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HENON MAPPINGS IN THE COMPLEX DOMAIN
I: THE GLOBAL TOPOLOGY OF DYNAMICAL SPACE

by JOHN H. HUBBARD and RALPH W. OBERSTE-VORTH
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1. Introduction

In 1969, H^non ([H61] and [H62]) began the investigation of the mappings

/ x\ fx2 + c — ay\
F: h-> ' •' , where a + 0,

\y] \ x ]

as mappings having roughly the same behavior as a particular Poincard section of the
Lorenz differential equation. H^non demonstrated numerically that for certain values
of the parameters the mappings appeared to have a strange attractor. This has finally
been established rigorously by Benedicks and Garleson ([BG], [MV]).

There has since been an enormous amount of work on the dynamics of the H^non
mappings (in particular, see [Ho], [HWh] and [HWi], which give further references).
This work is all in the real domain. As far as we know, this paper ([H] was an early
version) is the first attempt to understand the H&ion mappings in C2. Recently others
have done work in this area including Friedland and Milnor ([FM] and [Ml]), Bedford,
Lyubich, and Smillie ([B], [BS1], [BS2], [BS3], [BS4], [BLS], [S]), and Formess and
Sibony ([FS]).

In the study of iteration of polynomials of one variable, extending to complex
values of the variable has been very useful, even when the original polynomials were
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real. We hope that the same thing will happen here, more or less for the same reason.
There is essentially nothing that can be said about real polynomials which is independent
of the coefficients, largely because virtually all features independent of conjugation,
such as periodic cycles, are likely to disappear under perturbation. In the complex domain,
the behavior is far more uniform.

Our work started from a different point of view. In 1982, Galabi suggested that the
computer should be used to investigate the basin of attraction of one of the two attractive
fixed points of the mapping

Mj^-^-^A
w \ « /

The reason for examining this was that it provided an example of a Fatou-Bieber-
bach domain. These are open subsets U C C^ which are biholomorphically isomorphic
to C" and whose complement, C^ — U, has non-empty interior. When an automorphism
ofC" has an attractive fixed point or attractive cycle, the basin is always such a domain.
Fatou and Bieberbach ([F], [Bi]) first constructed examples of such domains as basins
of attractive fixed points. They have been extensively studied in [BS2] and [FS],

Despite considerable numerical work, we were unable to work out the topology
of the closures of the basins and decided to look at simpler automorphisms of C2, with
quadratic polynomials as coordinates. Section 2 shows that the H^non family encompasses
a significant part of this family.

The cast of players. Most of the work on H^non mappings in the real case has
focused on attractors. In the complex, attractors are uninteresting since the only attrac-
tors are points. The invariant subsets considered here are inspired by the dynamics of
polynomials, as explained below. For any mapping/, let/0" denote the n-fold composition
of/or/"1 depending on whether n is positive or negative.

Our approach has been inspired by the study of complex polynomials of a single
variable. Given a polynomial p{z), the natural set to study is

^S == { z I P07"^) does not tend to oo as n -> oo }

and its boundary Jp == BKp, also known as the Julia set of p. Another definition ofjy is

J p = { z I on no neighborhood of z is the sequence { p0"} normal}.

The sets studied here are defined in imitation of the one-dimensional case. For a
H^non mapping, the obvious generalization of the Julia set is

J±-
( x \ }

on no neighborhood of (is the sequence { F° ± n } normal ,
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where a sequence of functions on U C C2 with values in C2 is defined to be normal if
every subsequence has a subsequence which converges uniformly on compact subsets
to a function with values in P2, the complex projective plane.

Define for a Htoon mapping F the following sets:

K. pon i

\y
does not tend to oo and U. = C 2 - K .

and K_ po-i does not tend to oo } and U_ = C2 — K

Further, define J^ = BK^, K = K+ n K_, and J ==J^. nj_.
It will be seen that K and J are compact and of course invariant under F. These

are the spaces which we most wish to understand.

Main results. This paper contains three main results: two concern the structure
of C2 — K^. Topologically, we will show that this set is homeomorphic to a fibradon
over the reals with fiber a 3-sphere with a solenoid removed (Theorem 6.1). Analytically,
C2 — K^ is isomorphic to a quotient of (C — D) x C, where D C C is the unit disc,
by a group of automorphisms which we determine explicitly (Section 8). The third
result gives a compactification C2 to which the H^non mappings extend canonically,
analogous to compactifying C by adding a circle at infinity (Theorem 9.1).

