Café du Luxembourg.

He had a clear idea of what to do next...



The Cartan Seminar 
1960-1961

The first works of Adrien on deformations
of complex spaces are apparently the first 4 talks

in the Cartan seminar 1960-1961. 

In these lectures,  Adrien (then 25) shows that he
 has a remarkable command of Kodaira-Spencer theory.

He investigates various specific deformation spaces,
in particular complex tori, bundles of complex tori,

and Hopf surfaces.



The main theme of these lectures is finding  
obstructed classes in  H1(X,TX)
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Kuranishi’s theorem
In December 1964,  in the Bourbaki seminar,

Adrien gave a new proof (7 pages) of Kuranishi’s
theorem (41 pages).

 
far as I know these are the only examples of

such things in the literature.

Recall the informal definition

Def(X) = Φint(X)/Diff(X).

Kuranishi managed to make something like
this mathematically correct.

To prove that anything is a manifold, one
needs the implicit function theorem, which

requires Banach manifolds so that the tangent
spaces are Banach spaces, and also that

derivatives have closed complemented images.

Denote by n+rA0,p
X (TX) the space of (0, p)

forms with values in TX that are n times
differentiable with nth derivatives Hölder of
exponent r for some 0 < r < 1. It turns out

that the sequence

n+1+rA0,0
X (TX) −∂→ n+rA0,1

X (TX)→ n−1+rA0,2
X (TX),

is a sequence of Banach spaces that computes
H1(X, TX), and the differentials do have

closed complemented images.

Thus we are tempted to construct
n+rΦint(X) := n+rF−1(0)

where

n+rF : n+rA0,1
X (TX) ∂→ n−1+rA0,2

X (TX)

is still given by F (α) = ∂α + [α ∧ α], and to
define

Def(X) = n+rΦint(X)/ n+1+rDiff(X).

The first part works: we can define
n+rΦint(X) := n+rF−1(0).

The result is a Banach analytic space, usually
not a manifold.
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Taking the quotient does not work: usually the
quotient is not Hausdorff, and Def(X) does not

exist.

What does work is locally intersecting
n+rΦint(X) with a subspace transverse to the

orbit of φ0 under n+1+rDiff(X). This
constructs a finite-dimensional analytic space
which is a local versal deformation of X, not

universal as whole strata of the space can
correspond to isomorphic manifolds.
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quotient is not Hausdorff, and Def(X) does not

exist.

What does work is locally intersecting
n+rΦint(X) with a subspace transverse to the

orbit of φ0 under n+1+rDiff(X). This
constructs a finite-dimensional analytic space
which is a local versal deformation of X, not
universal since whole strata of the space can
correspond to isomorphic manifolds. This

happens for Hopf surfaces, as we saw.

Proving all this is quite delicate; Adrien’s
lemma 1 illustrates the power of privileged

neighborhoods (to be defined soon).

If K is a compact polydiscs, denote by B(K)
the Banach algebra of continuous functions

analytic in the interior.

Let X be a complex analytic space, and Y ⊂ X
a compact subset. Cover Y by compact

polydisks K1, . . . ,Kn. In a neighborhood of
Ki, Y is defined in X by functions f1, . . . , fm.
The restrictions fKi of these functions are in
B(Ki), hence generate an ideal in the Banach

algebra B(Ki).

The polydisc K ⊂ X is privileged for OY if the
corresponding ideal is a closed complemented

subspace of B(K) (as a Banach space).

The space I(A) of closed complemented ideals
in a Banach algebra A is a Banach analytic

subspace of the Grassmann manifold of closed
complemented subspaces of A.

When A = B(K), this space parametrizes a
family of subspaces of K that are flat over

I(B(K)).
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but of course all the objects are supposed to be

infinite dmensional
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The Thesis
Adrien’s thesis constructs an analog of the

Hilbert scheme
in analytic geometry.

Let  X  be a complex analytic space. 
Adrien constructs a space  H(X)  of all compact analytic

subspaces of  X . 
He shows that this space represents the functor 

which associates to an analytic space  S
the set of proper flat families of subspaces of  X 

parametrized by  S
and he shows that this space is locally finite dimensional.



To accomplish this,  Adrien had to create
an immense arsenal of tools.

Adam Epstein will speak in much greater detail
about the thesis, so here I will only give a few pointers.

Because he is dealing with analytic spaces,
not manifolds,

almost-complex structures and the Dolbeault
theory do not work, and he has to use Čech techniques.



Privileged neighborhoods put the problem in the setting
of Banach spaces and Banach algebras.

