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1. Introduction

In the theory of iterated rational maps, the easiest maps to understand are post-
critically finite: maps whose critical orbits are all periodic or preperiodic. These
maps are also the most important maps for understanding the combinatorial struc-
ture of parameter spaces of rational maps.

We know a lot about postcritically finite rational maps. The main result is a
theorem of Thurston [DH] which gives a purely topological criterion for whether or
not a given postcritically finite branched covering map f : S2 → S2 of the two-sphere
to itself is equivalent (in a precise sense, given in Definition 2.2) to a rational map.
Either a postcritically finite branched cover is equivalent to an essentially unique
rational function or there is a “Thurston obstruction”. Such an obstruction is a
collection of simple closed curves such that a certain associated matrix has leading
eigenvalue at least 1.

Thurston’s theorem has two limitations. One is that the criterion is not easy
to check, even though it is purely combinatorial-topological. More relevant to the
present paper is the fact that the degree of the map enters in an essential way into
the proof; the proof just does not go through for transcendental functions.

The simplest non-trivial transcendental maps are exponential maps z "→ Eλ(z) =
λ exp(z) with λ ∈ C∗ := C \ {0}. These have been investigated by many people;
see for example [BR, EL, DGH, S1, RS1] and the references in these papers. Ex-
ponential maps have no critical values, but the unique singular value 0 plays an
analogous role.

Postsingularly finite exponential maps are those for which the orbit of 0 is prepe-
riodic. There are countably many such parameters. Bergweiler (unpublished) has
used value distribution theory to estimate their density with respect to |λ|. There
are no exponential maps with periodic singular orbits (but there are countably
many hyperbolic components in exponential parameter space; these are completely
classified in [S2]).

A topological exponential map is a covering map f : S2 \ {∞} → S2 \ {0,∞};
this bears the same relation to exponentials as branched coverings S2 → S2 bear to
rational functions. Our Main Theorem 2.4 is the analog of Thurston’s characteri-
zation theorem: we show that a postsingularly finite topological exponential map
is either equivalent to a holomorphic exponential map or it admits a (degenerate)
Levy cycle. As with Thurston’s result, the complete classification of postsingularly
finite maps is a separate step; we only state the result here and refer to [LSV] for
details.

In the mid-1980’s, [DGH] gave a conjectural description for postsingularly fi-
nite exponential maps in analogy to and as a limit of results for polynomials
λ(1 + z/d)d with a single finite critical point as d → ∞. The theory of spiders
[HS] was developed in the process. Our results confirm the conjecture in [DGH].

We use the same machinery for our proof as Thurston: given a postsingularly
finite topological exponential map f : S2 → S2, we set up a Thurston map σf :
Tf → Tf in an appropriate Teichmüller space Tf and show that either σf has
a fixed point, in which case the topological exponential map is equivalent to a
holomorphic exponential map, or the iteration of σf diverges in Teichmüller space,
and there is a degenerate Levy cycle.

As mentioned above, the proof given in [DH] for Thurston’s result on rational
maps depends in an essential way on the fact that rational maps have finite degree;
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it does not work for exponentials. That paper shows that, depending on the initial
point of the iteration of σf , there is a subset of Teichmüller space (with compact
projection to moduli space) such that as soon as the iteration leaves this subset,
the existence of a Thurston obstruction follows. A key ingredient in this proof is
an estimate about how moduli of annuli on the finitely punctured Riemann sphere
increase when erasing the points in f−1(Pf ) \ Pf ; the cardinality of this set is
bounded by d|Pf |, which diverges when d → ∞ (see the beginning of Section 3 for
details).

We use a different strategy to relate the failure of convergence to the existence of
a Thurston obstruction. The cotangent space T ∗

τ Tf to Teichmüller space at τ ∈ Tf

is a certain space Q1(τ ) of integrable meromorphic quadratic differentials on C,
with at most as many poles as the length of the singular orbit (plus possibly a
pole at ∞). The dual of the L1-norm on the Q1(τ ) space defines the infinitesimal
Teichmüller metric on Tf (see Subsection 3.2). The analytic map σf : Tf → Tf is
weakly contracting for this metric in the sense that ‖dσf‖ = ‖(dσf )∗‖ < 1. This is
not surprising: all analytic maps are non-expanding; but the norm may tend to 1
as we iterate σf .

More precisely, if the sequence

τ0, τ1 = σf (τ0), . . . , τn+1 = σf (τn), . . .

does not converge in Tf , then there must exist qn ∈ Q1(τn) with ‖qn‖C = 1 such
that limn→∞ ‖(dσf )∗(qn)‖C = 1.

In this case, the qn cannot converge in L1(C). In fact, poles must coalesce, and
very fat annuli in the complement of the poles of the qn must develop; the core
curves of these annuli will present us with the needed Levy cycle.

Proving this requires understanding how the mass of degenerating quadratic
differentials is distributed. We prove in Section 4 a “thick-thin” decomposition
theorem which describes this distribution in considerable detail.

Although in this paper we use this decomposition only for integrable meromor-
phic quadratic differentials on the Riemann sphere, it is proved for integrable qua-
dratic differentials on an arbitrary Riemann surface; moreover, the constants that
appear are independent of the topology. As such it may have many other appli-
cations: Veech curves (already in progress), compactifications of moduli spaces,
complex dynamics, conformal field theory, and perhaps other subjects as well.

Exponential maps are of course rather special transcendental entire maps. How-
ever, we believe that our methods should help to prove a similar result for larger
classes of transcendental maps.

Organization of the paper. In Section 2, we give the main definitions, state the
main theorem (Theorem 2.4) and give the resulting classification of postsingularly
finite exponential maps. In Section 3 we discuss Thurston’s iteration in Teich-
müller space and in particular its contracting properties, and we prove the main
theorem modulo a key proposition about contraction of quadratic differentials under
repeated exponential push-forwards, which will be proved in Section 6. In Section 4
we state and prove our “thick-thin” theorem for quadratic differentials. This will
be used in Section 5 to provide limit models for quadratic differentials when some
annuli become infinitely fat; these limit models are either integrable or they are
multiples of dz2/z2 on C. In Appendix A we provide some background information
about the geometry of Riemann surfaces with short hyperbolic geodesics.
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2. The characterization theorem

2.1. Definitions and statement of the main theorem. Conventions. Let
S2 be an oriented topological 2-sphere with the two distinguished points 0 and ∞.
All homeomorphisms and coverings in this paper will be understood to preserve the
orientation of S2 or C. We write f◦n for the n-th iterate f ◦ f ◦ · · · ◦ f of f , and
Eλ(z) = λez for λ ∈ C∗ := C \ {0}.

Definition 2.1 (Topological exponential maps). A universal cover g : (S2\{∞}) →
(S2 \ {∞, 0}) will be called a topological exponential map. It is called postsingularly
finite if the orbit of 0 is finite, hence preperiodic. The postsingular set is Pg :=⋃

n≥0 g◦n(0) ∪ {∞}.

Definition 2.2 (Thurston equivalence). Two postsingularly finite topological ex-
ponential maps f and g with postsingular sets Pf and Pg are called Thurston
equivalent if there are two homeomorphisms ϕ1, ϕ2 : S2 → S2 with ϕ1|Pf = ϕ2|Pf ,
Pg = ϕ1(Pf ) = ϕ2(Pf ) and ϕ1(∞) = ϕ2(∞) = ∞ such that the diagram

(1) S2 \ {∞, 0} S2 \ {∞, 0}

S2 \ {∞} S2 \ {∞}

!

!

" "
f g

ϕ1

ϕ2

commutes and ϕ1 is homotopic (or equivalently isotopic) to ϕ2 on S2 relative to
Pf .

Since 0 is the only omitted value of f and g, the relation ϕ1 ◦ f = g ◦ ϕ2 on
S2 \ {∞} implies ϕ1(0) = 0 and hence ϕ2(0) = 0.

Definition 2.3 (Essential curves and Levy cycle). Let g be a postsingularly finite
exponential map. A simple closed curve γ ⊂ S2 \ Pg is called essential if both
connected components of S2\γ contain at least two points of Pg. A Levy cycle of g is
a finite sequence of disjoint essential simple closed curves γ0, γ1, . . . , γm−1, γm = γ0

such that for i = 0, 1, . . . , m− 1, one component γ′
i of g−1(γi+1) is homotopic to γi

relative to Pg and g : γ′
i → γi+1 is a homeomorphism.

Levy cycles are preserved under Thurston equivalences. Let Ui be the compo-
nents of S2 \ γi not containing ∞; if all restrictions g : U i → U i+1 are homeomor-
phisms, then the Levy cycle is called degenerate. It is easy to see that in our case,
every Levy cycle is degenerate. Degenerate Levy cycles have the convenient prop-
erty that one can collapse all postsingular points surrounded by each simple closed
curve in all Levy cycles and thus obtain another postsingularly finite topological
exponential map without Levy cycle.

Main Theorem 2.4 (Characterization of exponential maps). A postsingularly
finite topological exponential map is Thurston equivalent to a (necessarily unique)
postsingularly finite holomorphic exponential map if and only if it does not admit a
degenerate Levy cycle.

2.2. Classification of postsingularly finite exponential maps. The main the-
orem allows us to classify postsingularly finite exponential maps completely. This
has been done in [LSV]; we briefly state the main result in Corollary 2.6 below. To
do this, we need to introduce dynamic rays and to state one lemma.
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Let f be an entire holomorphic map. A point z ∈ C is called an escaping
point if f◦n(z) → ∞ as n → ∞. A dynamic ray of f is an injective continuous
map γ : (0,∞] → C with γ(∞) = ∞ such that γ(t) is an escaping point for every
t ∈ R+, subject to the condition that γ((0,∞]) is maximal with respect to inclusion
(in the sense that it is not a proper subset of the image of another curve consisting
of escaping points). The dynamic ray γ lands at a point a ∈ C if limt→0 γ(t) exists
and equals a.

It is shown in [SZ1] that for every exponential map Eλ, every escaping point z
is either on a dynamic ray or it is the landing point of a dynamic ray; in both cases
the dynamic ray is unique. For every dynamic ray γ, the f -image γ̂ : (0,∞] → C
with γ̂(t) = f(γ(t)) for t ∈ R+ and γ̂(∞) = ∞ is contained in another dynamic ray.
A dynamic ray γ is periodic if γ(R+) = f◦k(γ(R+)) for some k ∈ N (no γ(t) can be
periodic, but the set γ(R+) can be); the ray γ is preperiodic if f◦l(γ) is periodic for
some positive l ∈ N. The following result is shown in [SZ2, Theorem 6.4].

Lemma 2.5 (Dynamic rays landing at singular value). For every postsingularly
finite exponential map, the singular value 0 is the landing point of at least one and
at most finitely many dynamic rays.

Let γ1 be one of the rays landing at 0, and let γn := f◦(n−1)(γ1) for n ≥ 2. By
[SZ1], the limit vn := limt→∞ Im(γn(t)) exists for every n, and vn + Im log λ ∈ 2πZ
(the branch of log λ does not matter here as long as it remains fixed). We will
associate an external address s = s1s2s3 . . . of integers to γ1 by setting sn :=
(vn − v1)/2π.

Corollary 2.6 (Classification of exponential maps). For every strictly preperiodic
external address s ∈ ZN, starting with s1 = 0, there is a unique postsingularly finite
exponential map for which the dynamic ray γ1 landing at 0 has external address s.

Different external addresses s, s′ may yield the same exponential map; this hap-
pens if and only if more than one dynamic ray lands at the singular value. There
is a straightforward algorithm to tell when this happens; see [LSV]: a necessary
condition is that s and s′ have the same period and the same preperiod, and the
precise answer involves either combinatorial itineraries or internal addresses [S3],
[RS2, Appendix A]: s and s′ describe the same exponential map if and only if they
have the same angled internal address associated to them.

This result has useful implications on exponential parameter space (see [S1,
S5, RS1]): this space is structured in terms of parameter rays associated to a
precisely described set of external addresses in ZN [FS], and postsingularly finite
exponential maps are exactly the landing points of parameter rays at preperiodic
external addresses. More precisely, a postsingularly finite exponential map Eλ is
the landing point of the parameter ray at the strictly preperiodic external address
s if and only if in the dynamical plane of Eλ, the dynamic ray at external address
s lands at the singular value 0 [LSV, Theorem 3.4]. Together with [FRS], this also
allows us to answer a complex version of a question of Euler [E]: he determined
for which a > 0 the sequence a, aa, aaa

, aaaa

, . . . has a limit. The answer is
that convergence to a fixed point happens for a ∈ [e−e, e1/e); convergence to a
2-cycle happens for a < e−e, and convergence to ∞ happens for a ≥ e1/e. An
equivalent formulation of this question is to ask for which λ ∈ R (with λ = log a)
the sequence z0 := 0, zn+1 := λezn has a limit. In this form, this question makes
sense for complex λ. It is easy to see that this sequence converges to a limit in C,
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without eventually being constant, if and only if λ = µe−µ for |µ| < 1 or µ a root of
unity (convergence to periodic cycles, without eventually being periodic, is classified
in terms of hyperbolic components in [S2], as well as boundaries of hyperbolic
components, as in [S5, RS1]). Eventually periodic dynamics happens exactly for
postsingularly finite exponential maps, and the special case of eventually constant
convergence happens for those postsingularly finite exponential maps where the
singular orbit eventually falls onto a fixed point. Finally, convergence to ∞ leads
to parameter rays as described above and is classified in [FRS].

3. Iteration in Teichmüler space

In this section, we will describe the Teichmüller space setup that allows us to
prove the Main Theorem 2.4. This is lifted almost verbatim from [DH]: for each
postsingularly finite topological exponential map g, we will define an analytic map
σg : Tg → Tg, where Tg is the Teichmüller space modeled on a sphere with punctures
at Pg (this is not to be confused with the Teichmüller space modeled on a genus
g surface, which is often denoted similarly). A fixed point of σg corresponds to a
holomorphic exponential map which is Thurston equivalent to g.

