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1. INTRODUCTION

The object of this paper is to classify all polynomials p with the properties
that all critical points of p are strictly preperiodic under iteration of p. We

will also characterize the Julia sets of such polynomials.

In this section we will motivate the constructions of this paper by looking
carefully at the quadratic case and relating it to the theory of kneading se-

quences.
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722 BEN BIELEFELD, YUVAL FISHER, AND JOHN HUBBARD

Symbolic dynamics of unimodal mappings: kneading sequences. The combina-
torial approach to the dynamics of mappings, which this paper develops, starts
with kneading sequences, as developed in [MT] and [CE]. Choose a <c¢ < b €
R, and set I = [a, b] and consider first unimodal maps, which we will take to
mean continuous mappings f: I — I satisfying

(1) f(a)=f(b)=b;

(2) f is monotone decreasing (or increasing) on [a, c];

(3) f is monotone increasing (or decreasing, respectively) on [c, b].

We apologize to readers used to unimodal maps with maxima; monic poly-
nomials are best adapted to our purposes. Thus typical unimodal mappings are
elements of the quadratic family p_(x) = x% + ¢ with the interval

I=[-(1+1=40)/2, 1+ /1=40)/2]

and ¢c=0.

In this case, the kneading sequence of a point x € I is the sequence .S f(x) =
(89> 815 .--) with 5, € {P, R, C}, determined by whether f’(x) is on the
orientation-preserving (i.e., increasing) side of the “critical point” ¢, the orienta-
tion-reversing (i.e., decreasing) side of the “critical point,” or on the “critical
point,” respectively.

The central questions are then:

1.1. When is x determined by the sequence Sf(x) 7

1.2. For what families of unimodal maps is f determined by S f(c) ? More

specifically, is a quadratic polynomial determined by the symbolic se-
quence of the critical point?

These questions and their relatives are the key questions of this paper, and
in fact of the whole subject; we answer them completely for preperiodic poly-
nomials.

Example. Consider the graphs of unimodal maps in Figure 1.3, showing the
forward orbit of the critical point. Both candidate mappings are unimodal

|

\

x1x4x3=x5 x2

FIGURE 1.3. Two unimodal mappings with X =f(x).
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maps in which the critical points are strictly preperiodic. It is a corollary of the
results presented later that preperiodic polynomials are uniquely determined by
their kneading sequences. Thus, these graphs, which have the same kneading
sequence, cannot both be realized as quadratic polynomials. We will also show
how to explicitly compute the polynomial from its kneading sequence (showing
that the graph on the left occurs as a quadratic polynomial, and the graph on
the right does not).
Kneading sequences and external angles. Kneading sequences are only adapted
to real polynomials; the appropriate extension of kneading sequences to complex
polynomials is external angles. The extension to the complex case is not just
a generalization, since even the real results have only been derived as a special
case of the complex case. For instance, it is not known whether a mapping
|x|” 4 ¢ with p > 1 and preperiodic kneading sequence is determined by its
kneading sequence, except when p = 2,4, 6, ..., in which case the map is
complex analytic.

If p(z) = Z+cisa quadratic polynomial, the most important object for
the dynamics of p is the set

K, = {z € C| the sequence p"(z) is bounded} .

Long before the study of unimodal mappings, Fatou [F1] discovered that, to
a large extent, the behavior of the critical point under iteration controls the
dynamics of the polynomial.
Theorem. If the critical point 0 € K , then K, is connected.

If 0 ¢ K,, then K, is a Cantor set.

He also discovered the following relation between dynamics and conformal
mapping. Let D be the open unit disc.
Theorem. (a) There exists a unique analytic mapping ¢, =z+¢, /z+--- defined
in a neighborhood of oo such that

(1.4) p(8,(2)) = 6,(z°).
b)Y If0e K,, then ?, extends to an analytic isomorphism C—D — C — K,.

Example. For the polynomial p(z) = z2 — 2 the function ¢, can be written
explicitly:
1
$,(z)=z+ >
This is the well-known conformal mapping for the complement of the interval

[-2, 2], and when you substitute z = ¢”™° in the functional equation (1.4),
you obtain the trigonometric identity 4C0$2(27t0) —2=2cos2(2n6).

The mapping ¢p is used to define external angles. By Carathéodory’s theo-
rem [DH1], when K, is locally connected, the mapping ¢p extends continu-
ously to a mapping $p: C—-D — T (extending ¢, to the unit circle D). We
will focus on the case when Kp is locally connected. For example, when 0 is
preperiodic under iteration by p(z), this is the case (see [JM, Theorem 17.5]).
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We denote the external rays

Ry =,({re
Equation (1.4) implies that p(R,;) = R,,. Each ray R, has a limit at the
point Ep(ez’”g) of 0K,. We say that the external ray lands at this point.

Each angle determines a unique ray and each ray lands at some point in Kp .
However, several external rays may land at the same point of K,.

27ti0|1 <r< OO}) )

Theorem. Suppose p is a real quadratic polynomial with K, connected, and
that the ray R, lands at x € K,NR. The kneading sequence s, s,, ... of x
and the angle

. &
= = i
0—.8081...—2 S+
i=0

are related by the table
e, |0 1
sn
P 01
R 1 0
C * ok

where x can be 0 or 1.

This theorem can be used to compute the symbolic sequence from the external
angle, or the external angle from the symbolic sequence once ¢, is chosen; the
two choices correspond to the ray in the upper half-plane if ¢, = 0 and its
complex conjugate in the lower half-plane if ¢, = 1.

Example. This fact can be used to compute the arccosine inductively. For the
polynomial p(z) = z* — 2, we saw that ¢,(z) = z+1/z, so that ¢p(e2’"0) =
2 cos(2n@) . If the symbolic sequence of x = 2 cos(2n0) is S,(x) = (89> 1> -+ )
and @ is written in base 2 according to the table above with first digit 0, then
the branch of arccos(x/2) in [0, ] is given by arccos(x/2) = 2zn6 . Choosing
the first digit to be 1 gives the branch in [z, 2z]. For instance, the symbolic
sequence of x =1 is P, R, R, R, ..., leading to # = .00101... =1/6, so
that arccos 1/2 =2n/6 = /3, as it should.

External angles and the topology of Julia sets. Let K ¢ C be compact, con-
nected, simply connected and locally connected, and let ¢, : C — D-C-K
be a conformal isomorphism. Then (by Carathéodory’s theorem as above) ¢,
extends to ¢,: C— D — C; define yy: T=R/Z — 0K by () = B,
Let ~, be the equivalence relation induced on T;i.e., f, ~4 ¢, if and only if
7k (t;) = 7k (t,) . The equivalence relation ~, then determines the topology of
the pair (C, K) by the following construction.
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FIGURE 1.5. The set K, for p(z) = z2+i with external
rays.

Consider the equivalence relation ~, on C for which the nontrivial equiv-
alence classes are exactly the convex hulls of sets
{ez'm |t € a nontrivial equivalence class under ~,}.
Proposition. There exists a homeomorphism of pairs h: (C, D)/ ~ x— (C, K)
extending ¢, on C—D.

This is proved in [DH1]; the proof is easy, requiring mainly the Jordan curve
theorem.
Motived by this proposition, our strategy will be to understand the equiva-

lence relation ~, induced as above by X, .

Example. The polynomial p(z) = 2Z2+iis strictly preperiodic: the orbit of
the unique critical point 0 is (0, i, -1+, —i, =1 +i, —i,...); but 0 is not
periodic.

The set K, shown in Figure 1.5 looks “chaotic,” but we claim this is far
from true, and in fact can easily be described combinatorially. First, it appears
from the picture and is in fact true that there are unique rays landing at the two
points of the cycle {—1+i, —i} of period 2. The angles of these rays must also
be periodic of period 2 under angle doubling, and so must be 1/3 and 2/3, as
indicated.
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The ray landing at i must have angle one of the two halves of 1/3, and the
drawing shows it must be 1/6. Now there are two rays landing at 0, with angles
1/12 and 7/12, the two halves of 1/6. These curves together with {0} divide
C into two halves R, and P, where R is the half containing the critical value
i.

This allows us to define “kneading sequences” for points of z € 6K let

S,(z) = (s, 8y, ...) where

R ifp"(z) e R,
s,=3$ P ifp"(z)eP,
C ifp"(z) =

A very special case of Theorem I, stated in §2, asserts:

a point of 0K , IS determined by its kneading sequence,

answering question 1.1 positively in this case. This also implies that the equiv-
alence relation ~, on T is in this case given by the following construction:
cut T at 1/12 and 7/12, and label R and P the two halves, with 1/6 € R.
Label the two angles 1/12 and 7/12 by C. Then an angle has a symbol for
this partition under the angle-doubling map ¢ — 2¢. Then ~, is given by

t, ~, t, if and only if 2"t, has the same symbol as 2"t, for all n > 0.

Thus for the polynomial p(z) = Z2+i the topology of K, (and in fact the
geometry up to affine maps of C) is completely determined by the number 1/6.

More generally, if for a quadratic polynomial p an external ray R, with 6
rational lands at the critical value, then the equivalence relation ~p 1s given by
the “kneading sequence” with respect to the two halves of 6.

Multiple accesses to the critical value. The example p(z) = z2 + i shows that
one should associate to a quadratic polynomial the angle of the ray landing
at the critical value. But this example is simpler than the general preperiodic
polynomial: there is only one ray landing at the critical value, and in general
there may be several such rays.

Example. One of the eight roots of the equation p, (0) -p, (0) 1S approxi-
mately —0.101096 +0.956287:, with Julia set shown in Flgure 1.6. One of the
rays landing at the critical value has angle 9/56. But it is easy to check that
9/56, 11/56, and 15/56 all have kneading sequence RRPR with respect to
9/56, i.e., if the circle is cut at the two halves 9/112 and 65/112 of 9/56 and
R is the symbol of the half containing 9/56. Thus the three rays with these
angles land at the critical value.

It will be considerably easier to characterize polynomials together with a
choice of a ray landing at the critical values, and in fact a bit more combina-
torial information is needed in higher degrees. A polynomial with this extra
information will be called a marked polynomial.
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217
9/28 <" 15156 11/56 g/56 1/7,5,115

11/28
11/112
9/112
1/14
15/28
4/7
65/112
67/112
71/112 9714 11/14

FIGURE 1.6. The Julia set for p(z) ~ z> — 0.101096 +
0.956287i with external rays.