The proofs of these results require both some analytic and some topological pre-
liminaries. Most of the topology (Sections 3 and 4) concerns solenoidal mappings, one of
which plays much the same role with respect to H^non mappings as multiplying angles
by d does for iteration of polynomials. We go into more details than is strictly necessary
for our purposes, but we feel that viewing the surrounding countryside makes our parti-
cular mappings easier to understand, and the classification of solenoidal mappings
(Theorem 3.10) is of independent interest.

For the analytical results, the most important construction is the analog of the
Bottcher coordinate ([M2]). When p is a monic polynomial, this is the function <py
defined in a neighborhood of oo such that

and
9.(^)) = {^W

<pp(^) == z + o(l) near oo.

The function <pp(-z) is constructed by making sense of the following

^( l̂im^r^))^n ->co

This is a standard scattering theory construction: go toward oo via p and return via
the unperturbed mapping z h-> ̂ . The fractional power is not a priori defined, and has
to be dealt with carefully.
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The problem of the branches of the roots can be circumvented by defining

G^^Hm^^logJ^.)!,

where log^(^) == sup{log(^), 0}, which is the Green's function of Ky.
This construction generalizes for H^non mappings as follows. Let a subscript 1

or 2 denote the projection onto the first or second coordinate as in (F0^ = P^o F0^.
Now define the limits

-^^^II^^WII-

ix\ r i x
and <pj = lim (F0^

\y] ^"L U
•H/d"

Of course, the matter of where these are defined and the convergence of the limits must
be dealt with (and are, in Section 5). Since the first version of this paper was written,
much further work on G^ has been done, more particularly by considering the closed
(1, 1)-currents

^=^G^

which are analogs of the Brohlin measure ([BS1], [FS]). The measure (JL == (A^. A (JL__
has also turned out to be very important.

As far as we know, the complex analytic mappings 9^ have not received similar
attention, but they are even more important to our development.

More particularly, the argument of the Bottcher coordinate has led to the theory
of external angles and is fundamental to the combinatorial study of the dynamics of
polynomials ([DH], [T]). When the functions 9^ are combined with the compactifica-
tion in Section 9, more particularly Corollary 9.4, we find that there is an analogous
theory of external angles for H^non mappings; perhaps we can hope to use the techniques
using external rays, etc., to combinatorially describe H^non mappings. A case in point is
the Benedicks-Carleson result in [BC], where the combinatorics is so reminicent of puzzles
and tableaux as in [Y], [BH] and [HY].

Continuations of this paper will present results about H^non mappings as pertur-
bations of polynomials ([HO]). The paper [0] studies the dynamics of complex horse-
shoes using techniques from these papers.

Acknowledgments, — This paper has taken a long time to write and we have benefited
from innumerably many conversations. We particularly want to thank A. Douady,
J. Smillie, E. Bedford, B. Branner, J. Milnor, D. Sullivan, G. McMullen, J. C. Yoccoz,
M. Shishikura, N. Sibony, L. Garleson, M. Benedicks, G. Bardos, T. Bousch, D. Faught,
and L. Ma. Much computer experimentation went into the formulation of the theorems,
and we thank H. Smith for the immense amount of programming he performed for us
over the years.
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2. An algebraic characterization of Henon mappings

The family of mappings on C2 with quadratic coordinate functions depends a priori
on 12 parameters. The Henon mappings

^-m- -°.
represent some conjugacy classes of quadratic automorphisms. In this section it is shown
that the only other conjugacy classes are represented by the elementary mappings,

v ( x \ Ik i+ bx +V2}
U=[ k^+dy \ ^^{O,!},^^, bd^O,

where k^ = 1 implies b = 1 and k^ = 1 implies either b = d + 1 or d = 1. Note that
the elementary mappings consist of several one- and two-parameter families:

. (x\ (bx+y^(x\^/bx+^\

U \ i + ^ ) 'A L = i,u. ^o,A+i ,

•'(;)- m- -°'^'m--0."(K )̂ i+o-
Note that every polynomial mapping, G, of degree 2 can be written in the form

G == ̂  + G! + Gg, with each G^ homogeneous of degree k and that every polynomial
automorphism has constant Jacobian determinant. The following theorem gives the
Jacobian Conjecture in this context, i.e., any polynomial mapping of degree 2 with
non-zero constant Jacobian determinant is an automorphism.