We will see that σg is strictly contracting for the infinitesimal Teichmüller metric,
i.e., that ‖dσg(τ )‖ < 1 for every τ ∈ Tg. Since Teichmüller space is path connected
and geodesically complete, it follows that if σg has a fixed point τ0, then this fixed
point is unique, and every point τ ∈ Tg is attracted to τ0 under iteration of σg.

The problem is that the contraction of σg is not uniform: there is no constant
k < 1 such that ‖dσg(τ )‖ ≤ k, so the existence of a fixed point does not follow from
the Banach fixed point theorem. In fact, it is fairly easy to see that if g admits a
Levy cycle, then σg has no fixed point. The main issue in the proof of Theorem
2.4 is the converse: to show that if for some τ ∈ Tg the sequence σm

g (τ ) does not
converge in Tg, then g admits a Levy cycle.

In [DH], finiteness of the degree of a rational map made it possible to describe
a subset of Teichmüller space, depending only on the initial point of the iteration,
such that the contraction on this subset is uniform, while the existence of a Thur-
ston obstruction follows as soon as the iteration leaves this subset. An important
ingredient in this argument is the following: let f : P1 → P1 be a postcritically
finite rational map of degree d with postcritical set Pf of finite cardinality |Pf |.
Let P̃f = f−1(Pf ) be the set of pre-postcritical points; then clearly |P̃f | < d|Pf |,
and this bound depends on d. At most |P̃f | non-homotopic annuli in C \ P̃f may
become homotopic in C \ Pf . Thus if an annulus in C \ Pf is very fat, at least one
of the annuli on C \ P̃f must have been fat too. If there is no bound on |P̃f |, then
very fat annuli in C \ Pf may arise without any fat annuli in C \ P̃f . This destroys
the motor for the proof in [DH]. (The relevant parts in [DH] are Theorem 7.1,
which describes how moduli of annuli, or equivalently inverses of lengths of simple
geodesics, can increase when p punctures are removed, and Proposition 8.2, which
identifies the number of removed points as dm, where d is the degree and m is an
integer which also depends on d.)

Since this strategy fails for transcendental maps, and we need a different argu-
ment: if there is no fixed point in Teichmüller space, the Thurston map σg cannot
be uniformly contracting; this leads to a sequence of integrable meromorphic qua-
dratic differentials with arbitrarily little loss of mass under the push-forward, and
our Limit Theorem 5.2 provides control on the mass distribution of the quadratic
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differentials. This will be used in Propositions 3.2 and 3.3 to conclude the existence
of a degenerate Levy cycle.

We will now make this program precise.

3.1. The Teichmüler space of a topological exponential map. Let g : S2 \
{∞} → S2 \ {∞, 0} be a postsingularly finite topological exponential map with
singular orbit pj := g◦(j−1)(0) for j ≥ 1. Let k′ ≥ 1 and k′′ ≥ 1 be the preperiod
and period of the singular orbit so that pk′ ,= pk′+k′′ but pk′+1 = pk′+k′′+1. Set
also k := k′ + k′′ and p0 := ∞.

Since g : S2 \ {∞} → S2 \ {∞, 0} is a universal covering map, the group of
deck transformations is canonically isomorphic to Z; denote by t the generator
corresponding to a positively oriented simple loop around 0 in S2 \ {∞, 0}. Let
v ∈ Z \ {0} be the unique integer such that tvpk′ = pk′+k′′ . Equivalently, let
γ : [0, 1] → S2 \ {∞} be a path with γ(0) = pk′ and γ(1) = pk′+k′′ ; then v is the
winding number of the closed curve g ◦ γ around 0.

Let (S2, Pg) be a topological 2-sphere with the k + 1 distinct points Pg :=
{p0, p1, . . . , pk′+k′′} marked. The Teichmüller space Tg of g (modeled on (S2, Pg))
is the space of homeomorphisms ϕ : S2 → C with ϕ(∞) = ∞, ϕ(0) = 0 and
ϕ(pk′+k′′) − ϕ(pk′) = 2πiv, modulo the equivalence relation ϕ ∼ ϕ′ if ϕ|Pg = ϕ′|Pg

and ϕ and ϕ′ are isotopic relative to Pg. (The normalizations ϕ(∞) = ∞, ϕ(0) = 0
and ϕ(pk′+k′′) − ϕ(pk′) = 2πiv allow us to avoid the usual quotient by conformal
equivalences in the definition of Teichmüller space. Thus Tg is isomorphic to the
standard Teichmüller space modeled on S2 with k + 1 marked points.)

The next step is to construct a map σg : Tg → Tg as follows: for a homeo-
morphism ϕ : S2 → C with ϕ(0) = 0 and ϕ(∞) = ∞, the map ϕ ◦ g is a universal
cover S2 \{∞} → C∗, which is analytic for a unique analytic structure on S2 \{∞},
and with this analytic structure S2 \ {∞} is isomorphic to C (note that there
is no universal covering from D to C∗). Let ϕ̃ : S2 \ {∞} → C be the unique
conformal isomorphism such that ϕ̃(0) = 0 and ϕ̃(pk′+k′′)− ϕ̃(pk′) = 2πiv; the first
requirement determines ϕ̃ up to a multiplicative factor, and the second determines
the factor. If we set λ = ϕ(p2), we see that the diagram

(2) S2 \ {∞, 0} C∗

S2 \ {∞} C

!

!

" "
g Eλ

ϕ

ϕ̃

commutes: the map ϕ ◦ g ◦ ϕ̃−1 is a holomorphic universal cover from C to C∗ and
sends 0 = p1 to λ = ϕ(p2), so it has the form λ exp(az) for some a ∈ C∗. By
construction, the points pk′ and pk′′ differ by the v-th power of a generating deck
transformation, so the same must be true for ϕ̃(pk′+k′′) and ϕ̃(pk′) with ϕ̃(pk′+k′′)−
ϕ̃(pk′) = 2πiv; thus translation by 2πi is a generating deck transformation on the
right hand side. The orientation of the generator t implies a = 1.

The homeomorphism ϕ̃ extends to a homeomorphism ϕ̃ : S2 → C with ϕ̃(∞) =
∞, since on both sides we have the one-point compactification. Therefore, ϕ̃ rep-
resents a point in Tg.

Since an isotopy of ϕ lifts to an isotopy of ϕ̃, we see that the formula σg(〈ϕ〉) :=
〈ϕ̃〉, where 〈ϕ〉 denotes the point in Teichmüller space represented by ϕ, defines a
mapping σg : Tg → Tg. We will often write σ for σg.
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The crucial observation is the following:

Theorem 3.1 (Fixed points and exponential maps). A fixed point of σ gives a
postsingularly finite holomorphic exponential map Eλ which is Thurston equivalent
to g, and conversely any such holomorphic Eλ defines a fixed point of σ in Tg.

Proof. If 〈ϕ〉 and 〈ϕ̃〉 = σ(〈ϕ〉) are the same point in Teichmüller space, then for
λ := ϕ(p2), the relation Eλ ◦ ϕ̃ = ϕ ◦ g from (2) gives a Thurston equivalence
between g and Eλ. Conversely, if g = Eλ is holomorphic to begin with, then 〈id〉 is
a fixed point of Tg. !

The case |Pg| ≤ 3 is immediate: it implies k′ = k′′ = 1, Pg = {∞, 0, p2} and
g(p2) = p2, and in particular |Pg| = 3. There is no essential simple closed curve in
C\Pg and hence no Levy cycle. On the other hand, we have ϕ(p2) = ϕ(0)+2πiv =
2πiv and any two admissible maps ϕ, ϕ̃ : S2 → C are isotopic to each other rel Pg.
Thus Teichmüller space consists of a single point which is fixed under σ and g is
equivalent to the exponential map z "→ λez with λ = 2πiv. We will from now on
suppose that k = k′ + k′′ ≥ 3, hence |Pg| ≥ 4.

3.2. The Teichmüler metric and its dual. The Teichmüller metric on Teich-
müller space is given as follows: let τ, τ ′ ∈ Tg be represented by two homeomor-
phisms ϕ,ϕ′ : S2 → C so that ψ := ϕ′ ◦ ϕ−1 is quasiconformal. Then d(τ, τ ′) =
inf log Kψ, where ψ ranges over all quasiconformal homeomorphisms obtained from
representatives ϕ and ϕ′ of τ and τ ′, and Kψ ≥ 1 is its maximal dilatation. Back-
ground on quasiconformal maps can be found in [A2, GL, H, IT, L]. We will need
the facts that Tg is complete for the Teichmüller metric and that the Teichmüller
metric is a Finsler metric: there is a norm, called the Teichmüller norm, on each
tangent space TτTg such that the distance between points τ, τ ′ is the infimum of
lengths of curves joining τ to τ ′: if τ ′ ,= τ , then this infimum is positive, and it is
realized as the length of a curve in Tg connecting τ to τ ′.

The cotangent space to Teichmüller space is the space of integrable holomorphic
quadratic differentials endowed with the L1-norm ‖q‖C =

∫
C |q(x + iy)| dx dy. The

infinitesimal metric inducing the Teichmüller metric is the dual norm to the norm
on cotangent space.

For a finite set Z ⊂ C, let Q1(Z) be the finite-dimensional Banach space of inte-
grable meromorphic quadratic differentials on C with poles only on Z; integrability
implies that all poles are simple (note that for a Riemann surface X, the notation
Q1(X) is often used for integrable quadratic differentials on X, also in our Sec-
tion 4). We will make use of results from [DH] and [HS], which fit in with general
results in Teichmüller theory as described in [A2, GL, H, IT, L].

The cotangent space to Teichmüller space at the point 〈ϕ〉 is canonically isomor-
phic to

T ∗
〈ϕ〉Tg = Q1(ϕ(Pg)) .

The L1-norm on Q1(ϕ(Pg)) is dual to the infinitesimal Teichmüller norm on T〈ϕ〉Tg.
For a quadratic differential q on C, we denote its L1-norm on C (or equivalently on
C) by ‖q‖C. We use the words “mass” as a synonym for the norm of a quadratic
differential.

The assignment 〈ϕ〉 "→ (ϕ(p1), . . . , ϕ(pk)) defines a map Tg → Ck; because of
the two normalization conditions, this turns Tg into a k − 2-dimensional complex
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manifold. The map σ is analytic. The crucial fact is that the co-derivative of σ at
〈ϕ̃〉 = σ(〈ϕ〉) is the linear map

dσ∗
〈ϕ̃〉 : T ∗

〈ϕ̃〉Tg → T ∗
〈ϕ〉Tg given by dσ∗

〈ϕ̃〉q = (Eλ)∗q ,

for q ∈ Q1(ϕ̃(Pg)) with λ := ϕ(p2). Here, (Eλ)∗q denotes the push-forward of
q = q(z)dz2 under the map Eλ, i.e.

(Eλ)∗
(
q(z) dz2

)
=

∑

z∈E−1
λ (w)

q(z) dw2

(E′
λ(z))2

=
dw2

w2

∑

z∈E−1
λ (w)

q(z)

=
dw2

w2

∑

m∈Z
q
(
log

(w

λ

)
+ 2πim

)
.(3)

This defines a meromorphic quadratic differential on C∗ with norm ‖(Eλ)∗q‖C ≤
‖q‖C. Since the isolated singularities at 0 and ∞ have finite mass, they must be at
worst simple poles, so (Eλ)∗q is a meromorphic quadratic differential with all poles
simple, and these poles can only be at the Eλ-images of the poles of q, as well as
at 0 and ∞. Similar remarks apply to all push-forward maps induced by coverings.

For exponential maps Eλ, as for all transcendental entire maps, we have

‖(Eλ)∗q‖C < ‖q‖C for q ,= 0;

in case of equality, all preimages of a pole of (Eλ)∗q (other than 0 or ∞) must also
be poles of q, but q can have only finitely many poles.

Since Q1(ϕ̃(Pg)) is finite dimensional, it follows that
∥∥∥dσ∗

〈ϕ̃〉

∥∥∥ =

{
sup

q∈Q1(ϕ̃(Pg))\0

‖(Eλ)∗q‖C
‖q‖C

}
< 1 .

By definition of the dual norm, we have
∥∥dσ〈ϕ〉

∥∥ =
∥∥∥dσ∗

〈ϕ̃〉

∥∥∥ < 1.
This argument can be iterated: every τ0 := 〈ϕ0〉 ∈ Tg defines a sequence τn :=

〈ϕn〉 in Tg via τn+1 = σ(τn). For every n ≥ 0 and s ≥ 1, we have

(4)
∥∥(dσ◦k)∗τn

∥∥ =

{
sup

q∈Q1(ϕn+k(Pg))\0

∥∥(E(k))∗q
∥∥

C
‖q‖C

}

where E(k) = Eλk ◦ · · · ◦ Eλ1 with λs = ϕn+k−s(p2).
The strategy of the proof of the main theorem is to show that the non-existence

of a fixed point in Teichmüller space implies the existence of quadratic differentials
with almost no contraction under the push-forward, and this will give us good
enough control on the geometry to conclude that there is a Levy cycle. The key to
this will be Proposition 3.2, which will be proved in Section 6. Before stating it,
we will describe how to visualize certain quadratic differentials.