External angles and the Mandelbrot set. In one direction, we associate to each
preperiodic polynomial the angles of the rays landing at the critical value. In
the opposite direction, we are led to three questions:

1.7. Is there a polynomial corresponding to every angle?
1.8. Is it unique?
1.9. When do two angles correspond to the same polynomial?

Question 1.9 has already been answered; for quadratic polynomials there is
a very nice way of answering questions 1.7 and 1.8, at least for rational angles,
which leads to a description of the parameter space.

Consider the Mandelbrot set shown in Figure 1.10

M={ceC|OeKP}.

It is known [DH1] that M is connected. More precisely, when ¢ ¢ M, then
there is a disc D, such that ¢, is defined on C— D,, and c € ¢,(C — Dy).

FiGURE 1.10. The boundary of the Mandelbrot set.
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Then the mapping ¢ — ¢>_l(c) gives a conformal isomorphism C—M — C-D,
the inverse of which we w1ll denote ¢ M- This conformal mapping ¢,, allows
us to speak of external angles of points in M .

The self-referential nature of this formula accounts for many of the mysteri-
ous-sounding statements about M , such as the following.

The external ray at angle 1/6 of M lands at the polynomial 22+ I, the
dynamics of which reflects the digits of 1/6 = .001 in base two. Indeed, the
orbit of the critical point, after one iteration, lands on a cycle of period two,
and the digits, after the first, also repeat with period 2.

Now the explanation mentioned above is the following theorem.

Theorem. For any rational angle 6, the external ray at angle 6 of M lands at
a point c€ OM .

If 0 is written in lowest terms has even denominator, then under p, the critical
point is strictly preperiodic, and the external ray at angle 6 of K, lands at the

critical value c, and all strictly preperiodic polynomials arise in thls fashion.

If 6 written in lowest term has odd denominator, then p, has a rationally
indifferent periodic point, and all polynomials with rationally mdlﬁ"erent periodic
points arise in this fashion.

This theorem answers questions 1.7 and 1.8 above, and further says:

If 6, and 6, are rational angles with even denominators, then the external rays
of M at angles 6, and 0, land at the same point c if and only if the external
rays of K, at angle 6, and 6, both land at c.

Thus our answer to question 1.9 in terms of kneading sequences gives some
insight into the equivalence relation ~ u » (assuming M to be locally connected)
and hence helps explain the topology of M .

This theorem also suggests a possible proof for question 1.7 above: given
an angle 6, consider the external ray of M at angle 6, and try to prove that
it lands. Then the landing point will be a good candidate for a corresponding
polynomial. This strategy is carried out in [DH1], but works only for quadratic
polynomials, or at least for polynomials 2% +¢ witha unique critical point. If
there is more than one critical point, the parameter space has dimension greater
than one, and there is no good analog to ¢ M-

This paper answers the analogs of questions 1.7, 1.8, 1.9 in higher degrees.
This requires different methods, which even in degree 2 may be simpler than the
methods in [DH1]; the basic tool is the Thurston mapping, a certain mapping
from an appropriate Teichmiiller space to itself.

A computer program. Although the reader might never notice it, this paper grew
out of a computer program that actually computes preperiodic (and periodic)
Thurston polynomials, carrying out the iteration of the Thurston mapping. The
algorithm is given in §9, but the real quadratic case is very easy to describe, and
we will give it here explicitly.

Let s = (s, s,, ...) be a preperiodic kneading sequence for the critical point
of a unimodal mapping f. Such a kneading sequence must satisfy various
conditions; for our purposes we need to know that it starts CRP... .
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Y1Yy V3 Yy
FIGURE 1.11. One iteration of the mapping o, .

Remark. Actually, this excludes two legal kneading sequences CCCC... and
CRCR... , which correspond to the polynomials x? and x* 1.

We will describe a scheme to construct a quadratic polynomial x2 + ¢ whose
critical value has the same kneading sequence. Let x,, x, = f(x,), ... be the
orbit of the critical value under f, with x,, ..., x,, distinct and x,,_, = x;
for some k < m. Let Y be the set of finite sequences y,,y,,..., ¥y, of
distinct points of [-2, 2] in the same order as x,, ..., x,, , and consider the
map o,: ¥ — Y defined as follows.

Given y = (y,,¥,,...) € X, let g, (y) = y' where y; is the inverse image

of y,,, (orof y, for i =m) by x — X4y ie, v = +\/Vis1 — V1 » With
the sign chosen positive if 5, = P and negative if s, = R. If 5, = C, then
Yis1 =Y, so that y; = 0 and there is no ambiguity. We leave it to the reader
to check that the points of y' are distinct, belong to [-2, 2] and are in the
correct order.
Example. If we use the unimodal map on the right of Figure 1.3, the space Y
consists of the sequences y,, y,, y5, ¥, satisfying ~2 <y, <y, <y; <y, <2.
The kneading sequence of the critical point is CRPR, so the mapping is as
shown in Figure 1.11.

The fundamental point of this construction is the following obvious state-
ment.

If y is a fixed point of o, then the polynomial x2+ y, is a quadratic
polynomial with the kneading sequence s .

So it is natural to ask whether o, has a fixed point, and this will follow (after
modification) from the Brouwer fixed point theorem. Let Y be the closure of
Y in R™. The map o, extends continuously to Y . However, it has a trivial
fixed point in Y, namely (0, ..., 0).

To avoid this fixed point, let 71 be the subset where y, —y, > 1. Since

i i
e RV N T AV 2 2
we see that Y, is preserved by o, .
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Remark The signs above are due to the kneading sequence s = CRP..., so
that y2 VY3 =¥, and y1 YV,

Since Y1 is defined by linear equalities and inequalities, it is convex, hence
homeomorphic to a ball. By the Brouwer fixed point theorem, g, must have a
fixed point in Y

First, observe that using closures in order to find fixed points was necessary.
Consider the unimodal mapping in the example above. We claimed that there
is no quadratic polynomial topologically conjugate to that mapping. In fact,
if g is iterated in the space Y corresponding to that mapping, the points Vs
and y, coalesce, and the fixed point lies in the boundary of Y, at a point
corresponding to the function on the left of Figure 1.3.

The Brouwer fixed point theorem says nothing about uniqueness of fixed
points, and there does not seem to be any easy way of proving that g, has
a unique fixed point from this point of view. For instance, exactly the same
program can be written using |x|” + ¢, but as far as we know, nothing has
been proved about convergence if p is not an even integer. Experimentally, the
computer program appears to converge perfectly.

A very general philosophy is that to show a mapping is contracting, try to
extend it to the complex domain. Complex manifolds carry intrinsic metrics
(sometimes degenerate), like the Kobayashi and the Carathéodory metrics, with
respect to which all analytic mappings are contracting. In the case of Thurston’s
mapping, the appropriate complexification of Y is a certain Teichmiiller space,
which carries a nondegenerate Kobayashi metric known as the Teichmiiller met-
ric. It is with respect to this metric that g, is contracting.

2. DEFINITIONS AND MAIN STATEMENT

To understand this paper the reader will need a background in complex ana-
lytic dynamics; we recommend [JM] and will use the results given there freely.
The main tool in the classification above is Thurston’s topological characteriza-
tion of rational functions [DH2].

Some facts about the dynamics of polynomials. We recall here some results
needed to state the main theorems. 5
Define the critical set Q  of a branched covering map f: N by

= {z| z is a branch point of f}

and the postcritical set
P.=J Q.
n=1

If p is a polynomial with Card(Pp) < oo, we follow Milnor’s suggestion and
call p a Thurston polynomial.
. The orbit of a point z under p is the set {p**(z)|n = 0,1,...}. If
(x) = x for some n > 0 then x is called a periodic point of p, and
1f x is not periodic but p°™(x) is periodic, then x is said to be preperiodic.
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When every critical point of p is preperiodic, we call p a preperiodic Thurston
polynomial.

The filled-in Julia set is the compact set K, = {z € C|p*"(z) = co}. The
following theorem (see [JM], p. 94) will be central to the entire development.

Theorem 2.1. If p(z) is monic (i.e., a polynomial with leading coefficient 1) of
degree d and P, is bounded, then there exists a unique analytic homeomorphism
¢p: C-D—-C- Kp
tangent to the identity at oo (that is, ¢,(z)=z+cy+c¢ /z+--) that satisfies

d
(2.2) f(9,(2))=¢,(z7).
When p is not monic, we can still find a map ¢, tangent to the identity that

conjugates p(z) to az’ , where a is the leading coefficient of p(z).

The Green’s function Gp: C—R of Kp is the unique subharmonic function
of C that vanishes on K, and is harmonic on C — K, with a logarithmic pole
of the form log|z| at co. It satisfies G, =log|¢,| on C— K.

When p(z) is a Thurston polynomial, K, is locally connected [JM, Theorem
17.5], so that the mapping ¢, extends continuously to a mapping $p :C-D—-C

extending ¢p to S' =8D. We denote the external rays

2mif

R, =¢,({re""|1 <1< o0}),
and if O is a finite set of angles we write
Rg=JRy.
)

Equation (2.2) implies that p(R,) = R;,. Eachray R, hasa limit at the point
$p(e2’”0) of 0K,. We say that the external ray lands at this point. Each angle
determines a unique ray and each ray lands at some point in Kp . However,
several external rays may land at the same point of K b

If p is a preperiodic Thurston polynomial then 6Kp = Kp . In particular,
the postcritical set is contained in 6Kp , and so at least one ray lands at each
postcritical point. All the rays landing at periodic and preperiodic points in K .
(including the postcritical set) have rational angles.

Marked polynomials. It is easiest to classify marked polynomials and deal sep-
arately with the redundancy this introduces in the classification.

A marked polynomial is a polynomial with strictly preperiodic critical points
that is monic and centered, together with the choice, for each critical point
w, of an external ray landing at p(w). Define &, as the set of all marked
polynomials of degree d .

Throughout this paper we will let T = R/Z. The set T has a natural additive
group structure that is equivalent to the multiplicative group structure on S .
The circle S' € C is better for geometry (convex hulls, etc.), but T is better
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for arithmetic, and we will use them both, sometimes identifying them without
comment.

Let 6 € T and define the map m,(#): T — T by 6 — df where d is
some integer. If © C m;’(ﬁ) and O contains at least two points then we
call ® a d-preangle of 8. A d-preangle © of 0 is periodic of period k if
m* @) eo.