Remark. — If G^ satisfies the non-degeneracy condition G^O) == 0, then the
mapping G extends to give an endomorphism of P2, which will be of degree 4. More
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generally, if the mapping were given by polynomials of any degree d, and the leading
terms G^ were non-degenerate, then the mapping defines an endomorphism of P2 of
degree d2. Of course, this is incompatible with G being an automorphism. Since G^ is
degenerate, G^O) is a line /o 5 and G^(C2) is a line/r Either^ and^i coincide, in which
case the mapping is elementary, or they do not coincide, and the mapping is a genera-
lized H6non mapping.

Theorem 2.1. — For every polynomial mapping G: C2 -> C2 of degree 2 with constant
non-zero Jacobian determinant, the image of Gg and the set on which G^ vanishes are lines through
the origin. If these lines are linearly independent, then G is conjugate to a Henon mapping. Otherwise,
G is conjugate to an elementary mapping.

Proof. — The general polynomial mapping of degree two is

G^ = (al + blx + cly + dlx2 + €lxy +/1J^
V/ ^2 + &2 x + c^y + d^ x2 + e^ xy +/2J2/

The quadratic terms of the Jacobian determinant generally yield the relations

^=!1 =^
^ e, /25

So the image of the quadratic terms is a line, ^$ assume that d^ == e^ ==/a = 0. The
linear terms of the Jacobian determinant generally yield the relations

e\h^c^ == 4^/i b^c^.

Since G is injective, 63 and ^ cannot both be 0. So Gg vanishes on a line, /o-
If^Q and /i are linearly independent, then assume d^ = 1 and ^ ==/i = 0 (sending

/o to thej-axis). The Jacobian condition shows that ̂  = 0 and this is a H^non mapping.
Otherwise assume that /i == 1 and d^ = e^ == 0 by sending /o to the .v-axis. The

Jacobian condition shows that b^ = 0. So G is of the form

QlA^l^+^x+c^+A
U ^2 +^y ]

Note that b^ =t= 0 and ^3 + 0 are invariant under conjugations which do not introduce
new terms. The different cases are listed below:

c^ 4= 1, &i === c^, 2^ + ^(1 — ^2) = 0 yields B with i = d = ̂  == c^,
c^ =(= 1, ^ = ̂ , 2^2 + ^i(l — ^2) + ° yields A with 6 = b^ = ^5

^2 + 1? ^i + ^2» *i + 1 yields B with b = b-^, d = c^,
^ 4= 1, &, = 1, ^(1 - c^Y + 02(1 - c^) + a2^ = 0 yields B

with b = 1, d = <:2?
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c^ +1, b^ = 1, fli(l - ̂ )2 + ^(1 - ̂ ) + ̂  =)= 0 yields G
with d === ^?

^2=1 , ^ =t= 0 yields D with 6 = ^,

^2 == I? ^2 == 0, ^i =t= 1 yields B with b = &i, d == 1,

^2 == 1? ^2 == O? ^i = ^ 4^i -- ̂  = 0 yields B with b = d == 1,

^2 == 1? ^2 == 0, ^i = 1, 4^ — ^ =t= 0 yields G with d = 1. D

Remarks. — The H^non family of mappings can be written in different forms.
For example, HAion ([H(SI] and [H^2]) actually studied the family

H( ' )=P+ 1 ———), .p,0.
\J7 \ ^ ]

Note that F^ ̂  is conjugate to H_^ _^. Thus, mappings of the form F^ g were omitted
in this other form.

A fixed line is a line which is mapped onto itself (but not necessarily pointwise).
Consider the set of lines y == k for all k e C. Elementary mappings can be understood
by how they map these lines: all lines fixed, a unique fixed line, or no fixed line. A fixed
line may be fixed pointwise, or there may be a unique fixed point or no fixed point.

3« Solenoidal mappings

This section gives a classification up to conjugacy of unbraided solenoidal mappings^
T : T -> T of degree d, satisfying appropriate expansion properties and topological
conditions. Solenoidal mappings, which are defined below, are injective mappings of
degree d ^ 2 of the solid torus. The images of such mappings can be braided and quite
complicated. We only understand how to classify those which are unbraided.