3.3. Examples of quadratic differentials. We have found the following con-
struction useful when trying to visualize elements of Q1(Z), especially quadratic
differentials which undergo little contraction under (Eλ)∗. Let P ⊂ C be a compact
polygon with sides parallel to the real and imaginary axes, so the interior angles
are all π/2 or 3π/2. The double P̃ of P , i.e., the surface obtained by gluing two
copies P ′ and P ′′ of P along their common boundary, is homeomorphic to a sphere
and carries a unique complex structure compatible with that of P ⊂ C on P ′ and
compatible with the conjugate complex structure on P ′′. Moreover P̃ carries a
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Figure 1. The quadratic differential corresponding to this poly-
gon has 11 simple poles and 7 simple zeroes. The polygon P is
composed of a “base rectangle” with three corners labeled 0, 1,∞,
with decorations attached at the end of two “tubes”. When P̃ is
identified with P1, the boundary of P becomes the real axis. The
poles and zeroes, except for the four corners of the base rectangle,
are concentrated in two small disks centered at points on the seg-
ment [0, 1]. As the tubes get longer (and perhaps thinner), more
and more of the mass may “migrate” out to the decorations.

quadratic differential q which is simply dz2 on P ′ and dz̄2 on P ′′. The quadratic
differential has simple poles at the vertices of P with angle π/2 and simple zeroes
at those with angle 3π/2. The measure |q| is then simply the element of area, so
that ‖q‖P̃ is equal to twice the area of P .

Since by the uniformization theorem P̃ is isomorphic to P1, by simply drawing
P , we have completely specified an integrable meromorphic quadratic differential
on P1 if we require three points of P to correspond to 0, 1,∞. Of course, actually
writing it down might be difficult (already for a square the uniformization requires
elliptic functions), but it is usually quite easy to grasp the qualitative aspects of
q, and more particularly, it is easy to find the fat annuli in the complement of the
poles and estimate their moduli.

Figure 1 illustrates this construction. Note that the annulus A has large modulus;
since 0, 1,∞ are in the same component of P1 \ A, it follows that the bounded
component of P1 \ A has small diameter.

3.4. Proof of the Main Theorem 2.4. As mentioned above, the following result
will be a key ingredient in the proof of our main theorem. In the remainder of this
section, we will prove the main theorem using this result, and the rest of the paper
will then give a proof of Proposition 3.2.

Proposition 3.2 (Contraction after several iterations). For every number of poles
N , for every number of iterates m and for every modulus M > 0, there is a positive
ratio r < 1 with the following property: if q is an integrable meromorphic quadratic
differential with at most N poles on C and λ1, . . . , λm ∈ C∗ so that

‖(Eλm ◦ Eλm−1 ◦ · · · ◦ Eλ1)∗q‖ > r‖q‖ ,
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then there exist two concentric disks D̃ ⊂ D such that Eλm ◦ Eλm−1 ◦ · · · ◦ Eλ1 is
injective on D, the disk D̃ contains at least two poles of q, and the annulus D \ D̃
has modulus at least M .

We will need some properties of the geometry of Riemann surfaces which are
collected in Subsection A.1. We will always use the hyperbolic metric on C \ϕ(Pg)
with constant curvature −1.

A simple closed curve or an annulus in C \ ϕ(Pg) is called essential if both
complementary components contain at least two points in ϕ(Pg). We will call a
closed geodesic γ “short” if it is a simple closed geodesic with length ((γ) < (∗ :=
log(3+ 2

√
2) (a closed geodesic is necessarily essential). Then any two short closed

geodesics are either identical or disjoint and non-homotopic (see Corollary A.2).
Since |Pg| = k + 1, it follows that the number of different short closed geodesics is
at most k − 2.

Proposition 3.3 (Contraction or Levy cycle). Let g be a postsingularly finite topo-
logical exponential map. Denote the preperiod of the singular orbit by k′ and the
period by k′′, and set k := k′′ + k′. For every distance d0, there is a real number
r < 1 with the following property: if τ ∈ Tg satisfies

d(τ, σ(τ )) < d0 and ‖dσ◦k(τ )‖ > r ,

then g has a degenerate Levy cycle.

Proof. Let r < 1 be as in Proposition 3.2, applied to N = k + 1 and

M := k
π

(∗
· ekd0 .

For this r, assume that τ ∈ Tg satisfies the above conditions. Denote τs := σk−s(τ )
for s = 0, . . . , k. By the definition of σ, one can choose representatives ϕs of
τs so that Eλs ◦ ϕs−1 = ϕs ◦ g for s = k, . . . , 1, where λs = ϕs(p2). It follows
from (4) that the co-derivative of σ◦k at τ0 corresponds to the push-forward by
E(k) = Eλk ◦ · · · ◦ Eλ1 . Hence there is a q ∈ Q1(ϕ0(Pg)) with ‖(E(k))∗q‖ > r‖q‖.

By Proposition 3.2, there are two concentric disks D̃ ⊂ D such that E(k)|D is
injective, A := D \ D̃ is a round annulus with mod(A) = M , and q has at least two
poles (which are automatically in ϕ0(Pg)) in D̃.

The injective image E(k)(A) is an annulus which surrounds at least two points
in E(k)(ϕ0(Pg ∩ C)) ⊂ ϕk(Pg); it may contain some of the points ϕk(Pg). Since
ϕk(Pg) ∩ C contains exactly k points, there is a parallel round subannulus A0 ⊂ A
with mod(A0) > M/k such that E(k)(A0) does not contain a point of ϕk(Pg).
Define As by As = Eλs(As−1) for s = 1, . . . , k. Then for s = 0, . . . , k − 1, the map
Eλs+1 |As : As → As+1 is a conformal isomorphism, As does not contain a point of
ϕs(Pg) and As surrounds at least two points of ϕs(Pg). These As are essential in
C \ϕs(Pg), since ϕs(pk′) and ϕs(pk) = ϕs(pk′) + 2πiv cannot be surrounded at the
same time because of the injectivity of Eλs+1 on the disk surrounded by As.

Let γs ⊂ S2\Pg be a simple closed curve such that ϕs(γs) is the core curve of As.
By the construction, g maps γs homeomorphically onto γs+1. Since d(τs, τs−1) =
d(σ◦(n−s)(τ ), σ◦(n−s+1)(τ )) ≤ d(τ, σ(τ )) < d0, we have d(τs, τ0) < kd0. There exists
a quasiconformal map ψs : C → C isotopic to ϕ0◦ϕ−1

s relative to ϕs(Pg) such that its
dilatation K(ψs) is at most ed(τs,τ0) < ekd0 . Then ϕ0(γs) is homotopic to ψs(ϕs(γs))
and the annulus Âs = ψs(As) has modulus at least 1

K(ψs)mod(As) > e−kd0 ·M
k = π

&∗ .
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(See Ahlfors [A1].) Therefore there is a closed geodesic γ̂s in C \ϕ0(Pg) homotopic
to ϕ0(γs) (and to the core curve of Âs) and its length satisfies

((γ̂s) ≤ (length of core curve of Âs) =
π

mod(Âs)
< (∗.

There can be at most k−2 distinct closed geodesics of length less than (∗. Therefore
there are two indices s1 < s2 ∈ {0, 1, . . . , k−1} so that γ̂s1 and γ̂s2 coincide. Hence
corresponding γs1 and γs2 are homotopic in S2 \ Pg. Thus {γs1 , . . . , γs2} is a Levy
cycle of g. It is automatically degenerate because the γs bound disks on which g is
a homeomorphism. !

Proof of Theorem 2.4. Let g : C → C∗ be a postsingularly finite topological expo-
nential map, and again let k be the length of the singular orbit. Choose a point
τ0 ∈ Tg and run the Thurston iteration τn := σ◦n(τ0). Let C0 : [0, 1] → Tg be
a curve in Teichmüller space connecting τ0 to τ1 with finite length, say d0. Let
Cn : [0, 1] → Tg be the image curve with Cn(t) := σ◦n(C0(t)), for n ≥ 1. Then for
τ ′ := Cn(t), we have

d(τ ′, σ(τ ′)) ≤ d(τ ′, τn+1) + d(τn+1, σ(τ ′)) ≤ d(τ ′, τn+1) + d(τn, τ ′)
≤ d(C0(t), τ1) + d(τ0, C0(t)) = d0 .

Suppose that g has no degenerate Levy cycle. Then Proposition 3.3 yields an
r < 1 such that for every n ∈ N and every t ∈ [0, 1], ‖dσ◦k(Cn(t))‖ ≤ r. Hence
σ◦k contacts the length of Cn by factor r and we have d(τn+1, τn) ≤ r(n−k)/kd0.
Therefore (τn) forms a Cauchy sequence which converges to a fixed point in Tg; this
implies that g is Thurston equivalent to a holomorphic exponential map.

The uniqueness statement in the theorem follows because no contracting map can
have more than one fixed point. It remains to show that g cannot simultaneously
be Thurston equivalent to a holomorphic exponential map and have a Levy cycle.
This follows just as for rational maps; we give an argument different from [DH]:
since the existence of a Levy cycle is preserved under Thurston equivalences, it
suffices to show that a postsingularly finite holomorphic exponential map g cannot
have a Levy cycle. Let M be the maximal modulus of an essential annulus in C\Pg

and let γ ⊂ C \ Pg be a simple closed curve on a degenerate Levy cycle. Choose
a point 〈ϕ0〉 ∈ Tg in which there is an annulus with modulus 2M and with core
curve homotopic to ϕ0(γ). Then every 〈ϕn〉 = σ◦n(〈ϕ0〉) must have an annulus
with modulus at least 2M in the homotopy class of γ, and the Thurston iteration
cannot converge to the fixed point 〈id〉 ∈ Tg. !

Remark. A different way to show that no holomorphic exponential map has a Levy
cycle uses lengths of hyperbolic geodesics: let g be a holomorphic exponential map
with finite postsingular set Pg, and set P̃g := g−1(Pg) ⊃ Pg. If a simple closed
curve γ is part of a Levy cycle, then we may as well represent γ by the unique
closed hyperbolic geodesic in its homotopy class; let ((γ) be its length in C \ Pg.
Since g : (C \ P̃g) → C \ Pg is a covering map, hence a local hyperbolic isometry,
g−1(γ) is a countable collection of simple closed curves in C \ P̃g, each of length
((γ) (or g−1(γ) is a single curve, homeomorphic to R; but then γ cannot be part
of a Levy cycle). Since the inclusion ι : (C \ P̃g) → (C \ Pg) is a strict contraction
with respect to the hyperbolic metrics, it follows that all bounded components of
g−1(γ) are closed curves of length less than ((γ); for those which are essential, the
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2 001
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1 001 010

0 001 010
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01 010
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002 001
001 100
001 010

α+2π

Figure 2. For the exponential map z "→ λez with λ ≈ 1.449 +
1.008i, the singular orbit lands at a fixed point after three itera-
tions, and this fixed point is the landing point of the three dynamic
rays at external addresses 001, 010, and 100; these rays are per-
muted transitively by the dynamics. Consequently, the singular
value is the landing point of the three preperiodic dynamic rays at
external angles 001010, 001100, and 002001. If a topological expo-
nential map is modeled after this example, except that the three
dynamic rays are forced to land at three distinct fixed points, then
the single curve surrounding the three fixed points is mapped to
itself with degree one and forms a degenerate Levy cycle, hence a
particularly simple Thurston obstruction. In the Thurston itera-
tion, any annulus around this curve would acquire modulus tending
to infinity, squeezing the three fixed points into a single point.

corresponding simple closed geodesics are yet shorter. But if γ were part of a Levy
cycle, then a finite repetition of this argument would yield a simple closed geodesic
of length less than ((γ) in the same homotopy class as γ, and this is a contradiction.

An example of a topological exponential map with a Thurston obstruction is
given in Figure 2. See also [HS, Sec. 5] for a discussion of Thurston obstructions of
polynomials which applies also in our case.

4. The decomposition theorem

In this section we will give a “thick-thin” decomposition of Riemann surfaces
of finite type with an integrable quadratic differential. This result is of interest in
its own right, and it may help to prove an analog of Thurston’s theorem for entire
functions other than exponentials.
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4.1. The thick-thin decomposition theorem for quadratic differentials.
Let X be a hyperbolic Riemann surface of finite type. If γ ⊂ X is a simple closed
geodesic of length ((γ) < (∗ := log(3 + 2

√
2), then by the Collaring Theorem A.1,

γ is surrounded by an annulus Aγ of modulus at least π/(− 1 (the standard collar
around γ) so that γ is the core curve of Aγ ; moreover, for different simple closed
geodesics, the standard collars are disjoint.

The standard collar Aγ is isomorphic to the cylinder {z ∈ C : | Im z| < hγ}/Z
with circumference 1 and height 2hγ , by a conformal isomorphism which identifies
γ with R/Z. Set h′

γ := hγ −
√

hγ . We define the central collar A0
γ ⊂ Aγ as the

subannulus which corresponds to the region {z : | Im z| < h′
γ}, so that mod(A0

γ) =
mod(Aγ)−

√
mod(Aγ). We will also denote by A±

γ the two components of Aγ \A0
γ ;

in context we will need to be careful which is which.

Remark. The choice of the square root
√

h in this definition is not critical. It is
sufficient to require that for each short curve γ, hγ−h′

γ is large, while h′
γ/hγ is close

to one: this means that mod(A±
γ ) (the “boundary padding”) is large in absolute

terms, but small compared to mod(Aγ). Under these assumptions, the estimate in
Theorem 4.1 below still holds.

For any δ ∈ (0, (∗), the δ-decomposition of X consists of writing

X =
⋃

A0
i ∪

⋃
Yj ,

where the γi are the simple closed geodesics on X of length ((γi) < δ, the A0
i

are the central collars around the γi, and the Yj are the connected components of
X \

⋃
i A0

i . We denote the standard collars around γi by Ai.
For any Riemann surface X, we denote by Q1(X) the space of integrable holomor-

phic quadratic differentials on X. If Y ⊂ X is a measurable subset and q ∈ Q1(X),
we will write

‖q‖Y :=
∫

Y
|q| .

The following theorem is the main result of this section.