Define the mapping

PA: %, — sets of d-preangles

as follows. Let p be a monic centered polynomial, with critical points {@,, ...,
®,}, and marked by the rays {Ro, , ..., Ry } landing at p(w,)..., p(®w,). Set

PA(p;el,'°° ’ 0}1)=(el’ e ,en),

where ©, is the d-preangle of 6, made of the angles of external rays landing
at w, that are inverse images of the ray R, .

Example 2.3. For the polynomial 224 above, there is only one ray landing at
the critical value i/ that has angle 1/6. So (22+i ; 1/6) is a marked polynomial,
and PA(22+ i;1/6) = {{1/12,7/12}}.

A more substantial example, shown in Figure 2.4, is provided by the polyno-
mial z>+c¢ with ¢ ~ —.220330+ i1.186329 , where the third forward image of
the critical point is fixed. In this case, there are two rays, with angles 19/72 and

25/72, that land at the critical value. So (z° +¢; 19/72) and (z* + ¢; 25/72)
are two markings of the same polynomial, and

PA(Z +¢; 19/72) = {{19/216, 91/216, 163/216}};
PA(Z +¢; 25/72) = {{25/216, 97/216, 169/216}} .

Conditions satisfied by marked polynomials. We wish to characterize the im-
age of &, under PA by combinatorial conditions on the preangles. For any
marked polynomial (p;#,, ..., 6,) with

PA(p;01,---,0n)={91,...,8n},

then the preangles {6, ..., 8,} satisfy
(C.1) 8, ..., 8, are finite sets of rational angles (see [JM, p. 97]).
(C2) d—1=)] (Card(®,) - 1).
(C.3) Each Ry partitions C into components, exactly one of which contains
each Ry for j#1i.
J
(C.4) None of the rays landing at critical points are periodic.
(C.5) Distinct Ry land at distinct points.

We will turn each of the conditions (C.1)—(C.5) into a combinatorial condi-
tion on the sets ©,, ..., 8, . The first four conditions have obvious interpre-
tations, but condition (C.5) is more delicate.
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571216

91/216 25/216

19/216

9/216

97/216

169/216

163/216 171/216

FIGURE 2.4. Kp for a cubic with six accesses to the
critical point.

The equivalence relation ~g . In this subsection we define an equivalence rela-
tion ~g that will characterize Julia sets of preperlodlc Thurston polynomials.

Two nonempty closed subsets 4, B of T (or s! ) are unlinked if there exist
disjoint intervals 7, J C T such that AclI and B C J

A collection {4,,...,4,} of closed subsets of S' is unlinked if they are
pairwise unlinked. Flgure 26 gives examples for the collection {6,, 6,}.

We will find the following lemma useful on several occasions.

Lemma 2.5. Two nonempty closed subsets A and B of s! _are unlinked if and
only if there exist disjoint closed connected subsets X , Y C D of the closed unit
disk such that Ac X and BCY.

91 Q @1
62 91 62

unlinked linked linked

FIGURE 2.6. Linked and unlinked sets.
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Proof. If A and B are unlinked, then we can take X and Y to be the convex
hulls of intervals I and J in the definition. .
Conversely, suppose X is contained in the component U of D — Y . Then
any two points s, , s, € S "M U can be joined by an embedded arc o c U with
interior in D. The arc divides D into two components, one of which contains
Y, so s,,s, can be connected in U N S'. We have shown that U N S' is
connected, and hence an open interval I', since B is nonempty. Let I c I' be
a closed interval containing 4,and J = S' - TI' ; these satisfy the definition. O

Let ©={6,,...,0,} be a collection of unlinked d-preangles.

Definition 2.7. We will say that two points x,y € T are ©-unlinked if the
collection {x, y}, 6,,..., 6, is unlinked.
We will say that two points x,y € T are ©-unlinkable if there exist arbi-
trarily small perturbations x', ' of x, y such that {x’, y'} is ©-unlinked.
Two angles will be called ©-related if for all m > 0 the points d”x and
d™y are ©-unlinkable.

Let the equivalence relation ~¢ be the equivalence generated by x ~g ¥ if
x and y are O-related. This means that angles are ~g-€quivalent when they
can be connected by a finite chain of ©-related angles.

Remark. Being ©-unlinked is an equivalence relation; an equivalence class is a
finite union of open intervals. A nice way to visualize these equivalence classes

is to consider the convex hull @i of each preangle ©, ; then for each component
U of D— U;®,, the intersection U N S' is an equivalence class. See Figure

2.8. /_\ \
/‘
o

FiGURE 2.8. Unlinked equivalence classes.

Two angles are ©-unlinkable when they belong to the closure of an equiva-
lence class above; this is of course not an equivalence relation.

Example 2.9. Take d = 2 and © = {{1/12, 7/12}} as in Figure 1.5; then
1/7 ~g 2/7 ~g 4/7. Indeed, since these three angles form a cycle under m,,
it is enough to show that {1/7,2/7, 4/7} is ©-unlinked, which is true since
1/12 < 1/7 < 2/7 < 4/7 < 7/12. We leave for the reader to check that for
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d =3 and both
O = {{19/216,91/216,163/216}} and O = {{25/216,97/216,169/216}},
we have 1/8 ~g 3/8.

A topological description of K ) when p is a preperiodic Thurston polynomial.
The following theorem, which is one of our three main results, explains the
central importance of the equivalence relation ~g . Although ~¢ is an equiv-
alence relation on T, we will use the same symbol for the induced equivalence
relation on S’ , and even on C, with the understanding that all equivalence
classes of numbers z with |z| # 1 are trivial.

Theorem L. If (p; 6,, ..., 60,) is a marked critically preperiodic polynomial and
© = PA(p; 0,,...,0,), then the map ¢, (C-D, Sl) - (C, Kp) induces a
homeomorphism

(C—D)/~g,S'/~g) = (C, K,).

The proof will be given in §3.

Remarks. 1. This result says that © = (8,, 8,, ..., ©,) completely character-
izes the topology of Kp , and even of the pair (C, Kp) . A theorem of P. Jones
and L. Carleson [CJ] goes further, and shows that © actually determines the
pair C, Kp up to affine equivalence, in the sense that any homeomorphism
h: C — C that is analytic on C — K, is actually analytic on C, hence is an
affine map.

2. Theorem I goes a long way towards explaining when two rays in the
complement of the Mandelbrot set land at the same point [DH1]. This will be
explained in detail in a subsequent paper.

Preperiodic polynomial determining families of angles. A collection of d-pre-
angles ® = (8, ..., 8,) is called a preperiodic polynomial determining family
of angles or a PPDFA of degree d if the following conditions are satisfied.

(1) All angles in O, ..., ©, are rational.

(2) X, (Card(®,)-1)=d - 1.

(3) 8,,..., 6, are unlinked.

(4) No O € ej is periodic for any ;.

(5) Forall i, j with i # j we have 6, g ©,.

We denote the set of all PPDFA’s by <7 .

In particular, the preangles {8, ..., ©,} are disjoint by condition 3. Each
of these conditions corresponds to a condition in (C.1)-(C.5). We are now in a
position to prove the following result.

Proposition 2.10. If (p; 0,, ..., 0,) is a marked polynomial, then
PA(p;6,,...,0,)={6,,...,0,6}

is a PPDFA.

Proof. Let PA(p; 0,,...,60,)=(0,,...,0,). We must show the five condi-

tions. Condition 1 follows from the fact that rays landing at preperiodic points
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have rational angles [JM]. Condition 2 follows from the Riemann-Hurwitz for-
mula, or in this case counting the zeros of the derivative of p. Condition 4
follows since the critical points of p are assumed to be strictly preperiodic, and
condition 5 (the only delicate one) follows immediately from Theorem I.

We are left with condition 3, which can be shown as follows. Make a compact

space C by adding circle S at oo in the obvious way; then the closure R of
R, in C intersects S exactly at 8 € S. If i # j then Re and Re satisfy
the conditions of Lemma 2.5. O

Remark. We will of course not use Proposition 2.10 in the proof of Theorem 1.

Example. We will exhibit the necessity of condition 5. Return to Example 2.3
above. It is a polynomial with a single critical point, but it is not clear why
there could not be one just like it with two critical values, one at the end of the
ray at angle 19/72, and another at the end of the ray at angle 25/72. If there
were such a marked polynomial p, then

PA(p) = {{25/216, 169/216}, {91/216, 163/216}} = ©

is one of three possibilities. However, this is not a PPDFA; it fails condition 5
(and only condition 5). The reader may check 25/216 ~g 91/216.

The classification of preperiodic marked polynomials. Our main theorem is the
following result.

Theorem II. The map PA: &, — &, is a bijection.

This theorem clearly gives a complete classification of marked polynomials
in combinatorial terms. For instance, when d = 2, it reduces to the following
result.

Corollary. For every rational angle written in reduced form as p/q with q even,
there exists a unique marked quadratic preperiodic polynomial such that the cho-
sen ray to the critical value has angle p/q, and every marked quadratic preperi-
odic polynomial arises in this way.

Proof. An element of &, is a single 2-preangle by the second condition; it is
easy to check that it must be of the form {p/(2q), (p +q)/(29)} with p/q as
above. O

When two PPDFA’s determine the same polynomial. When will two distinct
PPDFA’s determine the same polynomial? The redundancy in the description
above is given by the following theorem.

Theorem III. The polynomial determining families of angles © = 0, ... en)
and ©' = (8 , ..., 8 ,) determine the same polynomial if and only if the 9
can be renumbered so that 6, ~e 8 s 8, ~ e,,

The proof can be found in §10. It is not a difficult proof, very much unlike
the other cases where this sort of redundancy has been attacked, for instance
when the matings of two polynomials lead to the same rational function (see
[BW]).
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Outline of the paper. Theorem I is proved in §3. The proof has two parts:
seeing that rays with equivalent angles land at the same point, and that rays
with nonequivalent angles land at distinct points.

The second part is essentially obvious, but requires a bit of care at the inverse
images of the critical points; these difficulties are precisely the reason for the
elaborate definitions of unlinked, unlinkable, etc. The first part is more substan-
tial, and requires the expanding properties of the orbifold metric [JM]. This is
not surprising: essentially the theorem says that a translation of a dynamical
system to a shift mapping using a Markov partition is faithful; the obvious way
of showing such things is to claim that the dynamical system is expanding.

