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ON THE COHOMOLOGY OF NASH SHEAVES 

JOHN H. HUBBARD 

( Receiaed 10 June 197 1) 

$1. INTRODUCTION 

NASH introduced in [4] a concept of real algebraic manifold, and in [I], Artin and Mazur 
made precise the appropriate category. For definitions and examples, see [I] and [3]. These 
structures, which will be called Nash manifolds in this paper, occupy an intermediate 
position between real algebraic varieties and differentiable manifolds; in particular they 
sometimes allow the use of algebraic techniques in differential topology. For a highly 
successful example, see [l]. 

It had been hoped that the techniques of sheaf cohomology, which have proved so 
powerful in algebraic geometry, could be applied. The object of this paper is to show that 
this is not the case. 

Indeed, the only reasonable known method of computing sheaf cohomology is the 
tech construction, and because of the direct limit involved, it is essential to have open 
coverings by cohomologically trivial subsets; Stein manifolds play this part in complex 
analytic geometry, and affine schemes in algebraic geometry. The obvious candidates in the 
Nash category would be open balls with their canonical structure. It is easy to see that if any 
cohomologically trivial subsets of an arbitrary Nash manifold exist, then these open sets 
must be among them. Unfortunately, they are not. We shall show that on an open interval 
there are tech cocycles which are not coboundaries. 

In fact, consider the open interval (- 1 - E, f 1 + E) for some positive E. (( - 1 - E, + l), 
(- 1, + 1 + s)} is an open cover, and a I-cocycle for this cover is an algebraic functionfon 
(-l,+l)=(-bE,+l)n(-l,I+E);+&X* would be an example of such a 
cocycle. It is a coboundary if there are algebraic functions gi and g2 defined on (- 1, 1 + E) 

and (- 1 - E, + 1) respectively, such that on ( - 1, + I), gi - g2 =J Now analytic functions 
satisfying these properties are easy to construct, and this is the key point of the proof of 
Cartan’s Theorem B (see [2], especially expose 17). 

Extend f to some neighborhood in the complex plane, and choose an arc C and sub- 
arcs C, and C, as shown in Fig. 1, so that C = C, - C, . If we define 

d[,i= 1,2, 

the integral for g1 certainly converges on (- 4, + co) and g1 can be extended to ( - 1, + a) 
by expanding C. Similarly, g2 can be defined on (- co, + 1). Moreover, 

g,(z) - h(z) = & Jc ez d[ = f(z). 
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FIG. 1 

However, the functions g1 and g2 defined in this way will in general not be algebraic, and we 
shall construct algebraic functionsfsuch that corresponding analytic gi’s cannot be chosen 
algebraic. In particular, we shall show that +Jl - x2 is such a function. 

My thanks go to Barry Mazur, who introduced me to the subject of Nash manifolds, 
and to Adrien Douady without whose help this example would never have been found. 

52. NOTATION 

Let I’ be an open simply connected neighborhood of [- 1, + 11, and let V, and V, be 
open subsets of I’ such that: 

VI, V, and Vi n V , are simply connected and connected, ( - 1, + l] c V, and 
[-l,+l)cVZ, -l$V,and +l$V,. 

Set Vi n V , =  U . 
Let M. (resp. p) be a loop in Vi (resp. V,) with base point 0, whose image in rrl(I’, - (11, 0)  
(resp. rcl (V, - { - l}, 0)), also written a (resp. p), is a generator. Set y = c$. 

A covering map rc: (X, x) -+ (B, b) is determined by n*(rcl(X, x)), and we shall describe 
covering spaces by the corresponding subgroups of the fundamental group of the base space. 
The fiber rc-l(b) of z will be written F(rc). Similarly, we will describe ramified coverings by 
subgroups of the fundamental group of the base space with the branch locus removed. 

Let S (see Fig. 2) be the covering of V ramified in { - 1, + l} corresponding to the 
normal subgroup of nl(I’ - { - 1, + l}, 0) generated by c?, /?” and y. Let 7rslV denote the 
covering map S + V. Let s” be the universal covering space of S, and rrnsls be the projection. 
rrsIV = nslv 0 7cs,s makes s” a ramified cover of V, corresponding to the normal subgroup 
of nl(V - { - 1, + l}, 0) generated by c? and p2. 

Recall that if rc: (X, x) -+ (B, b) is a covering space, there is a natural action of rcn,(B, b) 
on F(z). If U is a simply connected and connected neighborhood of b, this action can be 
uniquely extended to rc-l(U). Moreover, if rc*(rcl(X, x)) is a normal subgroup of x1(& b), 
then this action can be extended to all of X, and in this case Aut s(X) E’ n,(B, b)/n,(q(X, x). 
We will denote the action of tl E rci(B, b) by [u] : F(n) + F(n) (or [CZ] : X+ X if X is normal 
over B). 