Theorem 4.1 (Decomposition of quadratic differentials). For every ε > 0, there
exists a universal constant δ0 > 0 with the following property: if X is a hyperbolic
Riemann surface of finite type and 0 < δ < δ0 and if

X =
⋃

i∈I

A0
i ∪

⋃

j∈J

Yj

is the δ-decomposition of X, then every q ∈ Q1(X) can be written as

q =
∑

i∈I

qAi +
∑

j∈J

qYj

with all qAi , qYj ∈ Q1(X) and adapted to the decomposition of X so that
∑

i

(
‖q − qAi‖A0

i
+ ‖qAi‖X\A0

i

)
+

∑

j

(∥∥q − qYj

∥∥
Yj

+
∥∥qYj

∥∥
X\Yj

)
≤ ε ‖q‖⋃

Ai
.

Remark. The value of δ0 depends only on ε, not on the topology of X, so the result
might generalize to arbitrary hyperbolic Riemann surfaces.
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4.2. Quadratic differentials on annuli. Choose h > 1 and let A := {z ∈
C : | Im z| < h}/Z. Then any element q ∈ Q1(A) can be developed in a Fourier
series

q =

( ∞∑

n=−∞
ane2πinz

)
dz2 .

Write

q+ =

( −1∑

n=−∞
ane2πinz

)
dz2, q0 = a0 dz2, q− =

( ∞∑

n=1

ane2πinz

)
dz2 .

Note that q+ is actually defined in the semi-infinite cylinder {z ∈ C : Im z < h}/Z
and q− is defined in {z ∈ C : Im z > −h}/Z.

Proposition 4.2 (Decomposition of differentials on annuli). For h > 1, let A :=
{z ∈ C : | Im z| < h}/Z be an annulus of modulus 2h, let q ∈ Q1(A) be an integrable
quadratic differential and decompose it as q = q0 + q+ + q− as above. For every
ε > 0, we have the following: suppose A+

η and A−
η are parallel subannuli of A at the

two ends of A, both of modulus η > 1
2π log

(
2 + 1

ε

)
, and A0 ⊂ A is another parallel

subannulus of A with A0 ⊂ A\ (A+∪A−) and mod(A0)/mod(A) > 1− ε
1+2ε . Then

we have
∥∥q − q0

∥∥
A0 ≤ ε ‖q‖A,

∥∥q0
∥∥

A+
η ∪A−

η
≤ ε ‖q‖A ,

∥∥q − q+
∥∥

A+
η
≤ ε ‖q‖A,

∥∥q+
∥∥
{Im z<h−η}/Z ≤ ε ‖q‖A ,

∥∥q − q−
∥∥

A−
η
≤ ε ‖q‖A,

∥∥q−
∥∥
{Im z>−h+η}/Z ≤ ε ‖q‖A ,

‖q‖A\(A+
η ∪A−

η ∪A0) ≤ ε ‖q‖A .(5)

Proof. Let us consider

q− = e2πiz

( ∞∑

n=1

ane2πi(n−1)z

)
dz2 =: e2πizf(z)dz2 .

Set F (y) =
∫ 1
0 |f(x + iy)|dx as in Proposition A.4. For α < β ∈ R ∪ {±∞}, let

Bα,β := {z ∈ C : α < Im(z) < β}.
If β > α ≥ −h, then

∥∥q−
∥∥

Bα,β
:=

∫ β

α

(∫

R/Z
|q−(x + iy)|dx

)
dy =

∫ β

α
e−2πyF (y)dy.

Moreover, by Proposition A.4(b), the function F is decreasing, so we have

∥∥q−
∥∥

B−h,−h+η
≥ F (−h′)

∫ −h+η

−h
e−2πydy = F (−h′) · e2πh − e2π(h−η)

2π
,

whereas
∥∥q−

∥∥
B−h+η,∞

≤ F (−h′)
∫ ∞

−h+η
e−2πydy = F (−h′) · e2π(h−η)

2π

and hence

(6)
‖q−‖A\A−

η

‖q−‖A−
η

≤
‖q−‖B−h+η,∞

‖q−‖A−
h

≤ e2π(h−η)

e2πh − e2π(h−η)
=

1
e2πη − 1

<
ε

1 + ε
=: ε′ .
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The case of q+ is similar, and the case of q0 is easier: since q0 = a0 dz2, we have

(7)
∥∥q0

∥∥
A\A0 <

ε

1 + ε

∥∥q0
∥∥

A0 = ε′
∥∥q0

∥∥
A0 .

The argument from here is just bookkeeping: we have

‖q‖A ≥ ‖q‖A+
η

+ ‖q‖A0 + ‖q‖A−
η

≥
(∥∥q+

∥∥
A+

η
−

∥∥q0
∥∥

A+
η
−

∥∥q−
∥∥

A+
η

)

+
(∥∥q0

∥∥
A0 −

∥∥q+
∥∥

A0 −
∥∥q−

∥∥
A0

)

+
(∥∥q−

∥∥
A−

η
−

∥∥q+
∥∥

A−
η
−

∥∥q0
∥∥

A−
η

)

≥
(∥∥q+

∥∥
A+

η
+

∥∥q0
∥∥

A0 +
∥∥q−

∥∥
A−

η

)

− ε′
(∥∥q+

∥∥
A+

η
+

∥∥q0
∥∥

A0 +
∥∥q−

∥∥
A−

η

)

= (1 − ε′)
(∥∥q+

∥∥
A+

η
+

∥∥q0
∥∥

A0 +
∥∥q−

∥∥
A−

η

)
.(8)

Now inequality (6) leads to

∥∥q−
∥∥

B−h+η,∞
≤ ε′

∥∥q−
∥∥

A−
η
≤ ε′

1 − ε′
‖q‖A = ε ‖q‖A ;

the analogous inequality for q+ is proved the same way, and the analogous formula
for q0 follows in the same way from inequality (7). This proves half of Proposi-
tion 4.2.

The other half follows also: for instance, using (8),
∥∥q − q0

∥∥
A0 ≤

∥∥q−
∥∥

A0 +
∥∥q+

∥∥
A0 ≤

∥∥q−
∥∥

A\A−
η

+
∥∥q+

∥∥
A\A+

η

≤ ε′
(∥∥q−

∥∥
A−

η
+

∥∥q+
∥∥

A+
η

)
≤ ε′

1 − ε′
‖q‖A = ε ‖q‖A .

!

Corollary 4.3 (Little mass near end). For h > 1, again let A := {z ∈ C : | Im z| <
h}/Z be an annulus of modulus 2h, let q ∈ Q1(A) be an integrable quadratic differ-
ential and let A+

η and A−
η be the two parallel subannuli at the two ends of modulus

η > 0. If η > 1
2π log(2 + 1

ε ) and η/h < ε
2+4ε , then ‖q‖A+

η
+ ‖q‖A−

η
≤ ε ‖q‖A implies

that there is a c ∈ C with
∥∥q − c dz2

∥∥
A

‖q‖A

< 5ε .

Proof. Using Proposition 4.2 and its notation, write q = q+ + q− + q0 with q0 =
a0 dz2 and estimate

∥∥q+
∥∥

A
≤ ‖q‖A+

η
+

∥∥q+ − q
∥∥

A+
η

+
∥∥q+

∥∥
A\A+

η
≤ ‖q‖A+

η
+ (ε + ε) ‖q‖A .

The estimate for q− is the same. The claim follows. !
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4.3. The component of a quadratic differential adapted to a short closed
geodesic. We now start to discuss an arbitrary hyperbolic Riemann surface X,
using ideas from McMullen [M3]. If γ ⊂ X is a simple closed geodesic of length
((γ), we denote by πγ : X̃γ → X the covering space in which there is a unique
simple closed geodesic γ̃, and γ̃ projects under πγ to γ by an isometry. We will
make the identification

X̃γ =
{

z ∈ C : | Im z| <
π

2((γ)

}
/Z ,

so that γ̃ = R/Z. Then dz2 ∈ Q1(X̃γ) with
∥∥dz2

∥∥
Xγ

= π/((γ), and the quadratic
differential

qγ = (πγ)∗dz2

is an element of Q1(X) with ‖qγ‖X ≤ π
&(γ) .

Again let Aγ be the standard collar around γ (compare Subsection A.1), and
set mod(Aγ) =: Mγ = 2hγ . As a covering map, πγ : X̃γ → X is a local hyperbolic
isometry. Let Ãγ be the component of (πγ)−1(Aγ) containing γ̃; hence

Ãγ = {z ∈ C : | Im z| < hγ} /Z .

Set h′
γ = hγ−

√
hγ , and as before decompose the cylinder Ãγ as Ãγ = Ã0

γ∪Ã+
γ ∪Ã−

γ

corresponding, respectively, to points z ∈ Ãγ with

| Im z| < h′
γ , h′

γ ≤ Im z < hγ , and − hγ < Im z ≤ −h′
γ .

These project to annuli A0
γ , A+

γ , A−
γ in X by conformal isomorphisms; then A0

γ is
the central collar around γ. Let γ+ and γ− be the components of the boundary ∂Aγ

with γ+ ⊂ ∂A+
γ , γ− ⊂ ∂A−

γ , and let γ̃+ and γ̃− be the corresponding boundary
curves of Ãγ .

In the proposition below, we speak of q ∈ Q1(Aγ). In practice, such a differential
will be obtained by taking a differential in Q1(X), restricting it to Aγ , and extending
it by 0 elsewhere. In particular, it will be quite discontinuous on the boundary of
Aγ .

Proposition 4.4 (Decomposition of differentials on annuli in X). For every ε > 0,
there exists δ > 0 (independent of X) such that if ((γ) < δ, then for any q ∈ Q1(Aγ),
there exist quadratic differentials q0

γ , q+
γ and q−γ subject to the following conditions:

• q0
γ ∈ Q1(X) , q+

γ ∈ Q1(X \ γ+) , q−γ ∈ Q1(X \ γ−) ;
• q = q0

γ + q+
γ + q−γ on X (where we use the extension q ≡ 0 on X \ Aγ);

• the differential q − q+
γ has an analytic extension to a neighborhood of γ+,

and q − q−γ has an analytic extension to a neighborhood of γ−;
• these differentials satisfy the inequalities

∥∥q − q0
γ

∥∥
A0

γ
≤ ε ‖q‖Aγ

,
∥∥q0

γ

∥∥
X\A0

γ
≤ ε ‖q‖Aγ

,
∥∥q − q+

γ

∥∥
A+

γ
≤ ε ‖q‖Aγ

,
∥∥q+

γ

∥∥
X\A+

γ
≤ ε ‖q‖Aγ

,
∥∥q − q−γ

∥∥
A−

γ
≤ ε ‖q‖Aγ

,
∥∥q−γ

∥∥
X\A−

γ
≤ ε ‖q‖Aγ

.(9)

Proof. Use the restricted projection πγ : Ãγ → Aγ to define a pull-back quadratic
differential q̃ := π∗

γq on Ãγ and extend it by 0 to X̃γ \ Ãγ . We then have ‖q‖Aγ
=

‖q̃‖Ãγ
. Expand q̃ on Ãγ into a Fourier series as in the beginning of Subsection 4.2,
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γ∼

0Aγ

1

γ

Aγ
−

Aγ
+

0

h
h'

π
2l(γ)

∼

∼

∼

Aγ
−

Aγ
0
Aγ

+
γ+

γ−

Figure 3. On the left we see X̃γ , identified with {z ∈ C : | Im z| <
π/(2((γ)}. On the right we see the Riemann surface X, together
with the various subannuli. The key issue is that only a tiny part
of X̃γ , the little sliver at the top and the bottom, can project to
X \ Aγ (and part of the sliver also projects to Aγ). Thus the
quadratic differential dz2, corresponding to the element of area on
the left, has very little mass to spare for the remainder of X, or to
compensate for the mass of Ã0

γ .

and decompose q̃ =: q̃+ + q̃0 + q̃− corresponding to the positive terms of the Fourier
series, the constant term a0dz2, and the negative terms.

Recall that the series for q̃+ converges if Im z < hγ and that for q̃0 it converges
if Im z > −hγ ; we extend them by 0 to {z : Im z ≥ hγ} and {z : Im z ≥ −hγ},
respectively, so that they give quadratic differentials on X̃γ holomorphic on the
complement of γ̃+ and γ̃−, respectively. The differential q̃0 is holomorphic on X̃γ

anyway, with q̃0 ∈ Q1(X̃γ).
Since Ãγ is a parallel subannulus of X̃γ with mod(Ãγ) ≥ mod(X̃γ) − 1, the

complement X̃γ \Ãγ consists of two parallel subannuli E+ and E−, each of modulus
at most 1 and so that E+ is adjacent to Ã+

γ and E− is adjacent to Ã−
γ .

Define quadratic differentials on X̃γ as

q̃+
rest := (q̃− + q̃0)|E+ and q̃−rest := (q̃+ + q̃0)|E−

(the restrictions to E±, extended by zero elsewhere). This gives an exact equality
q̃ + q̃+

rest + q̃−rest = q̃+ + q̃0 + q̃− on all of X̃ = E+ ∪ Ã ∪ E−. We can thus write

q̃ = (q̃− − q̃−rest) + q̃0 + (q̃+ − q̃+
rest) .
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While this is valid on X̃, the left hand side has its support on Ã; on the right hand
side, the first term is discontinuous only at γ̃−, the last term is discontinuous only
at γ̃+, and the middle term is continuous everywhere.

Thus we can define

q0 := (πγ)∗ q̃0 , q+ := (πγ)∗(q̃+ − q̃+
rest) and q− := (πγ)∗(q̃− − q̃−rest) .

This yields holomorphic quadratic differentials q0 ∈ Q1(X), q+ ∈ Q1(X \ γ+) and
q− ∈ Q1(X \ γ−). Moreover, we have q+ + q0 + q− = q on all of X (where we have
extended q by zero to X \ Aγ). The construction assures that q − q+ = q0 + q−

has a holomorphic extension to a neighborhood of γ+ and q − q− = q0 + q+ has a
holomorphic extension to a neighborhood of γ−.