The main part of Theorem II is to show the surjectivity of PA ; this is done
using Thurston’s theorem, which is described in §4. Section 5 contains a careful
analysis of the Thurston obstructions that can arise when a branched mapping
mimics a polynomial.

Starting with a PPDFA O, we first construct a graph Se C s? , and a map-
ping fg: Sg — Sg , Which we extend to a branched mapping 76: s? - 52 (87).
This requires a criterion that allows maps on graphs in S? to be extended to
S?, which is given in §6.

In §8, we show that the obstructions described in §5 do not arise for the
branched map fg, which thus has no Thurston obstruction, and is equivalent
to a polynomial p.

In §9 we show that p can be conjugated to a unique polynomial Pg » Which
is naturally marked. The end result of §§7, 8 and 9 is to construct a mapping
AP: ) — .9"‘1 such that PAo AP =id.

This is spelled out in §10, and we also show there that AP is surjective,
which completes the proof of Theorem II. We also give the proof of Theorem
III there.

The thesis of Alfredo Poirier at SUNY, Stony Brook, completes the descrip-
tion detailed in this paper by adding the extra information necessary to define
a marked polynomial in the case of a periodic critical point.

3. WHEN EXTERNAL RAYS LAND AT THE SAME POINT

In this section we prove Theorem I. Our understanding of the theorem came
from analyzing Levy cycles, which we discuss later. The proof of the theorem,
however, does not use any of the techniques presented later in the paper.

If two rays land at the same point, their angles are equivalent. First we will see
that if R, and R‘,2 land at the same point z, then 6, ~e 0,.

The pr(;of will proceed by induction on
m(z) = the small number m such that the orbit
of P™(z) contains no critical point.

Note that this number is finite since no critical point is periodic. First suppose

that the forward orbit of z contains no critical points, so that m(z) = 0. Then

because R, and Re2 land at the same point, Lemma 2.5 shows that 6, and
1

0, are O-unlinked (and thus ©-unlinkable). Similarly, for any i, d"e, and
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FIGURE 3.1. Pulling back ©-related angles.

d' 0 are O-unlinkable, so that 6, and 6, are O-related and thus ©-equivalent.
ThlS starts the induction.

Suppose by induction that the theorem is true of rays landing at points x
with m(x) < i, and let z be a point with m(z) =i.

Suppose ﬁrst that z is not critical. By induction, the rays at angles d 0, and
d@, are equivalent; i.e., there exist @5 ---» @, such that in the sequence

d01,¢1,...,¢k,d0

each angle is O-related to the next. Thus, there exist unique angles ¢l such
that d ¢, = ¢, and the rays R  land at z. Then in the sequence

01,¢1,...,¢k,0 ,
each angle is O-related with its successor, which shows that 0, ~¢0,.

Now suppose that z is critical, corresponding to the d-preangle 9 of y.
We will show that 6, is equivalent to one (and hence all) of the 6 € 9 ; this
will show 6, ~g 0, , by symmetry. The ray R lands at p(z), and by 1nducuon
v is equlvalent to do, .

If d6, = v, the statement is clear. Otherwise, there exist Prs-ees P @S
above such that in the sequence
dé ., e.,..., 0., v

each angle is O-related to its successor. Now let ¢ be the angles such that
dq) = ¢, and the rays R + land at z in the component of C — Re containing
R . Then in the sequence

Ol,q)’l,...,y);
each is O-related to its successor, and the last one is G-related to both elements
of ©; with corresponding rays in the boundary of that component. See Figure
3.1.
If two angles are equivalent, their rays land at the same point. Let X be a
component of @—Ui Rg , and construct a space X by identifying points x, y €
8X c T for which p(x) = p(y).
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Remark. The space X is actually a Riemann surface, but we do not want to
use this fact as we will use Lemma 3.2 in a setting where no analytic structure
is available.

Lemma 3.2. The space X is homeomorphic to S?, and the map py: X~ C
induced by p is a homeomorphism.

Proof. Tt is unnecessary and a bit fussy to deal with the point at infinity, so we
eliminate it. Let 50 € X be the unique point corresponding to oo € C; since
p;,l (00) =0 we see that p,: X -3 — C is proper. But it is also clearly a local
homeomorphism, so it is a covering map, and since C is simply connected and

X is connected, it is a homeomorphism. The lemma follows since X is the
one-point compactification of a space homeomorphicto C. 0O

Let T' c T be the set of postcritical angles, i.e.,
T = {m®)|k,i=1,2,...}

so that rays R, with 6 € T’ land at one of the postcritical points Pp of p.
Let Y =C— (R — P,), which is a connected set.

Lemma 3.3. Any path o: [0, 1] —» Y lifts uniquely to a path o': [0, 1] — X
such that pod = a.

Proof. This follows from Lemma 3.2; the lift to X does not intersect the iden-
tification locus (note that the critical points in X are not in the identification
locus). O

Define a metricon K, as follows. Choose r >0, andlet Y, =Y Nn{G, < r},
and
d(x,y) =infl(a),

where a ranges over all paths from x to y in Y,, and [/ is the length with
respect to the orbifold metric on C [JM].

The map p is expanding in the orbifold metric. Therefore there exists C > 1
such that for any path a € Y, , if o' is given as in Lemma 3.3, then Cl(c’) <
[(a), since Y, is a compact set; note also that o' is a path in YiaCY,.

Suppose 6, is O-related to 6,, and that R(,-,l lands at x € Kp and Re2
lands at y.

Then we see that

o(p(x), p(y)) 2 Co(x, y).
Indeed, let o be a length-minimizing curve joining p(x) to p(y) in Y,.
Then both x and y lie in the closure of some component X of C — U;Rg >
and the corresponding curve o’ joins them. So

8(x,y)<l@) < C ().

Using this over and over, we see that if x # y, then 5(p°k (x), p°k(y)) grows
without bound, and will eventually be greater than the diameter of K,.
Finally, if 6, ~g 6, then there exists angles ¢, ..., ¢, such that each



740 BEN BIELEFELD, YUVAL FISHER, AND JOHN HUBBARD

successive pair of angles in the sequence 6,, ¢, ..., ¢,, 0, is O-related, and
thus all the rays with these angles must land at the same point.
QED Theorem I

4. THURSTON’S TOPOLOGICAL CHARACTERIZATION OF RATIONAL FUNCTIONS

In this section we describe a topological condition that is necessary and suffi-
cient for a branched map to be equivalent, in a sense defined below, to a rational
function. The reader should be forewarned that this section is technical, and it
can be painlessly omitted in a first or second reading.

First we need some definitions. We will use P' and S° interchangeably
when the complex structure is relevant or not, respectively. All maps in this
paper are understood to be orientation preserving,

A postcritically finite branched map f: S? — §? will be called a Thurston
map. Two Thurston maps f and g are Thurston equivalent if there are home-

omorphisms 6, and 6, mapping S? — §? such that the following diagram
commutes:

/]
(8%, P;) —— (S, P,)

| d
2 6, 2
(8%, P;) —2— (8%, P
where 6,(P;) =6,(P;) = P,,and 6, is isotopic to 0, relative to P, (that is,
6, is homotopic to 6, through homeomorphisms that coincide on Pf ).

We say that a simple closed curve y C s? - Pf is nonperipheral if each
component of S? = {y} contains at least two points of Pf. A multicurve T =
{ry>---,7,} 1s a set of simple, closed, disjoint, nonhomotopic, nonperipheral
curves in S° — P, .

We say a multicurve I' is f-stable if for every y € I', every nonperipheral
component of f _l( ) is homotopic in s? - P toacurvein I'.

Let y, . , bethe components of f~ (y ) homotoplc to y,rel P, and d

be the degree of the map f| Yija— Ve

The Thurston linear transformatzon Jr: R = R is defined as follows:

fr(yj) = Z %yi where di = degf| DVija Y
i,a la
Since the matrix of f. has nonnegative entries, its eigenvalue with largest
modulus is real and positive; denote it A(f;).
There is a function v: Pf —{1,2,3,..., 00} such that forall x € f_l(y),
v(y) is an integer multiple of v(x)deg_ f. Let v ) be the smallest such function
v . We will say that the orbifold (see [JM]) is hyperbolic if its Euler characteristic

-2 (-7m)

is negative.
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Remark. 1If Card(P;) > 4 then this condition is always satisfied, because vy(x)
will be at least 2 for x € P,.
The following theorem due to W. Thurston is proved in [DH2].

Theorem 4.1. A postcritically finite branched map f: S? = S? with hyperbolic
orbifold is equivalent to a rational function if and only if for any f-stable multi-
curve I', A(fy) < 1. In that case, the rational function is unique up to conjuga-

tion by an automorphism of the Riemann sphere P!,

An f-stable multicurve I" with A(f;) > 1 is called a Thurston obstruction.

In our specific case, if the orbifold is not hyperbolic, the branched map is
equivalent to a polynomial anyway. Rather than treat this technical point, we
refer the interested reader to [DH2] and restate the theorem is less generality.
A branched map f: S? — §? is said to be a topological polynomial if oo is a
critical point and f'l(oo) = {oo}, so that v (oc0) =o0.

Remark. A topological polynomial will have hyperbolic orbifold if its postcriti-
cal set (excluding oo) contains at least three points. The topological polynomials
with nonhyperbolic orbifold are all equivalent to polynomials anyway. These
are precisely the Tchebychev polynomials and the polynomials z" for n > 1.

Theorem 4.2. A postcritically finite topological polynomial f: S? - 8% is equiv-
alent to a polynomial if and only if for any f-stable multicurve ', A(fp) < 1. In
that case, the polynomial is unique up to conjugation by an affine transformation.

We will apply this theorem to a branched map that we will generate from a
PPDFA. Consider Figure 4.3, which shows points representing the postcritical
set and a multicurve. It should be clear that the condition A(f;) <1 is diffi-
cult to verify. In the next section we present a powerful simplification to the
hypothesis of Theorem 4.2.

FIGURE 4.3. A complicated multicurve.
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5. A CRITERION FOR THE EXISTENCE OF OBSTRUCTING MULTICURVES

In this section we prove that if a particular type of branched map is not
equivalent to a polynomial, then we can find a special type of Thurston ob-
struction called a Levy cycle. This enormously simplifies proofs that certain
types of branched maps are equivalent to polynomials since it is easy to show
that in certain cases no Levy cycles exist. We know no general condition for
the existence of an obstructing multicurve.