The flatness and privilege principle says that the space
of subspaces parametrized by this space of ideals is flat. 

Locally the space is defined by an ideal in a Banach
algebra, which can be deformed, leading to a space

of ideals which is a subset of the Grassmannian of closed 
complemented subspaces of the underlying Banach space.

Finally, the local finite dimensionality follows from a
non-linear Riesz perturbation theorem,
related to the Cartan-Serre theorem.



Outline of the construction
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It is not too hard to show that the subset
Θ ⊂

∏
i I(B(Ki)) corresponding to subspaces
that coincide on all Ki ∩Kj is a

Banach-analytic subspace.

But Θ is not locally a finite-dimensional
analytic space. It is set-theoretically right, but
its structure sheaf is wrong. The trickiest part
of the construction is to reduce Θ so that it
becomes the finite-dimensional space H(X).

Let X be a compact analytic space. There exist

(1) analytic spaces X, T ,

(2) a flat proper mapping F : X→ T ,

(3) a base point t0 ∈ T , and an isomorphism
φ : G−1(t0)→ X,

which are versal in the sense that

For any proper flat mapping G : Y → S with
an isomorphism ψ : G−1(s0)→ X, there exists

a neighborhood S′ ⊂ S of s0, a mapping
f : S′ → T and an isomorphism YS′ → f∗X.

Teichmüller theory is the place where the
deformation theory described above works

best. Let X be a compact Riemann surface.

First Φint(X) = Φ(X). Recall that the
equations defining Φint(X) in Φ(X) take their
values in A0,2

X (TX), and A0,2
X (TX) = 0 this

space vanishes when X is a Riemann surface.
All almost-complex structures are integrable on

a Riemann surface.

Next, the quotient Φ(X)/Diff(X) is a
Hausdorff space when X is a Riemann surface.
This space Def(X) carries the structure of a
complex analytic space, but is not smooth.

Experience has shown that the best space to
study is Teichmüller space TX . Let Diff0(X) be

the group of diffeomorphisms isotopic to the
identity. Then

TX = Φ(X)/Diff0(X).

Another paper of 1975 solved a conjecture of
Reich and Strebel. In it we proved that in the
space of quadratic differentials on any Riemann

surface of genus ≥ 2, those with closed
horizontal trajectories are dense.



The moduli space for 
complex analytic spaces
In the summer of 1973,  Adrien finally solved the
local moduli problem for complex analytic spaces. 

I was personally involved in this work: we worked out the 
broad outline during a canoe trip with Régine

on the Mediterranean, from St Raphael to Nice.

Although we cosigned the announcement in the
CRAS, I was definitely the very junior author. 
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Privileged neighborhoods
Flatness and privilege

The space of ideals as a subspace of the Grassmanian

The construction of a space  Θ  that is set-
theoretically right

The thinning-down construction which replaces 
this space by a finite-dimensional space.

All the techniques needed for the 
thesis are used

in a harder context



Before continuing to the second main topic of 
Adrien’s mathematics, holomorphic dynamics,
I want to talk about the period 1974-1980,
and more particularly Teichmüller theory

and Strebel forms.

For one thing it ties in with the earlier work.

For another,  Teichmüller theory has important 
consequences in holomorphic dynamics.

For a third, I was directly involved.

Teichmüller Theory
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Experience has shown that the best space to

study is Teichmüller space TX . Let Diff0(X) be
the group of diffeomorphisms isotopic to the

identity. Then

TX := Φ(X)/Diff0(X).

The space TX parametrizes a family of marked
Riemann surfaces: there is a complex manifold

ΞX and a smooth proper mapping
π : ΞX → TX such that π−1(t) is the Riemann

surface corresponding to t.

The theorem of the thesis is that π admits no
analytic sections, except in genus 2 where it

admits exactly 6 sections.

Another paper of 1975 solved a conjecture of
Reich and Strebel. In it we proved that in the
space of quadratic differentials on any Riemann

surface of genus ≥ 2, those with closed
horizontal trajectories are dense.

This is the beginning of a long development,
still very much an active subject of research.
Under the name of translation surfaces and

rational billiards, there have been a great many
contributions to the subject. I just attended
the Ahlfors-Bers colloquium in Rutgers, and
for something like half the contributions, that
paper was in the direct ancestry of the results,

even if the authors did not know it.

If p is a polynomial of degree d ≥ 2, define the
filled-in Julia set Kp =

{z ∈ C | the sequence z, p(z), p(p(z)), . . . is bounded.}

The set Kp is connected if and only if all
critical points of p belong to Kp.