Now subdivide Aγ = A+
γ ∪ A0

γ ∪ A−
γ as above into disjoint parallel subannuli,

and similarly for Ãγ . We will show that q−, q0 and q+ satisfy the inequalities as
claimed in the proposition.

On A+
γ , we have the decomposition

(q − q+)|A+
γ

= (πγ)∗
(
(q̃ − q̃+)|Ã+

γ

)

− (πγ)∗
(
q̃+|X̃γ\Ã+

γ

)

+ (πγ)∗
(
(q̃0 + q̃−)|E+

)
,

because q|Aγ = (πγ)∗(q̃), the differential q̃ has its support in Ãγ , and π−1
γ (A+

γ ) ∩
Ãγ = Ã+

γ .
Since the push-forward (πγ)∗ does not increase the L1-norm of quadratic differ-

entials, we have

(10)
∥∥q − q+

∥∥
A+

γ
≤

∥∥q̃ − q̃+
∥∥

Ã+
γ

+
∥∥q̃+

∥∥
X̃γ\Ã+

γ
+

∥∥q̃0
∥∥

X̃γ\Ã0
γ

+
∥∥q̃−

∥∥
X̃γ\Ã−

γ
.

Now suppose that δ is sufficiently small so that ((γ) < δ implies

mod(A±
γ ) =

√
hγ >

1
2π

log
(

2 +
1

ε/4

)

and
mod(A0

γ)
mod(Aγ)

= 1 − 1√
hγ

> 1 − ε/4
1 + 2ε/4

.

Then we can apply Proposition 4.2 with an error term ε/4, and (10) becomes
∥∥q − q+

∥∥
A+

γ
≤ 4

ε

4
‖q̃‖Ãγ

= ε ‖q‖Aγ
.

Similarly, from the decompositions

q+|X\A+
γ

= (πγ)∗
(
q̃+|X̃γ\Ã+

γ

)
− (πγ)∗

(
(q̃0 + q̃−)|E+

)
,

(q − q0)|A0
γ

= (πγ)∗
(
(q̃ − q̃0)|Ã0

γ

)
− (πγ)∗

(
q̃0|X̃γ\Ã0

γ

)
,

q0|X\A0
γ

= (πγ)∗
(
q̃0|X̃γ\Ã0

γ

)
,
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we obtain
∥∥q+

∥∥
X\A+

γ
≤

∥∥q̃+
∥∥

X̃γ\Ã+
γ

+
∥∥q̃0

∥∥
X̃γ\Ã0

γ
+

∥∥q̃−
∥∥

X̃\Ã−
γ
≤ 3

ε

4
‖q̃‖Ãγ

≤ ε ‖q‖Aγ
,

∥∥q − q0
∥∥

A0
γ
≤

∥∥q̃ − q̃0
∥∥

Ã0
γ

+
∥∥q̃0

∥∥
X̃γ\Ã0

γ
≤ 2

ε

4
‖q̃‖Ãγ

≤ ε ‖q‖Aγ
,

∥∥q0
∥∥

X\A0
γ
≤

∥∥q̃0
∥∥

X̃γ\Ã0
γ
≤ ε

4
‖q̃‖Ãγ

≤ ε ‖q‖Aγ
.

The case of q− is similar. !

4.4. The component of a quadratic differential adapted to the thick part.
Given a finite type hyperbolic Riemann surface X and a length δ ∈ (0, (∗), there is
a bounded finite number of simple closed geodesics γi of length less than δ. Each of
them has an associated standard collar Ai with core curve γi and a parallel central
collar A0

i ⊂ Ai.
Now consider a quadratic differential q ∈ Q1(X) and a particular standard collar

Ai. Applying Proposition 4.4 to the restriction q|Ai , we associate to Ai a quadra-
tic differential qAi := q0

γi
∈ Q1(X), so that for all i, we have the inequalities

‖q − qAi‖A0
i
≤ (ε/4) ‖q‖Ai

and ‖qAi‖X\A0
i
≤ (ε/4) ‖q‖Ai

, provided δ is sufficiently
small depending only on ε. We also have two additional quadratic differentials q+

Ai

and q−Ai
which approximate q near the two ends of Ai.

This automatically defines the domains Yj , as the components of X \
⋃

i A0
i .

Every component Yj contains one component of X \
⋃

i Ai (the actual thick part)
plus finitely many adjacent annuli of diverging moduli (the “boundary padding”).
We still need to define the qYj associated to the thick parts Yj and show that they
satisfy the corresponding inequalities of Theorem 4.1.

For each Yj , consider its adjacent annuli Ai1 , . . . , Ain . To lighten notation, we
will write Y for Yj and denote the adjacent annuli by A1, . . . , An. These will be
oriented so that A+

i is on the same side of γi as Y (suppose for now that no Ai is
adjacent to Y on both ends). Write

Z := Y \
n⋃

i=1

Ai

and consider the (non-analytic) quadratic differential q|Z obtained by restricting q
to Z and extending by 0 to X \ Z (see Figure 4).

We can now define qY to be

(11) qY = q|Z +
n∑

i=1

q+
Ai

.

In the case that an annulus Aγi is adjacent to Y on both ends, it will be counted
twice, and both differentials q−Ai

and q+
Ai

are included in the sum for qY .

Proof of Theorem 4.1. We start by observing that qY is holomorphic on X: it
is by definition holomorphic on X \

⋃
γ+

i , and by Proposition 4.4, q|Aj − q+
Aj

is
holomorphic near γ+

j for every j. Now in a neighborhood of γ+
j ,

qY = (q|Z + q|Aj ) − (q|Aj − q+
Aj

) +
∑

i ,=j

q+
Ai

,

so qY is holomorphic in a neighborhood of γ+
j also.
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Y

+

A3

A2

A1

A4

A1

+A2
A3
+

A4
+

A4
-

-
A1

-A2A3
-

Figure 4. One thick piece Y with its adjacent annuli A1, . . . , An.
(Some annuli Ai might be adjacent to Y at both ends.)

We claim that q =
∑

Y qY +
∑

A qA, where
∑

Y and
∑

A run over the thick and
thin parts of the δ-decomposition of X. Indeed,

q =
∑

Z

q|Z +
∑

A

q|A =
∑

Z

q|Z +
∑

A

(q−A + qA + q+
A) =

∑

Y

qY +
∑

A

qA

because every A− and every A+ is adjacent to exactly one component Y .
Now we start to establish the inequalities. We have

‖q − qY ‖Z ≤
∑

i

∥∥q+
Ai

∥∥
Z

and
‖q − qY ‖A+

j
≤

∑

i ,=j

∥∥q+
Ai

∥∥
A+

j
,

hence
‖q − qY ‖Y ≤

∑

i

∥∥q+
Ai

∥∥
X\A+

i
≤ ε′

∑

i

‖q‖Ai

where the summation is over the annuli Ai adjacent to Y (counting an annulus
twice if both ends are adjacent to Y ). Similarly,

‖qY ‖X\Y ≤
∑

i

∥∥q+
Ai

∥∥
X\A+

i
≤ (ε/4)

∑

i

‖q‖Ai
.

Combining this with the inequalities on qAi from the beginning of Subsection 4.4,
we obtain

∑

Y

‖q − qY ‖Y +
∑

Y

‖qY ‖X\Y +
∑

A

‖q − qA‖A0 +
∑

A

‖qA‖X\A0 ≤ ε
∑

A

‖q‖A .
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The sum
∑

Y runs over all thick components, and together they count all annuli
exactly twice (once from each end); the sum

∑
A runs over all thin annuli. !

5. Limits of quadratic differentials

In Theorem 4.1, we have described how a meromorphic integrable quadratic
differential on a Riemann surface of finite type can be decomposed according to
a decomposition of the Riemann surface into annuli around short simple closed
geodesics and the complementary components. In this section, we describe the
possible limit models when the lengths of the simple closed geodesics tend to zero.
This will be used in Section 6 to prove our key Proposition 3.2.

5.1. Limit models. We continue to investigate sequences of quadratic differentials
(such as those arising as cotangent vectors in the iteration procedure in Teichmüller
space, especially when the contraction under the push-forward tends to zero). In
particular, we want to describe possible limits (for each of the components in the
thick-thin decomposition as described in Section 4) that can arise in such sequences:
we show that up to choosing a subsequence, we can describe simple models for the
limiting mass distribution of holomorphic quadratic differentials on the complex
plane. For our purposes it is sufficient to investigate quadratic differentials up to
automorphisms of their domain C, so we replace a sequence of quadratic differentials
qn by a rescaled version M∗

nqn, where the Mn are automorphisms of C. (The second
of our two possibilities involves holomorphic quadratic differentials on C∗.)

Definition 5.1 (Limit model for quadratic differential). Let (qn)n∈N be a sequence
of measurable quadratic differentials on C with 0 < ‖qn‖C < ∞ for each n, such
that limn→∞ ‖qn‖C exists and is non-zero.

• If q is a meromorphic quadratic differential with 0 < ‖q‖C < ∞, then we
say that (qn) has limit model q if there exist conformal automorphisms
Mn(z) = anz + bn of C (with an, bn ∈ C) satisfying

lim
n→∞

‖M∗
nqn − q‖C = 0 .

In this case, we call Mn the scaling and an the scaling factor.
• We say that the sequence (qn) has limit model dz2/z2 on annuli

An = {z ∈ C : rn < |z − bn| < Rn} (with 0 < rn < Rn and bn ∈ C)

if there exist complex numbers cn ,= 0 such that Rn/rn → ∞ and the affine
maps Mn(z) = z + bn satisfy

lim
n→∞

∥∥∥∥M∗
nqn − cn

dz2

z2

∣∣∣
{rn<|z|<Rn}

∥∥∥∥
C

= 0 .

In this case, we call rn and Rn the inner and outer radii of An and bn the
center of An. (Note that rn, Rn and bn are not unique.)

In the first case, it is easy to see that ‖qn‖C → ‖q‖C. In the second case, the
differential cn

dz2

z2 |{rn<|z|<Rn} is a finite-mass restriction of cn
dz2

z2 to the annulus
between radii rn and Rn, so in particular the claim implies that

‖M∗
nqn‖{|z|<rn}∪{|z|>Rn} → 0 .

Note that the qn in this definition are not global meromorphic differentials on C
(unlike differentials qn used in Theorem 5.2): our quadratic differentials are not
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required to be continuous; they will be the restrictions of meromorphic quadratic
differentials to measurable subsets of C.

Figure 5 shows a sequence of quadratic differentials in which both kinds of limit
models occur.

1

1

1

3

1

4

2

1

1

n

1/n

0

1
∞

C
B

A

Figure 5. The shaded figure is a polygon Pn representing a se-
quence of quadratic differentials qn on C. The symbols 0, 1, ∞
written inside Pn indicate that the double P̃n should be normalized
so that the three labeled vertices go to 0, 1, and ∞, respectively.
The numbers written around Pn (and the 1/n written inside it)
are intended to be the actual Euclidean lengths of the sides, so
Pn has area 13 + 1/n, and since qn is a quadratic differential on
the double P̃n of Pn, we have ‖qn‖ = 26 + 2/n which does not
tend to 0 or ∞. The symbols 0, 1,∞ written inside indicate that
those points of the double of the polygon correspond to 0, 1,∞ on
the Riemann sphere. Around it are the three limit models of the
thick parts. The actual limit of the quadratic differentials “is” the
model on the right, because 0, 1,∞ belong to distinct components
of the complement, or to the region itself. This convergence is
actually uniform on any compact subset of C omitting 0 and ∞.
Small neighborhoods of these points need to be blown up to “see”
the other limit models. There is only one thin part contributing
a region to Theorem 5.2, the one labeled A. Although the part
labeled B is an annulus of modulus n, it carries mass 2/n which
disappears in the limit. The region labeled C (shaded dark) is also
a large annulus, of modulus ∼ (log n)/(2π), and it also contributes
a definite share of the mass, since its area is ∼ π and does not tend
to 0. But the quadratic differential in that region does not behave
like dz2/z2 (it surrounds as many zeroes as poles of q).

Now we show that every sequence of integrable meromorphic quadratic differen-
tials with bounded numbers of poles and constant mass has a subsequence so that
the entire mass is recovered in finitely many limit models.
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Theorem 5.2 (Decomposition of mass). Let (qn) be a sequence of meromorphic
quadratic differentials on C with at most N poles and ‖qn‖C = 1 for all n. Then
there are a subsequence (also denoted (qn)), a number l ∈ N and disjoint regions
V [1]

n , . . . , V [l]
n ⊂ C for each n with the following properties:

(a) for each j, the non-zero limit limn→∞ ‖qn‖V [j]
n

exists in (0, 1], while

lim
n→∞

‖qn‖C\
⋃l

j=1 V [j]
n

= 0 ;

(b) for each j = 1, 2, . . . , l, the restriction qn|V [j]
n

has limit model q[j]
∞ , where

either
(b1) q[j]

∞ is a meromorphic quadratic differential on C with at most N poles
and 0 <

∥∥∥q[j]
∞

∥∥∥
C
≤ 1; in this case, for each pole w∞ of q[j]

∞ , there exists

a pole wn for qn such that (Mn)−1(wn) → w∞, where Mn is the scaling
associated to qn; or

(b2) q[j]
∞ = dz2

z2 , and V [j]
n is contained in the annulus An associated to qn in

Definition 5.1; moreover, the bounded component of C \ V [j]
n contains

at least two poles of qn.

Proof. Let Z0(qn) be the set of poles of qn, and define Z(qn) := Z0(qn)∪ {∞} and
Xn = C \ Z(qn): each Xn is a Riemann surface on which we have a holomorphic
quadratic differential qn ∈ Q1(Xn), to which we will be able to apply Theorem 4.1.
By choosing subsequences repeatedly, we may assume:

• The number of poles of qn on C and on C is constant, so that all Xn have
the same topology. Moreover, the poles are labeled so that the cross-ratios
of all quadruples of distinct poles or of any triple of distinct poles and ∞
converge in the Riemann sphere as n → ∞.