Choose s E rcr,,& ), -’ 0 and jl E r&s). All of our coverings so far are normal. rcl(S, s) 
is infinite cyclic, generated for instance by a lifting 9 of y to S, so Aut(s/S) g Z, and [p] is 
a generator of Aut(g/S). 
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FIG. 2 

Aut(S/V) z Z/22, generated by [cz] (or [PI, as [a] = [fi] as automorphisms of S). 
Aut($/V) is isomorphic to the non-trivial extension of H by B/2Z; it is generated for instance 
by [u] and [r], with relations [a][~] = [r]-r[ a , and [a]’ = 1. Note that as automorphisms of 1 
z [rl = [?I* 

A covering map always has sections over any simply connected set in the base space, 
and such a section is unique if base points are to be preserved and the set is connected. Let cp 
(resp. 0) be the section of rcSiy (resp. rr~,~) over U satisfying this condition, and let $ be the 
section of rcS,s over q(u), so that II, 0 cp = 8. 

Let f be a meromorphic function on U, such that the function f on q(U) defined by 
f(p) = f(q(p)) can be extended to all of S. Let h be the function defined on S by h(p) = 
f ([a](p)) -f(p), and h” be defined by h”(p) = h(rc,&)). Let! be the function on 5 defined by 
f(p) =f(n&p)). Let gr (resp. gJ be a meromorphic function defined on VI (resp. V,) such 
thatf=g,]U-g,]U. 

$3. THE MAIN THEOREM 

THEOREM 1. (a) There exist unique meromorphic functions Gl and Lj2 on 5 such that 
gi(O(z)) = gi(z), i = I,2 

(b) These functions satisfy 

(0 gi([Yl”(p)) = gi(p) + nh(p); 
(3 &(~I(P)) = J,(P); s”z([Bl(~)) = ~“AP); 

(iii) C%(P) - ~“AP) =f (d. 
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Proof. (a) The uniqueness of the gi is trivial, as 3 is connected, and the values of the 
gi’S are given on an open set. The existence follows easily from analytic continuation along 
curves, but in order to prove (b), we need a more precise description. 

LEMMA 1. Set Si = a,:, and gi = I,:, i = 1,2. 
(a) There exist unique sections *i : Si + ,f? of ~8,s which extend $I. 
(b) On z&?(U) = q(U) u [cr](qo(U)), these sections are both defined, and satisfy 

v%(p) = b(/Ap) for p E 9(U) 

k(p) = [y1(ti2(p)) for p E bKcpW>. 
Proof of Lemma. S, and S2 are simply connected, so the Gi exist, and they agree on 

q(u) by definition as they extend $. Thus it suffices to prove the second part of(b), that is to 
show Il/I([a]s) = [y]~+!~~([ol]s). Let 6( be the lifting of u to S such that a(O) = s; then &(l) = 
[a](s). $r 0 B is the lifting d of CI to s” such that E(0) = S, so [a](:) = Z(l) = rjl o a(l) = 
ICI1(blW Similarly, WIW = $2UW)y so Il/lml(~N = Mm = [~I[P-‘Pls’ = [@-‘l[Pl(s) = 
~YIIc12awN = [Ylwzblw 

Proof of Theorem (continued). For all p E s”i , there exists a unique integer ni such that 
p = [yl”‘~i(~cs,s(p)), since 3 is an infinite cyclic covering of S. Let di be the function on Si 
given by s^i(P) = Si(ns/r(P)), and define gi on si by 

di(P> = s^i(~rS~S@)> + nib). 

LEMMA 2. On g, n 3, , both & and J2 are defined, and they satisfy g”,(p) - #z(p) = j(p), 
Proof of Lemma. If p E s, I-I s,, then 

P = W’Wk,sCP)) = [rl”‘Mk,s(P))> 

and there are two cases to consider. 
(i) T&P) E W). Then nl = n2, andgdp) - dp) = &(~cs~~(P)) + nl@p) - &(~~,s(p)) 

- n&(p) = &(G,s(P)) - M~s,s(P)) =Jh&N =.7(p). 
(ii) JW~(P) E bl(cp(W). Then n2 = ni + 1, by Lemma 1 T a@ G,(P) - S”AP) = A(~&P)) 

+ ~_,L(P) - M@P)) - (n + IMP) = f(blCkd~N> - L(P) = fU4hid~N) - O%+kls(~)) 
- f(%,s(P))) = f(%,s(P)) = f(P). 

Proof of Theorem (Continued and ended). By Lemma 2, we can extend gI by setting 
g,(p) = f(p) + ~“AP), for P E % 3 and similarly gz(p) = g,(p) -j(p) for p E s”,. Moreover, 
part (b), (iii) of the theorem is proved. To see that gi 0 [yj” = gi + nh”, note that both sides 
are meromorphic functions on s, and that they agree on 0(U) by the definition of Ji, so 
that as s” is connected, they agree everywhere. 

For (b)(ii), recall that by definition QI 0 [a] = &l, and that ifp E tjI(S,), then [a]$l(p) = 

vb(hl~). Therefore, as s^l($l(~)) = A(P) = A(bl~) = &WIW~N = !h(blh(~h & and 
gI 0 [a] are meromorphic functions on s which agree on $,(S,). So they agree everywhere. 

Q.E.D. 