Lemma 5.1. If f is a topological polynomial and U c S* homeomorphic to an
open disk with oo ¢ U, then every component of f 'I(U ) is homeomorphic to
a disk.
Proof. If f _1(U ) is not a disjoint union of disks, its complement Y has at
least two components. Let Z be such a component that does not contain oo .
Then f maps Z surjectively to X = S? - U. Since
of: S?2 8% s proper, so f:Y — X is proper, so f: Z — X is proper, so
f(Z) isclosed in X ;
of is a topological polynomial, so f is open, so f: Y — X is open, so
f:Z — X isopen,so f(Z) isopenin X.
So Z contains an inverse image of oo, which is a contradiction. O

Definition 5.2. Let f be a Thurston map, and let I" be a Thurston obstruction.
Suppose there exist curves {y,, ..., « = Yo} = A C T such that for each

i=0,...,k-1, y, is homotopic rel Pf to exactly one component y’ of

f '1(yi +1) and f: g 741 has degree 1. Then A is called a Levy cycle. See
Figure 5.3.

Yit1

1+2

FIGURE 5.3. Part of a Levy Cycle. The dots represent
points of Pf .

The following theorem shows that for any branched map, and in particular
for a topological polynomial, a Levy cycle implies the existence of a Thurston
obstruction.

Theorem 5.4. If f is a rational function, then f cannot have a Levy cycle.
Proof. Let d be the degree of f. First observe that f _I(Pf) strictly includes
Pf, since Qf C f_l(Pf) . In fact,
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Card(f ™' (P,)) = d Card(P,) - (2d - 2).

Then P, = f _I(Pf) implies that d =1 or Card(P;) =2.

Suppose f has Levy cycle A. Then Card(Pf) > 4 (otherwise the curves in
the Levy cycle would be peripheral). Let y,, ..., 7, be the Poincaré geodesics
on C - Pf in the homotopy class of A. Then the component y,'. of f -t (Yig1)
homotopic to p; has the same length as y, , in the Poincaré metric of C —
f _I(Pf). In the Poincaré metric of C — P, y; is strictly shorter than y

and since y, is the geodesic in the homotopy class of y; , it is shorter yet.

1
So each y; is strictly shorter than y This is a contradiction. O

i+1°

i+l

The converse of Theorem 5.4 is not true in general, but in the case of topo-
logical polynomials we have the following.

Theorem 5.5. If the topological polynomial f has a Thurston obstruction T,
then f has a Levy cycle ACT.

Proof. This proof is based on ideas of Mary Rees. The idea is to take a Thurston
obstruction I', and consider the mapping

p:T—2F

to the power set of I", which associates to a curve y the set of elements of I
that are homotopic rel Pf to some component of f _l(y). If P had images
that were nonempty and disjoint, then clearly they would have to be singletons,
and P would induce a permutation on I'. A cycle of this permutation will
then give the desired Levy cycle.

Unfortunately, the images of P are neither nonempty nor disjoint, in general.
But we will show that there is a subset of innermost curves I', C I for which the
induced map P;: I'; — 2" does have these properties. We will need to define
essential and negligible curves along the way.

We assume without loss of generality that I" is minimal in the sense that
every sub-multicurve I” c T that is still a Thurston obstruction is in fact I.
This implies in particular that every y € I' is homotopic rel Pf to a component
of an inverse image of some y €T . 4

Write [ =T, U, , where I', = {y e T'| ||l /- ()| = O as i — oo} is the set of
negligible curves of I and I', = ' —T', consists of the essential curves. Since
A(fp) > 1, T, is not empty; otherwise we would have lim,_ __ f* =0.

Lemma 5.6. Let A = (aij)|]R{" — R" be a linear transformation with a;>0
and suppose X =) a,é; € R" is a vector with positive entries such that A"X — 0
as n—oo. Then a, # 0 implies A"¢, >0 as n — co.

Proof. Since everything is positive, there can be no cancellation. O

Lemma 5.6 implies that any nonperipheral component of the inverse image of
a negligible curve is homotopic rel Pf to a negligible curve. On the other hand,
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some component of the inverse image of every essential curve is homotopic rel
Pf to an essential curve.

Indeed, write f.(y) = Z&ep ") a;0 where a; > 0. So if y is essential then
not all of the 6 € P(y) can be negligible; and if y is negligible then all the &
must be negligible.

Therefore if we define P:.T, 6 — 2 by

P,(y)=P(y)NT,
we see that the images of P, are nonempty. This is half of our requirements.
For n a 51mple closed curve not containing oo, we denote by D(n) the
component of §% — {n} not containing oco.
We call a curve y € T, innermost if D(y) contains no essential curves. Let
i ={rvel,|yis 1nnermost} There is always an innermost curve in T, so T,
is not empty

Proposition 5.7. If y € T'; then exactly one component of f _l(y) is essential,
moreover, this curve is innermost.

Proof F1rst let us see that if y € I'; is an innermost curve and a component
y of f~ ( ) homotopic to an essentlal curve n € I',, then 7 is innermost.
By Lemma 5.1 the components of f - (D(y)) are all homeomorphlc to disks;
precisely one of these components U’ is bounded by ' . Moreover, one of the
two components of S* — {n} contains the same post critical points as U'; we
call this component U. Clearly U is the bounded component of S> — {77}

since oo is notin U’.

We will show that U contains no essential curves of I'. If there were such a
curve B €T, then B must separate some postcritical points in U from others.
Also, f must, by minimality of I', be homotopic rel P, to a component ¢’
of the inverse image of some curve § € I',, which of course cannot be in
D(y) since y is innermost. Hence &’ lies out51de U’, and cannot separate any

postcritical points in U’ from others. See Figure 5. 8 This proves that 7 is

innermost.
6

-

T Y
FIGURE 5.8. y €T, implies 7 € r;.

Remarks. It should be noted that the m1n1ma11ty condition was used crucially
in the proof, and without it Proposition 5.7 is false. Also, minimality implies
that I', =T, .
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Lemma 5.9. The images under P, of distinct curves are nonempty, disjoint sets
of curves.

Proof. We have already seen that the images of P, are nonempty. Now suppose
7.7 €L, v, #7, and n € P,(y,)NP,(y,). Let y, and y, be respective
components of f _l(yl) and f _l(yz) that are homotopic rel P, to n € T,.
Let X = P,nD(n); then f(X) C D(y)) and f(X) C D(y,). But D(y,) and
D(y,) are innermost and hence disjoint—a contradiction. 0O

Since P, is a map from a finite set into its power set whose images are
nonempty and disjoint, the images must be singletons. This shows that exactly
one component of /' (y) is essential.

QED Proposition 5.7

The map P, induces a permutation that by minimality of I' must be a
cyclic permutation. Consider the cycle y, +— y, — --- — y, = 7, arising from
the action of P™'.

Lemma 5.10. The elements of the cycle y, — y, — ---+— 7y, =7, (in T,) form
a Levy cycle.

Proof. We know that for each i =0, ..., n—1, y, is the only essential curve
homotopic to a component of f_l(ym) » 80 fr(7;41) = by, + B where B € R"
has only negligible components. Since f _I(D(yl. +1)
disks that do not contain oo, there is only one component y; of f _l(y
homotopic to y;, so b, = 1/d; where d, is the degree of f: y; = Vie1 -

We will be done if we can show that d; =1 for i=0,...,n—1.
Order

) is a union of disjoint

i+1)

r'={y,...,7,_,, negligible curves},

so the matrix of the Thurston linear transformation becomes

A 0
fr= [ * B]
where
0 b, 0
4—| 0 0 ’
0 . bn—2
b,_, 0 0

B™ — 0 as m — oo, and we know nothing about *.
The characteristic polynomial of f.. is

det(AI — A)det(Al — B) = (A" — b,---b,_,) det(Al — B)
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and since the roots of det(A/ — B) all have absolute value smaller than 1, we
see that b,---b, | = 1 since A(f;) > 1. This implies that by=b =--- =
b,_,=1. 0O

n

QED Theorem 5.5

Proposition 5.11. Let A= {y,, ..., 7, =7,} be a Levy cycle, and let y' be the
component of f_l( Yiet) homotopzc refP to y;. Then f: D(y )= D(y;,,) is
a homeomorphism, and in particular D(y,) cannot contain any critical points.

Proof. The mapping f: D(y,f) — D(y,,,) is proper, hence has a degree that is
equal to the degree of its restriction to the boundary, i.e., it has degree 1. O

Proposition 5.12. Let A = {y,,...,y, = y,} be a Levy cycle consisting of
innermost curves. Then the D(y;) contain only periodic postcritical points of f .
Proof. Since Card(Pf) < oo every critical point must iterate onto a periodic
cycle. if x € P, is contained in D(y;) for y, € A, then f(x) € D(y;.,)- So
UD(y ;) will contain all the iterates of x, and in particular, |J D(y ;) will con-
tain whatever periodic cycle x lands on or is part of. Suppose y is not periodic,
but its image z = f(y) € D(y) is periodic. Now for y € A, f~ (D(y)) con-
51sts of components homeomorphic to disks, only one of which has a boundary
7" homotopic rel P to a curve in A. By hypothesis, the curves of the Levy
cycle are 1nnermost so only one curve can contaln the periodic inverse im-
age of z, and this curve must be homotopic to y'. However, y ¢ 7' since
f:D(y') — D(y) is one-to-one.

Since y ¢ D(y') and y maps to z, we know that y ¢ UD(y) So none
of the preperiodic postcritical points are in |JD(y ;). O

Corollary 5.13 (Berstein-Levy). If f is a postcritically finite topological polyno-
mial such that every critical point lands in a period cycle that contains a critical
point then there is no Thurston obstruction.

Proof. Suppose a Thurston obstruction exists. Since every periodic cycle con-
tains a critical point, and since, by Proposition 5.12, the disks of the curves
of the Levy cycle contain periodic points only, there is a curve y 41 such that

the component of [~ (y ;) homotopic to g contains a critical point; this
contradicts Proposition 5. 11 O

The following example illustrates the discussion above.
Example 5.14. Consider the pseudo-PPDFA
O = {{25/216, 169/216}, {91/216, 163/216}} = {8, ©,}
given in Example 2.9. Let
Tg={m;(0)k >0, 6€6,U8,}.
Consider the graph S (related but not quite the same as the spiders we will soon

be seeing) that consists of the radial lines ¢2*?, 0o, together with the segments

2mi25/216 2mi169/216 27i91/216

e e and e | @2H163/216
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751216 57/216
> 27"

TR SRR 27216

sipte o N

25/216

N

163/216 169/216 171/216

FIGURE 5.15. The set S with a Thurston obstruction.

and add points w, and w, in the middles of the segments above. It is clearly
possible to map this graph S to itself by mapping each component of S .—
{w,, w,} with angle 6 to the component with angle m;(6). This mapping

extends to a branched mapping 2 82 , which is fairly easy to visualize. See
Figure 5.15.