• There is an integer s, a length δ∗ < log(3 + 2
√

2) and a sequence δn →
0 such that on every Xn, there are precisely s simple closed geodesics
γ[1]

n , . . . , γ[s]
n of length ((γ[i]

n ) < δ∗, and these lengths satisfy ((γ[i]
n ) ≤ δn.

Let I := {1, . . . , s}. (To accomplish this, note first that by Corollary A.2,
the number of simple closed geodesics of length less than log(3 +

√
2) is

bounded by N − 3; by restricting to a subsequence, we may assume that
all their lengths converge. Relabel so that ((γ[1]

n ) ≤ ((γ[2]
n ) ≤ . . . , and let

s be the largest index with lim ((γ[s]
n ) = 0. Then δ∗ is half the smallest

positive limit length, or δ∗ = 1 if all limit lengths are zero. Finally, let
δn = max{((γ[1]

n ), . . . , ((γ[s]
n )}.)

• The components of Xn\
⋃

i γ
[i]
n can be labeled by a set J so that components

with a given label have the same boundary curves and contain the same
number of poles, independently of n.

Around each curve γ[i]
n put the standard collar A[i]

n and the central collar B[i]
n ⊂

A[i]
n (compare Subsection 4.1; we write B[i]

n instead of (A[i]
n )0), and let Y [j]

n be the
components of

Xn \
s⋃

i=1

B[i]
n .

By passing to a further subsequence, we may assume that the masses

b[i]
n := ‖qn‖B[i]

n
and c[j]

n := ‖qn‖Y [j]
n
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converge to b[i] and c[j], respectively. Note that
∑

i b[i] +
∑

j c[j] = 1.
The decomposition of Xn into the components B[i]

n and Y [j]
n is related to the

standard thick-thin decomposition of Xn for the constant δ∗, but there are two
significant differences. First, the punctures are all in the thick part; by our con-
struction none of the poles are in the closure in C of the A[i]

n , much less in the
closure of the B[i]

n . Second, since the padding A[i]
n \B[i]

n has been added to the thick
parts, but itself has modulus tending to infinity with n, the boundary curves of the
Y [j]

n have hyperbolic lengths tending to 0 with n.
In our limit n → ∞, we have δn → 0 in our δn-decomposition of qn on Xn.

Therefore, there exists a sequence εn → 0 such that δn < δ0(εn), where δ0(ε) is as
in Theorem 4.1. We restrict to such n for which δn < δ∗. We will use Theorem 4.1
to decompose the quadratic differentials qn on Xn with error size εn as follows:
for each region B[i]

n ⊂ A[i]
n and Y [j]

n , we have a quadratic differential q
A[i]

n
∈ Q1(C)

or q
Y [j]

n
∈ Q1(C) which “represents” qn in its respective region B[i]

n or Y [j]
n , so

that
∥∥∥qn|B[i]

n
− q

A[i]
n

∥∥∥
C
≤ 2εn ‖qn‖C → 0 and

∥∥∥qn|Y [j]
n

− q
Y [j]

n

∥∥∥
C
≤ 2εn ‖qn‖C → 0.

Hence, as n → ∞, we have
∥∥∥q

A[i]
n

∥∥∥
C
→ b[i] and

∥∥∥q
Y [j]

n

∥∥∥
C
→ c[j]. Let V [1]

n , . . . , V [l]
n

be the collection of B[i]
n with b[i] > 0 and Y [j]

n with c[j] > 0. For such regions
it suffices, in view of these estimates, to show that the q

A[i]
n

and q
Y [j]

n
have limit

models. This will be done in Lemmas 5.3 and 5.4 below. (For the remaining regions
with b[i] = 0 or c[j] = 0, we could say that the limit model is zero.) It also follows
that limn→∞ ‖qn‖C\

⋃l
j=1 V [j]

n
= 0.

5.2. Thin parts.

Lemma 5.3 (Limit model on thin parts). For every index i with b[i] > 0, q
A[i]

n
has

limit model dz2/z2; moreover, B[i]
n surrounds at least two poles of qn.

Proof. The annulus B[i]
n surrounds at least two poles of qn because its core curve

is essential by construction. Let wn be one of them; after an affine change of
coordinates, we may assume that wn = 0. Let Ân be the largest round annulus
centered at wn with Ân ⊂ A[i]

n , let Â0
n ⊂ Ân be the smallest parallel subannulus

containing B[i]
n , and let Â+

n and Â−
n be the outer and inner components of Ân \

Â0
n (see Figure 6). The annuli exist and are non-empty by the Round Annuli

Lemma A.3, and there is a universal constant µ∗ with

mod(A[i]
n ) ≥ mod(Ân) ≥ mod(A[i]

n ) − µ∗ ;

since the two components of A[i]
n \ B[i]

n contain Â+
n and Â−

n , we get
√

mod(A[i]
n ) ≥ mod(Â±

n ) ≥
√

mod(A[i]
n ) − µ∗ −→ ∞ .

In particular,

mod(Â±
n )/mod(Ân) −→ 0 .
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wn

An
 i[ ]

Bn
 i[ ]An

^0

An
^

Figure 6. Since the padding A[i]
n \B[i]

n is itself the union of two an-
nuli of large modulus (even though much smaller than the modulus
of A[i]

n ), each contains a large round subannulus, of approximately
the same modulus; we may take these annuli Â±

n to be centered
at the same point wn. By definition Ân is the smallest annulus
containing both, and Â0

n = Ân \
⋃

Â±
n .

Since Â±
n ⊂ Xn \ B[i]

n and Ân ⊃ B[i]
n , Theorem 4.1 implies that ‖qAn‖B[i]

n
→

b[i] > 0 and ‖qAn‖X\B[i]
n

→ 0, so we have

‖qAn‖Â±
n

‖qAn‖Ân

≤
‖qAn‖Xn\B[i]

n

‖qAn‖B[i]
n

−→ 0 .

Let hn := mod(Ân)/2, so that Ân is conformally equivalent to

B̂n = {z ∈ C : | Im(z)| ≤ hn}/Z ;

conformal isomorphisms ψn : B̂n → Ân have the form ψn(z) = αn (exp(2πiz))
with αn ∈ C. Define Qn := ψ∗

nqAn . Then Corollary 4.3 applies to the restricted
differentials Qn|B̂n

; since ‖Qn‖B̂n
= ‖qAn‖Ân

→ b[i], this yields
∥∥∥Qn|B̂n

− cndz2
∥∥∥

B̂n

−→ 0
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for an appropriate sequence of numbers cn∈C. But since (ψn)∗(dz2)=−dz2/(2πz)2,
we obtain ∥∥∥∥qAn − −cn

(2π)2
dz2

z2

∥∥∥∥
Ân

−→ 0 .

Since ‖qAn‖C\Ân
→ 0, the claim follows. !

5.3. Thick parts. From now on, consider an index j describing thick regions Y [j]
n

with c[j] = limn→∞ c[j]
n > 0.

Lemma 5.4 (Limit model on thick parts). There is a limiting integrable meromor-
phic quadratic differential q[j]

∞ on C with
∥∥∥q[j]

∞

∥∥∥
C

= c[j] and a sequence of Möbius

transforms Mn(z) = anz + bn so that
∥∥∥M∗

nq
Y [j]

n
− q[j]

∞

∥∥∥
Y [j]

n

→ 0.

Proof. Choose two poles w0
n, w1

n ∈ C of qn with the same labels for all n, not
belonging to the same component of C \ Y [j]

n , and not belonging to the unbounded
component of C \ Y [j]

n (if any); it is perfectly acceptable to have w0
n and/or w1

n in
Y

[j]
n . Such poles exist: each component of C \ Y

[j]
n contains two elements of C \Xn

(or the boundary annuli of Y [j]
n would not be essential); each element is either a

pole of qn or the point ∞. If Xn \ Y
[j]
n has at least three components, then let w0

n

and w1
n be two poles from two different bounded components. If Xn \Y

[j]
n has only

two components, then at least one of them is bounded, and additionally Y
[j]
n must

contain one pole (or the two annuli in the boundary padding would be homotopic).
If Xn \Y

[j]
n has only one component, then Y

[j]
n must contain two poles itself (or the

adjacent annulus B[i]
n would not be essential), and if Xn \ Y

[j]
n is empty, then Y

[j]
n

must contain at least three poles, at most one of which is at ∞.
Let Mn ∈ Aut(C) be given by Mn(z) = anz + bn := (w1

n − w0
n)z + w0

n, so that
Mn(p) = wp

n for p = 0, 1. By construction, all poles of M∗
nqn converge in C; let

{w0 = 0, w1 = 1, . . . , ws = ∞} be the set of their limits, including ∞ even if it is
not a limit of poles. Set X [j] := C \ {w0, . . . , ws}.

We argue in two steps: first we show that Y ′
n := M−1

n Y [j]
n fills X [j] as n → ∞

(in the sense that every compact K ⊂ X [j] is contained in almost all Y ′
n). Then we

show that, after choosing a further subsequence, there is a q[j]
∞ ∈ Q1(C) with the

required properties.
For the first step, recall that Y [j]

n is surrounded by annuli with diverging moduli.
Let Dn be an open component of C \Y ′

n; it contains at least two poles of M∗
nqn (or

one pole and ∞), and the positions of the poles converge in C. There is an annulus
Cn ⊂ Y ′

n which separates Dn from all poles in Y ′
n and all components of C\Y ′

n other
than Dn (this annulus is part of the boundary padding in Y ′

n), and mod(Cn) → ∞.
By construction, Cn separates Dn from at least two of the three points 0, 1, ∞.
This implies that the spherical diameter of Dn tends to zero: for every four distinct
points a1, a2, b1, b2 ∈ C, the modulus of annuli separating {a1, a2} from {b1, b2} is
bounded above.

Since C\Y ′
n consists of a bounded number of open components, and each compo-

nent either converges to ∞ or has diameter tending to 0, it follows that Y ′
n fills X [j]

as claimed. Distinct sequences of poles in Y ′
n or components of C \ Y ′

n converge to
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distinct points in C \X [j]: otherwise there would be a short curve which separated
the poles of qn in a way the previously chosen short curves γi never did.

Now for convergence of the q̂n := M∗
nq

Y [j]
n

, which are meromorphic quadratic
differentials in Q1(M−1

n (Z(qn))). For one thing, there is no problem in choos-
ing a subsequence that converges algebraically in the following sense: if we write
q̂n = Pn(z)

Qn(z)dz2 with polynomials Pn(z) and Qn(z), after adjusting by multiplicative
constants and extracting a subsequence, we may suppose that Pn and Qn converge
to limit polynomials P∞ and Q∞, so that at least one of them is not identically
0. Moreover we have Q∞ ,≡ 0; otherwise in a neighborhood of a point z0 where
P∞(z0) ,= 0, the mass of q̂n must tend to ∞, and this contradicts the fact that
‖q̂n‖C is uniformly bounded. Therefore q̂n → q[j]

∞ := P∞(z)
Q∞(z)dz2 uniformly on com-

pact subsets of C \ X [j]. (At this point, we cannot exclude the possibility that
P∞ ≡ 0.)

The differential q[j]
∞ cannot have a multiple pole: otherwise, there would be a

compact set near a multiple pole of q[j]
∞ in which the mass of q[j]

∞ exceeded the
available mass of the q̂n. It follows that q[j]

∞ ∈ Q1(X [j]) and the poles of q[j]
∞ are

the limit of poles of q̂n. (The same conclusion can be reached using the Cauchy
formula and the uniform bound on the L1-norm, together with the Arzela-Ascoli
theorem and Fatou’s lemma.)

It remains to show that the sequence q̂n converges in L1-norm, since this will
imply

∥∥∥q̂n − q̂[j]
∞

∥∥∥
C

→ 0 and
∥∥∥q[j]

∞

∥∥∥
C

= c[j]. Since we had shown above that q̂n

converges in C \ X [j], it suffices to show the following:

Claim 5.5 (Small mass in small neighborhood). For every w ∈ C \ X [j] and ε > 0,
there exists δ > 0 such that ‖q̂n‖Nδ(w) < ε for sufficiently large n, where Nδ(w) is
the δ-neighborhood of w in the spherical metric.

If w ∈ C \ X [j] is the limit of simple poles of q̂n in Y ′
n, then the claim follows

from the following fact whose proof is left to the reader (it can be derived from
Proposition 4.2 via z "→ e2πiz).

Claim 5.6 (Mass near simple pole). Suppose h(z) is a meromorphic function in
D = D1(0) with at most one simple pole in D1/2(0) and no poles in the annulus
D \ D1/2(0). For every ε > 0, there exists a δ > 0 (depending only on ε, not on h)
such that ‖h‖Dδ(0) ≤ ε ‖h‖D1(0)

.

The remaining case is when w ∈ C \ X [j] is the limit of components of C \ Y ′
n.

Even though we already know that ‖q̂n‖C\Y ′
n
→ 0 by Theorem 4.1, it is conceivable

that some or all of the mass of the q̂n could drift into the punctures (such as w)
that the complement of Y ′

n becomes. While ‖q̂n‖Y ′
n
→ c[j] > 0, the Y ′

n contain
annuli in the boundary padding with diverging moduli, and parts of these annuli
tend into the punctures. We need to know that almost all the mass of q̂n is not
near the punctures.