He also found that if Kp is connected, there is
a conformal isomorphism

φp : C−Kp → C− D,

complex analytic space, but is not smooth.
Experience has shown that the best space to

study is Teichmüller space TX . Let Diff0(X) be
the group of diffeomorphisms isotopic to the

identity. Then

TX := Φ(X)/Diff0(X).

The space TX parametrizes a family of marked
Riemann surfaces: there is a complex manifold

ΞX and a smooth proper mapping
π : ΞX → TX such that π−1(t) is the Riemann

surface corresponding to t.

The theorem of my thesis is that π admits no
analytic sections, except in genus 2 where it

admits exactly 6 sections.

Another paper of 1975 solved a conjecture of
Reich and Strebel. In it we proved that in the
space of quadratic differentials on any Riemann

surface of genus ≥ 2, those with closed
horizontal trajectories are dense.

This is the beginning of a long development,
still very much an active subject of research.
Under the name of translation surfaces and

rational billiards, there have been a great many
contributions to the subject. I just attended
the Ahlfors-Bers colloquium in Rutgers, and
for something like half the contributions, that
paper was in the direct ancestry of the results,

even if the authors did not know it.

If p is a polynomial of degree d ≥ 2, define the
filled-in Julia set Kp =

{z ∈ C | the sequence z, p(z), p(p(z)), . . . is bounded.}

The set Kp is connected if and only if all
critical points of p belong to Kp.

He also found that if Kp is connected, there is
a conformal isomorphism

φp : C−Kp → C− D,



The proof consists mainly of a detailed study of the 
Teichmüller metric on Teichmüller space.

 
In the process of writing this thesis, and in particular

showing that Grothendieck’s Teichmüller space
(described in the lectures 5-15 of the 1960-1961

Cartan seminar, to which Adrien contributed lectures 1-4)
was the same as the Ahlfors-Bers Teichmüller space.

I am only too well aware of how much Adrien helped when 
I wrote the thesis. Some parts are more his than mine.

In any case, he ended up an expert in Teichmüller
theory and quasiconformal mappings, which turned out 

(eight years later) to be of great importance in 
holomorphic dynamics.
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Holomorphic dynamics
It was already hard to summarize  Adrien’s work

on moduli problems, spanning 14 years.

Summarizing the work in holomorphic dynamics
is much harder yet, since it spans 27 years.

Still, it is quite easy to pinpoint the beginnings.

In 1978, I taught  DEUG B (second-year calculus)
at Orsay, and tried to introduce a bit of numerical
mathematics, using what was available at the time:

programmable calculators. 



This was just possible on those antique machines:
32 program steps and 52 memories. 

I assumed at the time that the experts 
“knew where to start”

but it didn’t take long to find out that the global 
behavior of Newton’s method was a complete mystery.

I had the students program Newton’s method to solve
cubic equations.

This led us to use the (horrible) mini6 at Orsay
to color the basins of the roots for Newton’s method, 

leading to pictures like the following. 
Actually, no color! The line printer put ‘+’ and ‘|’ .





Sullivan was at IHES that year.  He was aware of the
work of Fatou and Julia, 

in particular that
for a rational function, every attracting cycle attracts

a critical point.

Since Newton’s method  Np for a cubic polynomial  p
has three fixed critical points

at the roots, and one more critical point cp, we saw how to
produce parameter space pictures:

color  p  according to which root  cp  is attracted to.

This leads to the following picture





This should have lead to discovering the Mandelbrot set!

Unfortunately, I made a blow-up which didn’t respect 
the aspect ratio.

We worked at very low resolution, printing on a line 
printer with 40 lines of 80 characters.

At this resolution, the picture looked like a mess. 





During the next 3 years,  Adrien poked at these pictures
from various points of view.

He actually discovered many interesting things:
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The set Kp is connected if and only if all
critical points of p belong to Kp.

He also found that if Kp is connected, there is
a conformal isomorphism

φp : C−Kp → C− D,

such that φp(p(z)) = p(zd).

Further, he showed that if all critical points of
p are attracted to attracting cycles, then φ−1

p
extends continuously to ∂D.

This used the contracting properties of the Poincaré
metric, something that has remained a central
tool in the subject.



The year 1981-1982

This sets the stage for the academic year 1981-82.

It was a wonderfully fruitful year, with new results
dropping on an almost daily basis.

I was back in France that year, quite intent on the pursuit
of holomorphic dynamics.
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The set M is connected.