This mapping has a Thurston obstruction consisting of the curves marked
I = {y,, n,, n;}. The inverse image of y, consists of one curve homotopic
to itself and one curve homotopic to 7,, the inverse image of 7, consists of
a curve homotopic to #, and a peripheral curve, and the inverse image of 7,
consists of two peripheral curves.

Thus only y, is essential, and it itself forms a Levy cycle.

6. EXTENDING MAPS ON FINITE GRAPHS

In this section we discuss how maps on graphs in s2 may be extended to maps
of the whole sphere, giving a criterion for extendibility. While we are really
dealing with C, we prefer to use the notation S? to emphasize the fact that
the complex structure is not relevant for this construction. In §7, we construct
a graph and a graph map that we will extend to the sphere using the tools in
this section.

A fundamental observation that we will use is
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Lemma 6.1. If g: S' - S ' is an orientation-preserving homeomorphism, then
there exists an orientation-preserving homeomorphic extension ¢: D — D such
that g|s = g. Moreover, g is unique up to isotopy rel s'.

Proof (Alexander’s Trick). We define g(reie) = rg(eie) , which is clearly an
orientation-preserving homeomorphism. We now show that if two homeomor-
phisms on D both agree on S ! then they are isotopic. It is sufficient to show
that if f: D — D is the identity on S' then it is isotopic to the identity on D.

The isotopy H: [0, 1] x D — D is given by
, identity onD-D,,
H(t, re'’) = { !

tf(reie/t) onD,,
where D, ={ze€C:|z|<t}. O

Corollary 6.2. Ifthe orientation-preserving homeomorphisms [, g: S ' 8! are
isotopic rel some finite number of points X C S ' then the extensions g, f:D-
D are isotopic rel X .

Proof. 1t is clear that the isotopy between the extensions is given by the exten-
sions of the isotopy between the maps f and g. 0O

A finite graph T is the quotient of a finite disjoint union of arcs arcs(I'),
which are sets homeomorphic to closed intervals, by an equivalence relation
on the (finite) set of endpoints verts(I') (called vertices) of the arcs. A finite
embedded graph is the image by a homeomorphism from a finite graph into s2.

Let X, and X, be spaces homeomorphic to s? ,and let ', C X, and
I, € X, be connected finite embedded graphs. Let f: ', — I, be a continuous
mapping, which is injective on arcs, and such that forward and inverse images
of vertices are vertices. We call such a map a graph map. If a graph map f
has an extension f: X , — X, that is an orientation-preserving branched map
that is injective when restricted to each component of X, — I, , then we call f
a regular extension.

Corollary 6.3. Let f, g: T, = T', be graph maps coinciding on verts(I';) such
that for each y € arcs(I';) we have f(y) = g(y), and suppose that f and g
have regular extensions f,3%: X , — X,. Then there is a map y: X, — X,
such that f = oy and w is a homeomorphism isotopic to the identity rel
verts(I')).

Proof. Since T, is connected, each component U of X, —T'; is homeomorphic
to a disk. Since f and F are injective on U , the images f(U) and g(U) are
homeomorphic to disks. The map w is defined on each component U by
(§|U)_1 o f and on each arc y by (§|y)_1 o f. Corollary 6.2 shows that vy
is isotopic to the identity rel verts(I',). The isotopies can clearly be chosen to
coincide on the shared boundaries of the components, creating an isotopy on
the whole sphere. O

For convenience in proving the next proposition, we will assume that both I',
and I', are piecewise-linear, and that the graph map f preserves length near the
vertices. If oo is in a graph then piecewise-linear means that an arc containing
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oo is straight when projected into C. By possibly adding more vertices, we
can assume that each arc is in fact a straight segment. The length-preserving
properties of f are used only to minimize the notation.

For each vertex x € verts(I'}), let D, be the disk of radius r around x, we
will assume that r is chosen sufficiently small so that D, and D, are disjoint
when x # y; that no arcs enter D, other than those leading to x ; that these
arcs are straight in D_; and that f is length preserving there.

We can now define the sectors at each vertex x as the components of D, -
I',, and extend f sector by sector to a map f on each D, . Let y, and 2y
be two arcs bounding a sector with y, following y, in counter-clockw1se order.
Choose 6,, 6, arguments for these arcs satisfying 0 < 6, — 6, < 27 (if there is
only one arc leading to x, then this condition forces us to take 0,=10,+2m).
Let 0 and 0 be the arguments of the i 1mages of the y, by f. Let (p, 0) be
the polar coordmates centered at x,and (p’, 0') the polar coordinates centered
at f (x) The extension is given by (p,0,+60)— (p', 6,+6") such that p = p'
and 0’ = ((0 ) /(6,—6,))6. (If f is not distance preserving, then p’ will
be some function of p .) This formula says that we map sectors in the domain
in a counter-clockwise way onto sectors in the range.

Proposition 6.4. The map f:T'| — ', has a regular extension if and only if for
every vertex y € I, and every component U of X, —T,, f is injective on

U Dx)nU

xef ')

The extension f may have critical points only at the vertices of r,.

Proof. We first further extend f to neighborhoods T, of the arcs a € arcs(I')).
There can be no obstruction to this, since the extens1on at each vertex has been
chosen to be orientation preserv1ng On each linear part of I', we extend f
hnearly by interpolation in an orientatlon-preservmg way along small circular
arcs in 9D, with x € verts(I')), as is suggested by Figure 6.5.

Let
r=\J nuvu U 7.
xeverts(T')) ac€arcs(T'))

Since I'; is connected, the components of X, —I", are homeomorphic to disks.
If for each component U the map f is injection on U nar then we can extend

f toallof U inan injective way using Lemma 6.1. This w1ll yield a branched
map f: X, — X, that coincides with f on I, .

By our hypothesis, f is injective on Uxevens(r )D NU. Suppose f were

not injective on U N Y y T, Then f would not be injective on the

aGarcs
neighborhoods in U of two arcs in ', . This implies that f would not be
injective on the sectors that are in U at the end of these arcs. This contradicts
the hypothesis. This gives the result in one direction.

The converse is immediate.
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FIGURE 6.5. Extending to a neighborhood of the graph.

Note that the map f can have critical points only at the vertices of the graph
I',, since it is locally injective elsewhere. The degree of the critical point can
be computed from the number of times that the neighborhood D, of a vertex
x “wraps around” its image. O

Corollary 6.6. Let ', , T, C S? be connected graphs, and h:T| —» T, a home-

omorphism. Then h extends to a homeomorphism h: S* — S* ifand only if h
preserves the circular order at all the vertices of r,.

Proof. There is only one vertex x  in h_l(x) for each vertex x of I',, and
the map induced on D, is injective since s preserves circular order. O

7. DEFINING THE BRANCHED MAP ON S2

In this section we construct a branched map f: s? - §? from a PPDFA
6 ={6,,...,0,}. The branched map is constructed to mimic the dynamical
behavior of a polynomial that can be marked with the angles de,,...,de,.
The main complication is that angles may be related by ~g > in which case the
external rays with those angles land at the same point in the filled-in Julia set
for the polynomial.

We will begin by defining the ©-spider Sg, which is a graph corresponding
to the union of the marked rays to critical points and their images, and a map
Jo: Sg — Sg that corresponds to the polynomial. We will then extend fo toa

Thurston mapping fg: s? 8%,

Construction of Sg. If E C T is a finite subset, denote by u(E) the center of

mass .
2nif
wE) = Card(E) eEeEe '
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Consider the set
T={d"9|6€0©, p>0, 0<i<n};
since the @ are rational, it is clear that 7 is a finite set.

For 6 € T, let [0] be the ~¢ equivalence class in T containing 6 .
Define the leg L, by the union of straight segments

Le - O'u([e])eZm'B U eZniOOO’

and the O-spider
Se=J L-
6eT
Construction of fg. To define a map Jo: S¢ = Sg that maps L, to Ly,, we
need to know that legs intersect only at their endpoints. Proposition 7.1 says
that this is the case.

Proposition 7.1. The equivalence classes of ~g are unlinked.

The proof requires a number of lemmas of intrinsic interest.

Let C,, ..., C,; be the equivalence classes of the equivalence relation on
T — U}, ©; given by x equivalent to y when {x, y} are G-unlinked. Note
that two angles x and y are ©-unlinkable precisely when they both belong to
the closure of some class.

The proofs of Lemma 7.2(1)-(4) are left to the reader.

Lemma7.2. (1) Let {x,y} C C, and {u, v} C?j,for i#j. Thenif {x,y}n
{u,v} =0 then {x,y} and {u, v} are unlinked.

(2) Let ¥ C T be a finite set. Then Y is O-unlinked if and only if ¥ C G
for some i.

(3) The number d of equivalence classes satisfies d = 1+E;’=1(Card(9i)— 1).

(4) Each C; is a finite union of disjoint open arcs of T with the following
property: the set of boundary points of the arcs composing each C, can be written
in circular order as {x,, y,, X, , Viseoos X =Xo, ¥, =¥y} Such that for every
i, the points x;,y; belong to ©, for some k;, and k; # kj if i #j. See
Figure 7.2. '

FIGURE 7.2. Labels on the boundary of G.

It follows from 7.2(4) that for each class C;, we can construct a topological
circle q by identifying the points X; and Y- Since X; and y; are part
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of the same preangle, the map m 4. X — dx induces a continuous mapping
my :C,—T.

51

Lemma 7.3. The map m 4.i IS an orientation-preserving homeomorphism.

Proof. Clearly m, ; is a local orientation-preserving homeomorphism; since

C; is compact it is proper, so it is a finite covering map, of some positive

degree. Since UC = T, the sum of the degrees of the m 4,; must be d. By
Lemma 7.2(3), there are d classes C,, so each m 4,; must have degree 1. O

Corollary 7.4. The circular order of the points of the closure of an equivalence
class C is preserved by zw— dz.