Given w as above, for each n, there exist a component Dn of C \ Y ′
n and a pole

(or ∞) wn of q̂n within Dn such that Dn and wn tend to w. Let γ̂n be the closed
geodesic in M−1

n (Xn) homotopic to ∂Dn, and let Ân be its standard collar. Then
γ[i]

n = Mn(γ̂n) and A[i]
n = Mn(Ân) for some i. Let Â+

n be the boundary padding of
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Ân attached to Y ′
n, i.e. Â+

n = Y ′
n∩Ân. For η > 0, let Â+

n,η be the parallel subannulus
of Â+

n of modulus η, sharing the boundary with Ân (as in Proposition 4.2).
By Proposition 4.2 applied to q̂n on Ân (or, more directly, applied to q+

Ai
that

appeared in Subsection 4.4), we obtain the following: given ε > 0, there exists
η > 0 such that ‖q̂n‖Â+

n\Â+
n,η

< ε
2 for sufficiently large n. Since ‖q̂n‖C\Y ′

n
< ε

2 for
large n, in order to prove Claim 5.5, it suffices to show that, with η fixed as above,
for some δ > 0 and large n,

(12) Nδ(wn) ⊂
(
C \ Y ′

n

)
∪

(
Â+

n \ Â+
n,η

)
.

Let Cn be the maximal round annulus within Ân \ Â+
n,η with center wn, and let

C ′
n be the maximal round annulus within M−1

n (Xn) with center wn and containing
Cn. Then we have

mod(Cn) ≥ mod(Ân \ Â+
n,η) − µ∗ = mod(Ân) − η − µ∗

≥ π

((γ̂n)
− 1 − η − µ∗ ≥ mod(C ′

n) − 1 − η − µ∗ ;(13)

indeed, the first inequality is the Round Annuli Lemma A.3, the second is the
Collaring Theorem A.1, and finally mod(C ′

n) ≤ π/((γ̂n) is the fact that γ̂n has
shorter length in M−1

n (Xn) than the core curve of C ′
n, where the latter has length

π/mod(C ′
n) in C ′

n.
Now suppose that w ,= ∞. Then the outer boundary of C ′

n must pass through a
point in C \ Mn(Xn) which does not converge to w or ∞; otherwise it contradicts
the choice of scaling Mn at the beginning of the proof. Therefore the outer radius
of C ′

n converges to a positive finite limit r′. By (13) and Cn ⊂ C ′
n, the outer

radius of Cn must be at least r = r′ exp(−2π(1 + η + µ∗)). This implies (12) with
Nδ(wn) = Dr(wn).

The same argument works for w = ∞, by considering the inner radius of Cn,
and thus Claim 5.5 has been proved for all cases. This concludes the proof of
Lemma 5.4. !

Now we can finish the proof of Theorem 5.2. For a thick region Y [j]
n with c[j] > 0,

we have found a limiting quadratic differential q[j]
∞ ∈ Q1(C) with

∥∥∥q[j]
∞

∥∥∥
C

= c[j]. Its
number of poles is bounded by N , and each pole is a limit of poles of M∗

nqn.
Moreover,

∥∥∥M∗
n

(
qn|Y [j]

n

)
− q[j]

∞

∥∥∥
C
≤

∥∥∥M∗
n

(
qn|Y [j]

n

)
− M∗

nq
Y [j]

n

∥∥∥
C

+
∥∥∥M∗

nq
Y [j]

n
− q[j]

∞

∥∥∥
C

≤
∥∥∥qn − q

Y [j]
n

∥∥∥
Y [j]

n

+
∥∥∥q

Y [j]
n

∥∥∥
C\Y [j]

n

+
∥∥∥M∗

nq
Y [j]

n
− q[j]

∞

∥∥∥
C

−→ 0.

This shows that the restrictions of the qn to the Y [j]
n have limit model q[j]

∞ .
As for an annulus B[i]

n with b[j] > 0, by a similar estimate and Lemma 5.3, we
conclude that the restrictions of the qn to the annuli B[i]

n have limit model dz2/z2.
Since the mass of qn on the remaining domains must tend to 0, this finishes the

proof of Theorem 5.2. !
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6. Push-forward of quadratic differentials

In this section, we finally conclude the proof of our main theorem, by proving
Proposition 3.2: if the Thurston map σ from Subsection 3.1 has no fixed point,
then there exists a sequence of quadratic differentials with almost no contraction
under the push-forward under any finite number of exponential maps. Now that
we have established good control on the geometry of quadratic differentials, it will
be relatively easy to conclude that this implies the existence of a degenerate Levy
cycle.

We would like to point out that the results in this section are the only places in
this paper where we really need the precise properties of the exponential function.
These are the statements which need to be generalized in order for a generalization
of the main theorem to hold.

We call a sequence (qn) of measurable quadratic differentials exp-efficient if
‖qn‖C ,= 0 for all n and limn→∞

‖exp∗ qn‖C
‖qn‖C

= 1.

Proposition 6.1 (Exp-efficient integrable push-forwards). Let qn be a sequence
of measurable quadratic differentials on C which has limit model q with associated
scalings Mn(z) = anz + bn, where q is a meromorphic quadratic differential on C
with 0 < ‖q‖C < ∞.

If the sequence (qn) is exp-efficient, then the scaling factors an → 0, and (exp∗ qn)
also has limit model q with scaling z "→ M̂n(z) := an exp(bn)z + exp(bn).

Remark. The scaling M̂n is chosen so that if an → 0, then

Sn(z) := (M̂n)−1 ◦ exp ◦Mn(z) =
eanz − 1

an
→ z as n → ∞

uniformly on compact sets on C.

Proof. No non-zero meromorphic integrable quadratic differential has absolutely
efficient push-forward under the exponential map (in the sense that ‖exp∗ q‖C =
‖q‖C) because that would require that q(z + 2πi) = β(z)q(z) where β(z) is holo-
morphic and positive real-valued (see equation (3)); hence β is constant, and this
implies that ‖q‖C = ∞. Therefore, there is an α ∈ (0, 1) depending on q such that
‖exp∗ q‖C ≤ α ‖q‖C.

We first discuss the special case that qn has the limit model q with trivial scalings,
i.e. Mn(z) = z for all n. Then for every ε > 0 we have ‖qn − q‖C < ε ‖q‖C for
sufficiently large n; hence ‖q‖C ≤ ‖qn‖C /(1 − ε). For such n we have

‖exp∗ qn‖C ≤ ‖exp∗ q‖C + ‖exp∗(qn − q)‖C ≤ α ‖q‖C + ‖qn − q‖C

≤ (α + ε) ‖q‖C ≤ α + ε

1 − ε
‖qn‖C .

If ε > 0 is chosen small enough so that (α + ε)/(1 − ε) < 1, this implies that qn

cannot be exp-efficient, a contradiction.
Now consider the case of general scalings Mn(z) = anz + bn. It is clear that

the translations bn have no effect on the efficiency under the push-forward, so we
may as well translate the differentials qn so that all bn = 0. If the sequence an is
bounded in C∗, this leads to the same contradiction as before: for bounded scaling
factors an, there is a uniform contraction rate α < 1. If the sequence an → ∞, then
we write an = 2kna-

n with kn ∈ N and a sequence a-
n with 1 ≤ |a-

n| ≤ 2; define an
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auxiliary scaling M -
n(z) := a-

nz and set Q(z) := z2. Now the functional equation
exp(2z) = Q(exp(z)) implies

‖exp∗((Mn)∗q)‖C =
∥∥(Q◦kn)∗ exp∗(M

-
n)∗q

∥∥
C ≤

∥∥exp∗(M
-
n)∗q

∥∥
C ,

and this is at least as bad as before. Therefore, the sequence an can have neither
a bounded subsequence nor a subsequence tending to ∞, so an → 0 as claimed.
Since bn = 0, it remains to show that (exp∗ qn) has limit model q with scalings
M̂n(z) = anz + 1.

Recall that Sn = (M̂n)−1 ◦ exp ◦Mn converges to the identity uniformly on
compact sets of C. Since the push-forward by Sn cannot increase the L1-norm, we
have

∥∥∥(M̂n)∗(exp∗ qn) − q
∥∥∥

C
=

∥∥∥(M̂−1
n )∗ ◦ exp∗ ◦(Mn)∗ ◦ (Mn)∗(qn) − q

∥∥∥
C

= ‖(Sn)∗(M∗
nqn) − q‖C

≤ ‖(Sn)∗(M∗
nqn) − (Sn)∗q‖C + ‖(Sn)∗q − q‖C

≤ ‖(Mn)∗qn − q‖C + ‖(Sn)∗q − q‖C .

Given ε > 0, it follows from Claim 5.6 that there exists a neighborhood W of
Z(q) ∪ {0,∞} such that for sufficiently large n, we have ‖(Sn)∗q‖W < ε/3 and
‖q‖W < ε/3. Here uniformity with respect to n follows from uniformity in Claim 5.6
and the convergence of poles of (Sn)∗q to Z(q) ∪ {0,∞}. Since Sn → id uniformly
in C \ W as n → ∞, we have ‖(Sn)∗q − q‖C\W < ε/3 for sufficiently large n. Thus
we have

‖(Sn)∗q − q‖C ≤ ‖(Sn)∗q − q‖C\W + ‖(Sn)∗q‖W + ‖q‖W < ε .

This implies
∥∥∥(M̂n)∗(exp∗ qn) − q

∥∥∥
C
→ 0 as claimed. !

Proposition 6.2 (Exp-efficient annular push-forwards). Let qn be a sequence of
measurable quadratic differentials on C. Suppose that the sequence qn has the limit
model dz2/z2 on annuli An = {z ∈ C : rn < |z − zn| < Rn}.

If the sequence (qn) is exp-efficient, then there is a sequence R∗
n ∈ (rn, Rn) with

R∗
n → 0 such that

‖qn‖A∗
n

/ ‖qn‖An
→ 1

where A∗
n := {z ∈ C : rn < |z − zn| < R∗

n}.
Moreover, the quadratic differentials exp∗ qn also have the limit model dz2/z2 on

annuli {z ∈ C : r′n < |z − z′n| < R′
n}, where z′n = exp(zn), r′n = | exp(zn)|rn and

R′
n = | exp(zn)|R∗

n.

Proof. The general idea of the proof is similar to Proposition 6.1; the main difference
lies in the fact that there is no integrable limit model for our quadratic differentials,
and this requires a preparatory argument. We will use the notation A(r, R) := {z ∈
C : r < |z| < R} for the centered annulus between radii r < R. Let q := dz2/z2 on
C.

As a toy example, consider the annulus A := A(π, 2π) and the restricted dif-
ferential q|A. Then there is a constant α < 1 such that ‖exp∗(q|A)‖C ≤ α ‖q|A‖C,
simply because the contributions near the points 1− iπ and 1 + iπ are not aligned.
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Similarly as in Proposition 6.1, the functional equation exp(2z) = (exp(z))2
implies that for any r ≥ π and any integer i ≥ 0, we have

(14)

∥∥exp∗(q|A(2ir,2i+1r))
∥∥

C∥∥q|A(2ir,2i+1r)

∥∥
C

≤
∥∥exp∗(q|A(r,2r))

∥∥
C∥∥q|A(r,2r)

∥∥
C

.

But this yields for any r ≥ π and any integer k ≥ 1
∥∥exp∗(q|A(r,2kr))

∥∥
C∥∥q|A(r,2kr)

∥∥
C

≤
∥∥exp∗(q|A(r,2r))

∥∥
C∥∥q|A(r,2r)

∥∥
C

because on every subannulus A(2ir, 2i+1r), the relative loss of mass is at least the
same as on A(r, 2r), and the interference between these various subannuli can only
increase the amount of cancellation. This implies that there is a universal constant
α′ < 1 such that for every pair of radii R, r with π ≤ r ≤ R/2, we have

∥∥exp∗(q|A(r,R))
∥∥

C∥∥q|A(r,R)

∥∥
C

≤ α′ .

Now suppose that qn is an exp-efficient sequence of measurable quadratic differ-
entials, and suppose there are annuli An = {z ∈ C : rn < |z − zn| < Rn} as in the
claim of the proposition such that qn has limit model dz2 on An. Since nothing
changes under translations, we may as well assume that all zn = 0.

Write A′
n := {z ∈ An : |z − zn| < π} and A′′

n := {z ∈ An : |z − zn| > π}. Under
the push-forward, a definite fraction of the mass on A′′

n cancels, so if the sequence
qn on the annuli An is exp-efficient, then ‖qn‖A′′

n
/ ‖qn‖An

→ 0.
Now fix any small R∗ ∈ (0, π) and restrict to n with rn < R∗. Then the

annulus A(R∗, π) has modulus 1
2π log(π/R∗). Since the mass of dz2/z2 on concentric

subannuli of An is proportional to the moduli of these subannuli and mod(An) →
∞, it follows that ‖qn‖A(R∗,π) → 0 as n → ∞. Combining this, it follows that

‖qn‖A(rn,R∗)

‖qn‖An

→ 1 .

The rest of the argument is analogous to Proposition 6.1, using the scalings Mn(z) =
anz + bn with an = R∗

n. !

Lemma 6.3 (Sequence of exp-efficient push-forwards). Suppose that qn is a se-
quence of measurable quadratic differentials with 0 < ‖qn‖C < ∞ for all n such
that ∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗qn

∥∥
C

‖qn‖C
−→ 1 ,

where λn,i ∈ C∗ are arbitrary. Let Vn ⊂ C be domains such that ‖qn‖Vn
/ ‖qn‖C ≥

α > 0 for some fixed α > 0 and all n. Then for every s = 0, 1, . . . , m − 1, the
sequence of quadratic differentials

(Eλn,s ◦ Eλn,s−1 ◦ · · · ◦ Eλn,1)∗(qn|Vn)

is exp-efficient.

Proof. Set q̂n := qn|Vn . We obviously have

0 ≤ ‖q̂n‖C −
∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C

≤ ‖qn‖C −
∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗qn

∥∥
C
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because all the cancellation which occurs for q̂n also occurs for qn. But this implies
‖q̂n‖C −

∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C

‖q̂n‖C

≤
‖qn‖C −

∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗qn

∥∥
C

α ‖qn‖C
−→ 0 ;

hence ∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C

‖q̂n‖C
−→ 1 .