We will show that up to conjugacy, such mappings, when they are appropriately
expanding and contracting, are classified by an integer. Only one of these mappings
seems relevant to the study of Hdnon mappings. On the other hand, the authors puzzled
about these mappings quite a bit while understanding the structure of H^non mappings,
and we feel that it will be clearer if we study them all, if only to contrast the relevant
one to the others.

Theorem 3.1 holds for arbitrary mappings of degree d while Propositions 3.3,
3.5, and 3.6 require the mappings to be solenoidal. The construction of solenoids is
given before Proposition 3.6. Proposition 3.7 shows that solenoidal mappings of degree 2
are unbraided while Proposition 3.8 requires unbraidedness. Theorem 3.11 is the classi-
fication of conjugacy classes.

Theorem 3.11 reduces the determination of a conjugacy class to the computation
of an isotopy class and the verification of a hyperbolicity condition.
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Solenoidal mappings. Let D be the disk of radius 2, T = S1 X D, and denote
by (^, z) the coordinates in T.

Definition. — Let G+ and G_ denote the constant families of cones
C^z)={^u\\^\^ \u\} and C^ z) = {{^ u) | |? | < | u\}

in the tangent bundle of T.

Definition. — A solenoidal mapping T : T -> T of degree d is an injective G1 immer-
sion of degree d, such that, for all (^, z) eT and for some constant K> 1,

d^r{G^z))CC^^z)),

0;, u) e C^, z) and ̂  ̂  u) == (^, n,) imply | ̂  | > K | ? |

and (?, «) e G_(!:, 2;) and rf^ r(S, «) = (?i, ̂ ) imply | ̂  | < ̂  | « |.

Remark. — The definition says roughly that the derivatives of a solenoidal mapping
preserve the family of cones C .̂ and are expanding in the ? direction and contracting
in the u direction in C+. From the fact that T is an immersion it follows that the inverses
of the derivatives of a solenoidal mapping preserve the family of cones CL •

Examples.— LetS1 == { Se C | | ^ | = 1 }, D = = { z eC | | z | < 2}, andT == S1 X D.
Define ^ == { 1 } x 3D and e^ == S1 X { 2 }, each oriented by the counterclockwise
orientation of the circle. We will examine very closely the following mappings,
Tj^ : T -> T, which are unbraided solenoidal for every integer d ^ 2 and k e Z:

1 ^ \ - 1 ^ \^^y-^+e^+i-^
The reason for the shift in the exponent will become clear later: T^ o has much nicer
properties than the others.

Theorem 3.1. — For every mapping/: T -> T of degree d ̂  2, there exists exactly d — 1
continuous functions TC : T -> R/Z o/* ak r̂̂  1 JM^ ^A^ ̂  following diagram commutes:

T ——f-—> T

"1 1"y y

R/Z ^̂  R/Z

For any two such mappings n^ and TTg, there exists co with <^~1 == 1 <mrf ̂  = 00^2.

Proof. — By the Lefschetz Fixed Point Theorem ([D]),/has 1 — d fixed points
counted with multiplicity. Since 1 — d^ 0, there is at least one fixed point IQ._ /"^/ /-K/ /^/

To avoid difficulties with branches of d-th roots, lift f to f:T ->T, where
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T == R x D is the universal covering space ofT, with base point ^ and the lift/: T -> T
satisfying/^) ==?o. Let y :T ->TC be a generator of the fundamental group. Then
7(Y(7)) = Y0^/^)) tor every T e ¥.

Consider the space

I I = = { % : T - > R | % i s condnuous and %(y(^) = %W + 1 }

with the uniform metric, 8, which is well-defined because of the periodicity. In this
metric II is a complete metric space. Define a mapping 9 : II -> II by

<p(%)(7)=^%(/(7)).

If % satisfies %(/(?)) == %(T) + 1, then so does <p(%).

Lemma 3.2. — The mapping <p is strongly contracting.

Proof. — If ^i,^ e n, then

I 9^1) (7) - y(^) (^) I = ! I %i(7(^)) - %2(7(T)) | ̂  1 8(%i,%2).a a
D (Lemma 3.2)

Let %o be the fixed point of 9 and TCQ be the mapping T -> R/Z induced by %o.
Clearly the mappings TT^ == e2mm~l) no still semi-conjugate jf to -? h-> ^.