We have now defined the functions gi on 3, and for any point p E 5, we have proved that 
the values of gi at the points [y]“(p) form an arithmetic progression. Therefore if the reason 
of the progression is not zero, we know that the gi cannot be defined on any quotient of s” 
finite over V. We shall in fact give a more precise result. 
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Consider [rx] : s” + 3, which is an automorphism of s over V (not over S!). We may 
consider the quotient g= of 5 by [u], (see Fig. 3) whose points are pairs {p, [cz]p} of 
points of s”: the map zsls. : s” + se, pt-‘{p, [cc]p> is a ramified covering map. A similar 
construction of S, , nSIS, can be carried out. As gI = y”r 0 [a], there exists a function aI on S, 
defined by ~1(7cs,s.(p)) = g”,(p); define similarly a function a2 on S, . 

FIG. 3 

THEOREM 2. If the Riemann surface off is S (i.e. if h does not vanish identically), then 

S, is the Riemann surface of gl, and S, is the Riemann surface of g2. 

Proof: By changing the base point if necessary, we may assume that h(0) # 0, co. We 
shall show that SI separates the points of the fiber F(‘(~.EQ”). This follows from the facts that 
gI separates the points of F(n,&, as we noted above, and that the map rcg,s_ 1 F(Iz.&: F(nsls) 
+ F(ns,,“) is bijective. To show this, we shall construct an inverse. A point of F(ns,,,,) is a 
pair {p, [cr]p}, p E x$?(O), and since n~,s({p, [cr]p}) = {s, [a]~}, exactly one element of 
{p, [alp} lies in F(q&. The map associating this element to the pair {p, [alp} is the desired 
inverse. Q.E.D. 

COROLLARY 1. If f, g1 and g2 are as in Theorem 2, then g1 and g2 cannot be algebraic. 

COROLLARY 2. The cocycle Jl -x2 on R, for the covering {(--co, l), (-1, +a)}, 

represents a nontrivial class in thefirst cohomology group with values in the sheaf of germs of 

algebraic functions. 

$4. THE MULTIPLICATIVE THEORY 

There is a parallel multiplicative theory. We shall use the same set of Vs, Ss, fs and gs as 
before, except that now f = g1/g2 on U, and h = [crlflf: 

THEOREM 1'. (a) There exist functions g1 and g2 on s” normalized as in Theorem 1. 
(b) These functions satisfy the following relations 

(i) gi 0 [rl” = gi h” 
(ii) & 0 M = CL ii2 0 WI = A 

(iii) f = JI/Jz . 

The proof is identical to that of Theorem 1. 



270 JOHN H. HUBBARD 

THEOREM 2’. Let J g1 and gz be as in Theorem l’, and suppose that h is not identically 
either 1 or - 1. Then the Riemann surface of g1 is S, and the Riemann surface of gz is S, . 

The reason for which h cannot be allowed to be identically - 1 is that the values on the 

fiber F(ns,s) now form a geometric progression rather than an arithmetic progression, and a 

geometric progression of reason - 1 is periodic, so the argument about separating points 

fails. Other than this observation, the proofs are identical. 

-( 1 

-1 
Example. +J1 - x2 = ,/x - 

Ji& 
shows the necessity of excluding the 

caseh= -1. 

COROLLARY 1’. Iff, gl, g2, and h are as in Theorem 2’, then g1 and g2 are not algebraic. 

COROLLARY 2’. If f is as in Theorem 2’, and besides does not vanish on (- 1, + 1) then f 
defines a non-trivial cocycle in the sheaf of invertible germs of algebraic functions. For instance, 

241 x represents a nonzero multiplicative cohomology class. 

COROLLARY 3. The Nash-locally trivial line bundle obtained over [w by taking a trivial 
line bundle over (- co, + 1) and another over (- 1, + co), and by gluing the section identi- 

cally 1 of the first to the section 2 + JE2 defined over (- 1, 1) of the second, is not a 
trivial bundle. In fact it is not embeddable. 

Indeed, it is easy to show that an embeddable bundle over [w is trivial. 

The non-trivial cocycles in Theorems 1 and 1’ have compact support, and they can 

therefore be used to construct non-trivial bundles over compact Nash manifolds, even 

embeddable ones. 

COROLLARY 4. Let S = {(x, y) E Iwz 1 x2 + y2 = I} be the canonical circle, and take 
f: (-3,s) --f S, f(t) = (cos 2rtt, sin 2rct) to be a covering consisting of a single piece. A Nash 
cocycle with respect to this covering is a function on the self intersection off with itself, which 

J2 is just the set {(x, y) 1 x < 0, 1 y [ < 2. Consider the function 2 + ,/$T. It is a multi- 

plicative Nash cocycle which is not a Nash coboundary, as the map (x, y)~y induces 
an isomorphism between its restriction to the set {(x, y) E S 1 x < 0) and the example in Corol- 
lary 3. 

Therefore the associated line bundle over the canonical circle, which is topologically trivial 
-. 

as 2 + & - y2 is positive, is Nash-locally trivial but not trivial. 
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