Since all push-forwards are weakly contracting, we have

‖q̂n‖C ≥
∥∥(Eλn,1)∗q̂n

∥∥
C ≥ · · · ≥

∥∥(Eλn,m ◦ Eλn,m−1 ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C ,

and this implies for every s < m
∥∥(Eλn,s+1 ◦ Eλn,s ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C∥∥(Eλn,s ◦ · · · ◦ Eλn,1)∗q̂n

∥∥
C

−→ 1

as claimed. !
Proof of Proposition 3.2. Suppose that the statement is false. Then there exist
N, m, M such that for all r < 1, there exists E(m) =: Eλm ◦ · · · ◦ Eλ1 and a
quadratic differential q with at most N poles such that

∥∥(E(m))∗q
∥∥

C ≥ r ‖q‖C and
for every nested pair of disks D̃ ⊂ D such that D̃ is an essential annulus in the
complement of the poles of q and with mod(D \ D̃) ≥ M , the map E(m) is not
injective on D.

Thus choose N, m, M , a sequence rn tending to 1, a sequence

E(m)
n = Eλn,m ◦ · · · ◦ Eλn,1

and a corresponding sequence of quadratic differentials qn such that
∥∥∥(E(m)

n )∗qn

∥∥∥
C
≥ rn ‖qn‖C .

If we can show that there exists a subsequence for which there are disks D̃n ⊂ Dn

which are essential in the complement of the poles of qn, with mod(Dn \ D̃n) > M

and E(m)
n injective on Dn, we will have derived the contradiction needed to prove

Proposition 3.2.
Extract a subsequence as in Theorem 5.2 (and omit double indices for simplicity

of notation). Pick an index j and a sequence of regions V [j]
n such that qn|V [j]

n
has a

limit model q.
Define

q(0)
n := qn and q(i)

n := (Eλn,i)∗(q
(i−1)
n ) for i = 1, 2, . . . , m.

Similarly, set

q̂(0)
n := qn|V [j]

n
and q̂(i)

n := (Eλn,i)∗(q̂
(i−1)
n ) for i = 1, 2, . . . , m.

By Lemma 6.3, the sequences q̂(0)
n , . . . , q̂(m−1)

n are also exp-efficient. We will discuss
the two cases of Theorem 5.2 separately.

Case (b1): The limit model q of q̂(0)
n is an integrable meromorphic quadratic

differential on C. In this case, there exist scalings M (0)
n (z) = a(0)

n z + b(0)
n with

a(0)
n → 0 as n → ∞. We will determine the scalings M (i)

n for q̂(i)
n inductively.
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M n (z
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a n z+
b n
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(0)
(0)

q
Mn     (z)=an      z+bn

(   -1) m

(   -1) m
(   -1) m

Mn (z)=an z+bn(1) (1) (1)

∞

M
n  (z)=an  z+bn

(   )
  m

(   )
  m

(   ) m

...

E

q

q

q

q

(   -1)

(   )

(1)

(0)

m

m

n

n

n

n

λn,m

Eλn,1

Eλn,2

Eλn,m-1

DR

Figure 7. The quadratic differentials (E(s)
n )∗qn look more and

more like q in M (i)
n (DR(0)). Since A[i]

n tends to 0, these regions
become smaller and smaller (much more drastically than suggested
by the picture) and correspondingly are surrounded by bigger and
bigger annuli containing no poles.

Suppose that, for i ∈ {0, 1, . . . , m − 1}, the differentials q̂(i)
n have limit model

q with scalings M (i)
n (z) = a(i)

n z + b(i)
n . Then by Proposition 6.1 and the remark

thereafter, a(i)
n → 0, and exp∗ q̂(i)

n has limit model q with scalings M̂ (i)
n .

Let M (i+1)
n (z) := λn,i+1M̂

(i)
n (z). Then q̂(i+1)

n has limit model q with scalings
M̂ (i+1)

n because (M (i+1)
n )∗q̂(i+1)

n = (M̂ (i)
n )∗(exp∗ q̂(i)

n ). We also have

S(i+1)
n := (M (i+1)

n )−1 ◦ Eλn,i+1 ◦ M (i)
n = (M̂ (i)

n )−1 ◦ exp ◦M (i)
n −→ id

uniformly on compact sets in C. Hence for any R > 0, the composition Eλn,m ◦
Eλn,m−1 ◦ · · · ◦ Eλn,1 is injective on Dn := M (0)

n (DR(0)).
Choose R̃ so that DR̃−1(0) contains all poles of q in C (there must be at least

three of them). Then D̃n := M (0)
n (DR̃(0)) must contain at least two poles of qn

for large n; in fact, the poles of the limit model q in C are the limits of poles of
(Mn)∗qn by Theorem 5.2. Taking R := R̃e2πM and large n, the conclusion follows.
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Case (b2): The limit model is q = dz2/z2. In this case, we can also intro-
duce the scaling M (i)

n (z) = a(i)
n z + b(i)

n so that we can compare (M (i)
n )∗q̂(i)

n with
cn(dz2/z2)|{rn<|z|<1}. It follows from Proposition 6.2 that, by successively cutting
out the outer radii of the annuli, we can achieve the following for i = 0, 1, . . . , n:

∥∥∥∥(M (i)
n )∗q̂(i)

n − cn
dz2

z2

∣∣∣
{rn<|z|<1}

∥∥∥∥
C
−→ 0

with a(i)
n → 0 and

(M (i+1)
n )−1 ◦ Eλn,i+1 ◦ M (i)

n → id
uniformly on compacts in C. The rest is similar to Case (b1). !

Mn
i

Dn
i

bn
i

Vn
j

0 1

0 1

∞ ∞qn q

0

DR-1(0)

Figure 8. The polygon labeled qn represents a quadratic differen-
tial on C. Note that the small rectangle at the lower left is most of
C, since it contains 0, 1 and ∞, and it is separated from the remain-
der by an annulus with large modulus. But most of the mass of qn

is elsewhere; in particular, much of the mass is in the shaded thick
part V [j]

n , which, if we imagine squeezing the two necks as n → ∞,
will tend to the copy of the Riemann sphere labeled q, with the
corresponding quadratic differential (with five poles and one zero).
Note that the position of ∞ on that copy of C is imposed, but the
position of 0 is arbitrary; the plane carrying q is only defined up to
affine transformations. The shaded part of that plane is supposed
to represent a disk around the chosen 0 containing all the poles of
q except ∞. The affine map Mn pushes q forward to a quadratic
differential which closely approximates qn in Di

n and has very little
mass elsewhere.

Appendix A. Some general results on Riemann surfaces

In this appendix we review some important facts about Riemann surfaces and
quadratic differentials.
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η(l)

l

γ
2hγ

π
l(γ)

1
≤1/2

≤1/2

L

M

Figure 9. Left: It is often convenient to use the band model of the
hyperbolic plane; this is the region | Im z| < π/2, with the metric
|dz|/ cos y; on the real axis, the Euclidean metric coincides with the
hyperbolic metric. On the left we have drawn the configuration
defining η((). Right: If you divide out by translation by ( and
rescale the resulting Euclidean cylinder so that the circumference
is 1, then the (Euclidean) heights are as indicated. Note that when
( becomes small, so that h becomes large, the part of the cylinder
not in the standard collar becomes negligible.

A.1. Collars on hyperbolic Riemann surfaces. We will consider Riemann sur-
faces which have a hyperbolic metric of constant negative curvature. We will always
normalize the metric so that the curvature is −1 everywhere.

The Collaring Theorem A.1 says that every sufficiently short simply closed ge-
odesic is surrounded by an annulus of definite modulus. We make this precise as
follows.

Let η : R+ → R+ be the collaring function which is defined as follows (compare
Figure 9): in a simply connected hyperbolic Riemann surface, let L be a hyperbolic
geodesic and let I ⊂ L be a segment of length (. Draw perpendiculars to L through
the endpoints of I, both on the same side of L, and extend them until they meet
the circle at infinity. Join these points at infinity by a line M . Then η(() is the
distance between L and M .

Theorem A.1 (The collaring theorem and standard collars). Let X be a hyperbolic
Riemann surface. For every simple closed geodesic γ on X of length ((γ) < (∗ :=
log(3 + 2

√
2), the set of points at distance less than η(((γ)) from γ is an embedded

annulus Aγ (called the standard collar around γ) whose modulus Mγ satisfies
π

((γ)
− 1 < Mγ <

π

((γ)
.

For the hyperbolic metric of the annulus Aγ, the curve γ is the unique simple closed
geodesic (the core curve of Aγ).

Moreover, if γ1 and γ2 are disjoint simple closed geodesics, then the standard
collars Aγ1 and Aγ2 are disjoint.
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It will be convenient to write Mγ = 2hγ (h for “height”) so that Aγ is isomorphic
to the standard cylinder of circumference 1 and height hγ :

Aγ 5 {z ∈ C : | Im z| < hγ}/Z .

Note that if ((γ) is small (the only case of interest to us), the estimate of Theo-
rem A.1 on Mγ is extremely precise (it is also the best possible).

We also need the central collar Bγ around γ: this is the unique parallel suban-
nulus of Aγ of modulus Mγ −

√
2Mγ with core curve γ.

Corollary A.2 (Short geodesics disjoint). (a) If two simple closed curves γ1 and
γ2 on X satisfy ((γ2) < 2η(((γ1)), then they are disjoint or they coincide.

(b) If two simple closed geodesics γ1 and γ2 both have length less than log(3 +
2
√

2), then they are disjoint or they coincide. In particular, on a Riemann surface
of genus g with N punctures, there are at most 3g − 3 + N such curves.

Proofs for these results can be found in [DH, Section 6]1.
The Collaring Theorem A.1 guarantees large annuli around short curves on hy-

perbolic Riemann surfaces X. When X is a subset of C, we can do better: a
short curve on such an X is surrounded by a large round annulus; this is an
annulus whose two boundaries are concentric Euclidean circles. We say that a
round annulus A ⊂ C is centered at a ∈ C if there are radii R > r > 0 so that
A = {z ∈ C : r < |z − a| < R}.

Lemma A.3 (Round annuli). There are universal constants µ∗, µ∗∗ > 0 with the
following property: if A ⊂ C is an annulus with modulus µ > µ∗∗ and a is a point
in the bounded component of C \ A, then there is a round annulus B ⊂ A centered
around a and with modulus mod(B) ≥ mod(A) − µ∗.

For a proof, see [M2, Theorem 2.1].

A.2. Mass per modulus is convex. If q is a quadratic differential on an annulus
{z ∈ C : a < Im(z) < b}/Z, we define mass per modulus as the function F : (a, b) →
R+

0 with F (y) :=
∫

R/Z |f(x + iy)| dx. We will need the following elementary result,
reminiscent of Jensen’s formula.

Proposition A.4 (Mass per modulus on annulus). (a) Let

f(z) =
∞∑

n=−∞
ane2πinz

and let the band {z ∈ C : A < Im z < B} be the maximal open set on which the

1 Douady and Hubbard [DH] use the hyperbolic metric with constant curvature −4, so their
value !∗ is half as large.
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−ρ ρ

1

A

a0

Figure 10. Left: The graph of ηρ. It is normalized to have in-
tegral 1, and as ρ → 0, it is a good approximation to the Dirac
δ-measure. Right: A convex function with a limit at infinity is
decreasing.

series converges. Then the function

F (y) =
∫

R/Z
|f(x + iy)| dx

is convex on (A, B).
(b) If an = 0 for n < 0, then B = ∞, limy→∞ F (y) = a0, and F (y) is decreasing

on (A,∞).
Similarly, if an = 0 for n > 0, we have A = −∞, limy→−∞ F (y) = a0 and F is

increasing on (−∞, B).

Proof. We will require the following characterization of convexity. Define the func-
tion

ηρ(x) =
{

2
πρ2

√
ρ2 − x2 if |x| ≤ ρ,
0 if |x| > ρ.

An easy computation (or an easier argument using symmetry) shows that if
h(x) = ax + b is a linear function, then h(x) = (h ∗ ηρ)(x). !

Lemma A.5 (Convexity on interval). Let I ⊂ R be an open interval and let f :
I → R be continuous. Then f is convex if and only if f(x) ≤ (f ∗ ηρ)(x) for all
sufficiently small ρ.

Proof. The direction =⇒ is clear. For the converse, note first that a function is
convex if for all a, b the function g(x) = f(x)+ax+ b has no local strict maximum.
This is true in our case: at a strict local maximum x we would have

g(x) > (g ∗ ηρ)(x) = (f ∗ ηρ)(x) + ax + b ≥ f(x) + ax + b = g(x)

for sufficiently small ρ, a contradiction. !

Proof of Proposition A.4. Choose y ∈ (A, B) and ρ > 0 such that (y − ρ, y + ρ) ⊂
(A, B). Let Dz ⊂ C be the disk of radius ρ centered at z. Then by the mean-value
property of analytic functions we have

f(z) =
1

πρ2

∫

Dz

f(u + iv) du dv.
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Thus

F (y) =
∫

R/Z
|f(x + iy)| dx =

∫

R/Z

∣∣∣∣∣
1

πρ2

∫

Dx+iy

f(u + iv) du dv

∣∣∣∣∣ dx

≤
∫

R/Z

∫ ρ

−ρ

(
1

πρ2

∫ x+
√

ρ2−y2

x−
√

ρ2−y2
|f(u + i(y + v′))| du

)
dv′ dx

=
2

πρ2

∫ ρ

−ρ

∫

R/Z
|f(x + i(y + v′))|

√
ρ2 − (v′)2 dx dv′ = (F ∗ ηρ)(y).(15)

This proves part (a). For part (b), in the case where an = 0 for n < 0, the
function x "→ f(x + iy) converges uniformly to the constant function a0 as y → ∞.
Figure 10, right, illustrates what a convex function on (A,∞) with a finite limit at
∞ must look like. The other case works the same way. !
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