This is really a problem about moduli spaces.
In particular,  Adrien was particuliarly well placed

for its study.

In all moduli space problems one tries to put on
a moduli space whatever structure it classifies. 

There is always something self-referential about moduli
problems, and the connectivity of  M  is no exception.  



The set M is connected.

The first step of the proof is to say that there
always exists a map

φc : (C,∞)→ (C,∞)

defined near ∞, such that φc(pc(z)) = (φc(z))2.

The second step is to say that if c /∈M , then c
is in the domain of φc. So (this is the

self-referential part) we can define

Φ : C−M → C− D.

The third step is to show that Φ is analytic,
proper, of degree 1.
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Thus we show that  M  is connected by constructing
the conformal mapping of the complement.

Moreover, the mapping  Φ  has a dynamical meaning, 
leading to one of the key conjectures in the field: 

MLC,
which can be stated in two ways   
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A second key result of 1981-82 was the discovery of 
matings.
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Let c1, c2 be two points of M , and
γk : R/Z→ Kck be defined by

γk(t) = φ−1
ck

(e2πit).

Set

Xc1,c2 = Kc1 %Kc2/ ∼
where the equivalence relation is given by

setting γ1(t) ∼ γ2(−t)

The polynomials pc1 and pc2 together define a
mapping

fc1,c2 : Xc1,c2 → Xc1,c2 .

It is far from obvious that Xc1,c2 is ever
homeomorphic to a sphere, but often it is. If so,
and if fc1,c2 is conjugate to a rational function,
then fc1,c2 is called the mating of pc1 and pc2 .

Adrien conjectured that any two polynomials
that do not belong to conjugate limbs of the

Mandelbrot set can be mated.

This is the analog of the double limit theorem
in the theory of Kleinian groups. It was proved

for post-critically finite polynomials by Tan
Lei.

Let f : C → C be a rational function. The
Fatou set Ωf is the set of z ∈ C which have a
neighborhood on which the family of iterates

f◦n is normal.

It is easy to show that f(Ωf ) = f−1(Ωf ) = Ωf .
In particular, the components of Ωf themselves
form a dynamical system. Sullivan proved that

there are no wandering components of Ωf :

Every component of Ωf has is eventually
periodic.

Let U ′ ⊂ U be simply-connected Riemann
surfaces, with U ′ relatively compact in U , and
f : U ′ → U be a proper analytic map of degree

d ≥ 2. Define

Kf =
⋂

n

f−n(U).

Such a mapping is called a polynomial=like
mapping; the standard example is to take f a
polynomial, U a big disk and U ′ = f−1(U).



The set M is connected.
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The problem was asked by Fatou: it was at least 60 years 
old when it was solved.

The technique was at least as important as the solution: it 
introduced quasiconformal techniques in holomorphic 

dynamics.

Adrien and I immediately saw how useful this technique 
could be; within a week we had proved the

Polynomial-like theorem.
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Fatou set Ωf is the set of z ∈ C which have a
neighborhood on which the family of iterates
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It is easy to show that f(Ωf ) = f−1(Ωf ) = Ωf .
In particular, the components of Ωf themselves
form a dynamical system. Sullivan proved that

there are no wandering components of Ωf :

Every component of Ωf has is eventually
periodic.

Let U ′ ⊂ U be simply-connected Riemann
surfaces, with U ′ relatively compact in U , and
f : U ′ → U be a proper analytic map of degree

d ≥ 2. Define

Kf =
⋂

n

f−n(U).

Such a mapping is called a polynomial=like
mapping; the standard example is to take f a
polynomial, U a big disk and U ′ = f−1(U).

The straightening theorem for polynomial-like
mappings says that:

For every polynomial-like mapping f : U ′ → U
of degree d, there exists a polynomial p of
degree d, a neighborhood V of Kp, and a

quasiconformal homeomorphism φ : U → V
such that φ ◦ f = p ◦ φ on U ′. Moreover, we

can choose φ so that ∂φ = 0 on Kf . Moreover,
if Kf is connected, then p is unique up to

conjugacy by an affine mapping.



This theorem has been a central result in all the work on 
renormalization... 

Sullivan, Henri Epstein, McMullen, Yoccoz, Shishikura, 
Lyubich, Yampolsky



From 1982 on, I can’t hope to give the history.

The main thing I regret is not talking about
parabolic implosion.

This concerns the discontinuous changes in the 
dynamics of polynomials and rational functions when

 they acquire parabolic cycles. 

It is parallel to geometric limits in the theory of Kleinian 
groups 
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