Note that the endpoints of the arcs of the C; may be identified by z — dz,
but this does not alter the circular order.

The following three lemmas say that we will be able to connect the legs with
angles that are related by ~¢ without any legs crossing.

Lemma 7.5. Suppose 6, and 0, are ©-related, 0 and 0 are O-related, and
that {6,, 0,} »¢ {6], 0 H)- Then {6,,0,} and {01 , 65} are unlinked.

Proof. Suppose that {6, , 6,} and {91 , 0, ,} are lmked Then the angles have

circular order 6, 0 0, 02 in T. Since 60, »¢ 0 1, {6,, 6 }ﬂ{B1 , 0, )} =0
so the four pomts are dlstmct
For every m, d™ 6, and d" 6, are O-unlinkable; hence both belong to the

closure C; of some class, and s1m11arly ame;, d", € C . Since {6,, 0,}

and {01 , 0 ,} are linked and disjoint, Lemma 7.2(1) 1mp11es iy = J,- But
Corollary 7.4 implies that 46, , d 01 ,do,,d 0 have the same circular order as
0,, 01 , 0,, 02 , and hence they are linked.
We now proceed by induction on m. If i, = j and {d"6,,d™6 ,} and
{d™6,,d™0,} are linked and disjoint, then as above we see that i,
This implies that {6, 6,} ~g {6, 65}, a contradiction. O

_-]m+l

Lemma 7.6. Suppose {6,, 0,} and {y,, w,} are unlinked, and that {6,,0,}
and {y,, y,} are unlinked. Then {6,,0,} and {y,, v} are unlinked.

Proof. This is easy to see. O

Proof of Proposition 7.1. Let Q and Q' be distinct linked ~e equivalence
classes. Then there exist {6, 6,} Cc Q and {01, 02} c Q' with {0,, 0}
and {91, 02} linked. Now 6, ~g 6, and 9 ~e 9; so there exist m, m’
(with m, m' possibly 0) such that in the sequences 0,,¥,...,¥,,0, and
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6,,v,,..., ¥, 8, each angle is O-related to the next. Using Lemma 7.5, we
know that {6,, w,} and {9'l , l//l,} are unlinked. By using Lemma 7.6 induc-
tively, we see that {6,, v,} and {9'1 , 9;} are unlinked. Now we use Lemma

7.6 inductively again and see that {6,, 6,} and {6,, 6} are unlinked, a con-
tradiction. O

Choose a map f on Sg by letting
flr, Lo = Lyg

be any homeomorphism that fixes oco; this can be done because if 6, ~e 0,
then df, ~g df,, and such an f satisfies f(u[6]) = u[d0]. It is possible to
write down a formula for f on each leg L, , but since any homeomorphism
will do fine, it would not be instructive to do so.

Extending f to 79.
Lemma 7.7. The set Sg is a finite connected graph, with vertices

{u([6])]6 € T} U {oo}.

Proof. Since each leg contains oo, Sg is connected. To show it is a graph with
the given vertices, we must show that the L, intersect only at oo and u([6]).
Clearly, outside the unit disk, the L, intersect only at oo. One can easily show
that if two finite subsets of the unit circle are unlinked, then their convex hulls
do not intersect. Thus, the convex hulls of the points of each equivalence class
in T/~g do not intersect. For each equivalence class, the points u([6]) and
the segments of D N L, that intersect u([0]) are contained in these convex
hulls, and hence they do not intersect. O

Theorem 7.8. The map f: S — S extends to a topological polynomial 762 s? 5
5?2 of degree

d=1+ Xn:(Card(Gi) -1

i=1
with strictly preperiodic critical points u([8,]) and oo of local degree Card(8,)

and d , respectively. Moreover, the Thurston equivalence class of 79 is indepen-

dent of the choice of extension or the choice of the homeomorphisms Jol L

Proof. First we will show that the map fg satisfies the hypothesis of Proposition
6.4 of §6, and can therefore be extended to an orientation-preserving branched
map whose only critical points are among the u([6]), 8 € T and oo.

Let f be an extension of Jg tosmall disks D, of the vertices x € verts(Sg)
as in §6. We need to show that for every vertex y in f4(Sg) and every com-
ponent U of Ry ,the map f is injective on (Uxef_.(y) D )nU.

In fact we will show that fg is injective on the vertices of dU . Since, at
each vertex x € 9U except oo, the intersection U N D, is a single sector,

this implies the hypothesis at finite vertices. To do this we need the following
lemma.
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Lemma 7.9. If d6, ~g d0,, and there exists k so that 0, and 0, are in C
then 6, ~g 6, .

Proof. By our hypothesis, there exist n angles @y5---> 9, (with n possibly
zero) such that in the sequence df,, ¢,, ¢,,...,¢,,d6,, each angle is ©-
related to the next. Because m, maps fk surjectively onto T (Lemma 7.3),
there also exist angles ¢, ..., ¢, € C, such that dg; = ¢,. We now have

that consecutive angles in the sequence 6,, ¢}, ¢, ..., ¢, , 6, are ©-related.
So 6, ~g0,. O

The intersection U NS’ is a subset of some C, The finite vertices in dU
are a subset of

{u(6)0 € TNT).

If two such vertices x, y map to the same vertex Jo(x) , then the angles of the
legs attached to x and y must map to the angles of the legs attached to fg(x).
The angles of the legs attached to fg(x) are equivalent, and the angles attached
to x and y are in the same ?, , so these angles are equivalent by Lemma 7.9.
Thus, we must have x = y.

In the case x = co we have to see that f is injective on D _NnU. At oo, f

is given by re’ v re'?? , the angular coordinates of the points in U near oo

are all in some C;, and by Lemma 7.3 f will be injective on D _nU.

Applying Proposition 6.4 constructs a branched map fe S? — 82 to which
we will later apply Thurston’s theorem.

By construction, the critical points of f e must be among the vertices of the
graph S.

Let x = u(E) be the vertex corresponding to the equivalence class E . If E
contains no critical angles, i.e., EN®, =& for all 08, € 0. Then E C (by
Proposition 7.1 and Lemma 7 2(2)) for some I, and by Lemma 7.3 md| g 18
injective and preserves circular order. This means that the vertex x is not a
critical point. See Figure 7.10.

If ® C E, then all the legs L, with 6 € ©, map to a single leg, and the
restriction of m, to the angles of legs in any sector bounded by the L, with

0 € 8, is also injective and order preserving. This means that ?e maps such

FiGURE 7.10. Local degree is one at x .
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0 d€)1=d92 = d0;

2 0,
v~

03

FIGURE 7.11. A critical point of degree 3.

a sector of D, to the full disc D, o) with degree 1, and so x is a critical point
with local degree Card(®,) . See Flgure 7.11.

This covers all the vertices of the spider, except the point at oo. Since the
map on the legs is induced by z — ¢ , the only way in which the degree could
be lower than d is if a sector at infinity has an opening greater than 1/d . This
does not occur since m, is injective on C;.

The degree of 79 is now immediate from the Riemann-Hurwitz formula.

Clearly the orbits of the critical points are finite, so 79 is a Thurston map-
ping. It remains to show that no critical point is periodic, which is a bit more
delicate than one might imagine.

Lemma 7.12. If no Oj is periodic, then no [Oj] is periodic.

Proof. Pick afixed ©, . The orbit of ©, is eventually periodic, and the periodic
part of the orbit contains no angle in any © i since these are assumed not to
be periodic. Each angle in the periodic part of the orbit is therefore in one of
the C,, and these periodic angles will then have an itinerary C, , C, , ..., Ck
(up to cyclic permutation). Let Q be the set of rational angles that have a cychc
permutation of Ck R Ck y eee Ck as itinerary.

For any rational angle 6 in the complement of Q and any ¢ € Q, we will
show that 6 is not ©-related to ¢. Thus 6 »g ¢ for any ¢ € Q, and therefore
the equivalence class of ©, is not periodic since 8, isnotin Q.

Suppose there is a rational angle 6 ¢ Q and ¢ € Q such that 6 'is O-related
to ¢. Then there is some smallest i such that d='e ¢ Qand d'0=yeQ.
Since d''6 € BCk for some j, and since 6 is rational, y is either preperiodic
or periodic. If it is preperiodic there are two angles (the last preperiodic angle
in the orbit of w and the last periodic angle in the orbit of y) in the same C, :
that map to the same angle, contradicting Lemma 7.3. If y is periodic then
we get a contradiction also since the inverse image of ¥ in ij is accounted

for so we cannot have another inverse in 0C, . O
J

Finally, that the Thurston equivalence class of 79 is independent of the
choice of extension or the choice of the homeomorphisms fg| L, follows from
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Corollary 6.3. If f; and f, are two such extensions, the diagram
2 2
(87, Pp) —— (S°, P;)

%) A
2 identit 2
(8%, P,) == (S, Pp)
commutes and y is isotopic to the identity rel Pfo .
QED Theorem 7.8

We will use the notation fg to refer to fe when there is no danger of
confusion.

8. THE TOPOLOGICAL POLYNOMIAL fe HAS NO THURSTON OBSTRUCTION

This section is devoted to proving the following result.

Theorem 8.1. The topological polynomial fg has no Thurston obstruction.
Proof. Assume that fg has a Thurston obstruction. We know from Theo-
rem 5.5 that if fy has a Thurston obstruction then it has a Levy cycle A =
{%9> -+-» 7% = 7} - We will show that any curve y € A can only intersect the
Le. in a way that does not separate the points of Po N D(y). This implies
that the angles of the legs to the points contained in the disks of the Levy cycle
must be ©-equivalent, and hence the curves of the Levy cycle are peripheral, a
contradiction.

Let X C S° be closed, let y be a simple closed curve in S? — X, and let
p be a union of closed arcs in S* with endpoints in X . Define the geometric
intersection number by

py= min Card(pny').
y' isotopic to y rel X

We will say that p intersects y essentially when p-y #0.

A

Essential Inessential Inessential
FIGURE 8.3. Essential and inessential intersections. The
dots represent X .
Of course, p-y depends on X, but in our application, X will always be
Pf uQ fo and it is safe not to mention it.

Our object is to show that L, -y = 0, for any critical leg L, with 0 € 8,
and any curve y € A.
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Lemma 8.5. If 0 € T is a postcritical angle, then

> Ly, <LgVipy-
$eT
d¢=6

Proof. By an isotopy, move y, +1 7€l X to be in minimal position with respect
to L,, and let y; be the component of fe_l(yi +1) homotopic to y;,. Then we

SCC
—1
U L,nyic U (Lynyy))ny,
€T
do=0

and since, by Definition 5.2, fg is injective on y'. the result follows. 0O
Corollary 8.6. For a periodic x € X and y, € A, L(fg"(x))- Vien = L(x) -7
forall j,n.

Proof. L(x)-7; < L(fg(%)) -7, < L(fg (X)) 7j,, < - S L(x)-y,. O
Lemma 8.7. If x € X is strictly preperiodic then L(x).-y=0 for any yeA.

Proof. Let x € X be a strictly preperiodic point, and let y = f;k be the first
periodic point in its orbit. Let y' be the periodic inverse image of y, and let

_ fok—l
= 3.
Then for any y, , € A, we have
LO)) -7+ LO") -7, S LB) 7,
by Lemma 8.5, but L(y')-y, = L(y)-y,,, by Corollary 8.6,s0 L(y")-y,=0. O

Note that .
2
S" - U U L,
i=106€8,

consists of d simply connected components 6‘1 e C ; we call patches, where
¢nsS I C,; in particular there are exactly d of them.

We are now in a position to finish the proof of the theorem. The previous
lemma implies that the legs L, with 6 € ©, for any I/ do not intersect any

curve in the Levy cycle essentlally If yeA, then the orbit of the postcritical
points in D(y) and the legs attached to them must have the same itinerary of

patches. That is, if x,y € D(y) N P , the legs L(f°j(x) f°j(y)) € 6‘
for some ;. Since the legs L(fg'(x /(x)), L( fo /(y)) are in the same patch, thelr
angles are m the same equivalence class C; for all j. This means that the

angles of the legs L(x), L(y) are O-equlvalent Since all legs with angles in
the same O-equivalence class land at the same point by construction, the curves
in A must be peripheral a contradiction. O

QED Theorem 8.1

9. APPLYING THURSTON’S THEOREM TO Jo

In this section, we apply Theorem 4.2 to the branched map 792 s? - §?
constructed from a PPDFA in §7. By Theorem 8.1, we see that there exists a
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polynomial p that is Thurston equivalent to fg; i.e., there exist homeomor-
phisms ¢, ¢': s? o p! , isotopic rel Pfe and such that the diagram

(s*, P,) —t— (', B)

fel pl
(8%, P,) — @', P)

commutes. We want to show that p is naturally a marked polynomial, and
that the marking angles come from the original PPDFA ©. This is not really
difficult, but it is not enough to simply normalize p to be monic and centered.
There are in general d—1 different conjugates of p that are monic and centered,
and we need to distinguish one of these.

To do this, we need to show that the spider ¢(Sg) can be embedded in p!
so that the image is made up of external rays of p. In order to make this
embedding unique, we will need to consider the Green’s function [JM] Gp of
K, , and to choose for each leg L, of Sg a parametrization p,: [1, co] — L,
mapping infinity to infinity.

Proposition 9.1. There exists a unique embedding ¥': Sg — P! mapping Pfe to
P, and isotopic rel Pfe to ¢, such that the image of each leg is an external ray,

and
G, (¥(p(1))) = logt
Proof. The mapping ¥ will be a fixed point of a contracting mapping. The
contraction will come from the fact that p is expanding in the orbifold met-
ric. Unfortunately, p is strictly but not strongly expanding: the expansion
factor tends to 1 near infinity; this requires setting up the space on which the
contraction acts so that one never needs to measure distances near infinity.
Consider the space 7 of spider mappings

1 . .
Fo={w:Sg—P W(Pfe) = P, and y isotopic to ¢|Se relee}

and define a mapping t4: S — S as follows. For each 6, let us first find
the leg 7(w(L,)). There exists a unique component X of p_l(t//(Ldo)) — 00
that contains ¢'(u[0]) = ¢(u[6]) .

o If ¢(u[f]) is not a critical point the map p will be injective on X ; we
choose 7(w(L,y)) =X .

o If @(u[6]) is a critical point, of local degree m, then X is the union
of m legs, which have a natural order (not simply circular order) since
exactly one component of the complement contains y(u[d6]). The same
construction with ¢ instead of y has the same property, and ¢'(L0)
has some position in that order. We choose 7(w(L,)) to be the leg that
occupies the same position.

Define t(y)(py(t)) € p_l(pda(td)) to be the unique inverse image in

(¥ (Ly)) -



CLASSIFICATION OF CRITICALLY PREPERIODIC POLYNOMIALS 759

We need to show that t(y) € S . First observe that ¢ Se and 7(g| Se ) only
differ by the parametrizations of the legs. Choose an 1sotopy RS [O 1],
with y, = ¢|s to y, =y, andliftittoa l//s starting at ¢’ |s ; Le., a//s' is the

spider mappmg depending continuously on s, Wthh satisfies y o fg =po l//
and l//o ¢'. This is possible, and the 1sotopy y/ is unique, by the curve,

lifting property of covering spaces. For all s, a// differs from (y,) only by a
parametrization of the legs, so t(y) is in the correct isotopy class.
Unfortunately, there is no metric on 7, for which 7 is contracting; and we

need to restrict to an invariant subset 5”' , given by the following conditions:
e oneachleg L,, y maps the segment Pg([2, ]) to an external ray of p,
with G ('//(Pg(l))) log:z.
o G,(w(py(il, 21))) < log2.
It is not quite obvious that 5’;; is nonempty, but we will leave this to the
reader, as well as the easy verification that it is invariant. We also leave the
reader to verify that any two elements of 5’;; are isotopic through elements of

/

Fo - ,
We will put a metric d(-, -) on #g as follows:
Choose v, ¥, . Let

I(Wo(Pe(1)), w1 (py(1)))
= inf{the orbifold length of the curve w (p,(1))|0<s <1},

where the infimum is taken over all isotopies y, joining y, and y, through

/
- .

Then define the metric

d(vy, v,) = sup (W (pg(1)), W (py(1))) -
1<€t<2

An isotopy between Y and y, liftstoan 1sotopy between 7(y;) and t(y,),

and in the orbifold metric the lift of any curve o in the compact set {z1G,(2) <

log2} is shorter than « by a fixed factor K < 1. Thus 7: 5” — 5” is strongly
contracting, and thus 7 has a fixed point ¥.
For any initial condition ¥ we will have that r”(x//(po(t))) CR, for >

24" and some 6, . Since the distance between r"(t//(pa(Z))) and ¥(py(2))

goes to zero we must have that ¢, approaches some angle 0'. Therefore ¥ is
a spider whose legs are external rays, and satisfies G,(¥(py(1))) =logt. O

Proposition 9.2. There exists a unique affine mapping o: C — C such that Pe =
aopoa! is centered and monic, and such that for all 6 € T, we have that
a(¥)(L,) is the external ray of pg at angle 0.

Proof. Either 0 € T, in which case W(L,) is a distinguished fixed ray of p,
or one sector at infinity for (S2 , Sg) contains the line [1, oc], and there is a
unique distinguished fixed ray in the component of C — (Kp UW¥(Sg)) corre-
sponding to that sector.
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There are d different affine mappings conjugating p to be monic and cen-
tered, since conjugation by a rotation of 2z/d leaves the polynomial monic.
However, there is a unique affine mapping a such that Pg =aopo o' is cen-
tered and monic, and such that the distinguished fixed ray is R, in C- K,

The circular order of the external ray ao'¥(L,) and the rays at angles k / d
k=0,...,d~—1,is the same as the circular order of 6 and the elements k/d ,
k=0,...,d- 1 of T. Hence the itinerary under p of a leg ao¥(L,) with
respect to C Uk R, k/d coincides with the itinerary of 6 under m 4 With respect

to T—J, k/d . Since this itinerary is essentially the development of 6 in base
d, we have shown that a o W(L,) is the external ray of Dg atangle 6. O

10. ProoFs oF THEOREMS II aND III
We are now in a position to prove the main theorems.

Proof of Theorem II. There is an obvious mapping PA, given in §2, which
associates to a marked polynomial a collection of d-preangles. Let % be the
set of PPDFA’s.

Let (p(z);6,,...,0,) be a marked polynomial of degree d, and

PA(p(z);0,,...,0,)=(0,,...,0,).

The final result of the previous three sections is to define the map AP: © —
Pe from & to &, and it is clear from Proposition 9.2 that PA(pg) =90, i.e.,
PA AP =id.

It remains to show that

Lemma 10.1. A4PoPA4A=1id.

Proof. Let
PA(p(2);6,,...,0,) =6,
and let
)= U Ry.
0eT
There are homeomorphisms 4: Se — S 6 that map the leg L, to the

external ray R, for all 6 € Ty; and they differ only by a parametrizations
of the legs. Moreover such a homeomorphism preserves circular order at the

vertices, and by Corollary 6 6 can be extended to a homeomorphism #: s T.

The map A 'opoh: (S , Sg) — (S , Sg) is an extension of a spider map
isotopic to fg so by Theorem 7.8 h'o p o h is equivalent to 79 Since p is
equivalent to any conjugate of itself, we have that p is equivalent to f, e and

thus AP(©) = (p(z); 01 yeer, @ ) - It follows from Proposition 9.2 that 6, = 0
forall i=1,...,n. O

QED Theorem II
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Proof of Theorem III. Theorem III is an easy consequence of Theorems I and
IL.

Proof of Theorem 1I1. In one direction, if p is a centered monic polynomial
with critical points {w,, ..., ®,},and if (,,...,6,) and (6],...,6.) are
two markings of p with Ro and R, both landmg at p(w,), then the rays of

©, and 6 also land at the same pomt and by Theorem I, we have ©, ~¢ 9

To show the converse, reorder 6’ so that 0, ~o 8 e O~ Gn.
Let (p;6,,...,0,) and '; 91 ..., 0 ) be marked polynomlals that sat-
isty, respectively, PA(p;0,,...,0,) = 6 and PA(p'; 0 Gn) =0.

These exist by the surjectmty of PA By I, the external rays of p with angles
in 6 all land at the same (critical) point as those with angles in ©, . Since the

elements of ® are d-preangles, the external rays of p with angles in 9 all
map to a ray landing at the corresponding critical value. So we see that there is
a marking (9; e 0;) of p such that

6 =PA(p;0,,...,0,),
and the theorem follows from the injectivity of PA. 0O
QED Theorem III
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