If TT' : T -> R/Z is any mapping making the diagram

T ——f-—> T

R/Z ̂  R/Z

commute, then TT'(^) is a fixed point of ,2: «-> -84, so it must be one of the [d — l)-th roots
of 1 and there exists k with Tr'(^) = -n^o)- ^^ TC' == 7T^ since the lift of ^-27Tifc/(d-l) TC'
in 11 is a fixed point of 9, hence is 7^0. D (Theorem 3.1)

Proposition 3.3. — If a mapping f of degree d is solenoidal, then the mappings n : T -> R/Z
in Theorem 3 . 1 arefibrations with fibers homeomorphic to disks.

Proof. — Define IIo C 11, the family of Lipshitz fibrations consisting of those ele-
ments of II whose fibers are disks which are graphs of Lipshitz functions a : D -> R
(i.e. | a(2'i) — 0(2:2) | < | z-^ — z^ ]). Since/"1 preserves the family of cones G_, the family
of Lipshitz fibradons is stable under 9. So the fixed point TCQ is a limit of Lipshitz fibrations.

The space IIo is not closed in II, but the fibers ofn e HQ are fairly easy to understand.

Lemma3 A. — For any n == lim .̂, with TT, e Ho, and for any x eR, there exist two
Lipshitz functions a^) ^ ff.^{z) such that T:"1^) =={(^3 z) \ a^) <j^ o^)}.
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Proof. — We have

Tr-^o) == n u n ̂ \[x, - 8,^0 +<!)•
e>0 00 ̂ i

Decreasing intersections of sets of the form n"1^) == {(jy, z ) \ a^) ̂  y ^ a2(-^')} are stl^
of this form. Hence it is enough to show that

U n Tr^d^o-s^o+el)
i>0 j ^ i

is of this form. Now suppose that

^'(E^O - ̂ 0 + ̂ ]) -{(^ ^ I a,,.̂ ) ̂ ^ M^)}-

Then

Uoo n î ̂ "'([^o - ̂ o + s])
= {(j^, z) I lim sup a, (z) ^ y ^ lim inf (B^^)}.

J —>• 00 J ~^~ 00

We need to show that a .̂ g(^) ^ (B^e^) fo1' ^1 J and s sufficiently large. For any fixed z,
the function j^ h^%o( j^, 2:) is surjective, so there exists JQ with ^{Jo, z) = XQ. Choose I
so large that | .̂ — VQ ] < e forj ̂  i. Then %,(.%? ^) e E^o — £) ^o + £]* S0 f011 a^ ^ ^ ^
a,,e(^)^Jo^ P,,e(^)- 0 (Lemma 3.4)

Now if a fiber is not a Lipshitz disk, then it has nonempty interior. Also the fibers
are compact and their projections onto R have bounded length. If any two points (^i, z-^)
and (^2, z^ satisfy | ̂  — ^ [ < x^ — x^ and (^/, '̂) ==/(^, ^), then A;g — A;̂  K(^ — ^)
for some K > 1.

If a fiber is not a Lipshitz disk, then let {x^ z-^) and (^2 5 ^2) be two points of the
interior satisfying [ ^ — z! I < ^2 — A:!- Let (^w), ^w)) ==//on(^, ^). These are still in
the same fiber and x^ — x^ ^ K"^ — A:i) for some K> 1. This contradicts that the
length of the projection onto R of the fiber is finite. D (Proposition 3.3)

Proposition 3.5. — The components off^iT) n rc"1^) have diameters tending to 0 as
k -> oo for all z e S1.

Proof. — Suppose that x,jy ey^T) are in the same fiber and realize the maximal
vertical diameter, <4, of/^T). Compare this with the maximal vertical diameter, <4_i,
o(fk~l(^}. Let x^ :=/~l(^) andj^i rrr/""1^) and \et£ be the straight line joining them.

^ - i ^ j j ^ l ^ K j ^ \dz\^ K j j [ ^ | ^ K^. D

The solenoid S^. Given a space X with a mapping/: X -> X, consider the
projective limit

X^==Um(X,/) = = { ( . . . , ^ 2 ? ^i? ^o) l/(^+i) '"^ for ^ — 0, 1,2, ... }.

When the mapping/is clear, simply write X instead of X^.. This construction is some-
times referred to as the inverse limit construction. A point of this projective limit is a
point of XQ e X along with a " history of the point " under the iteration of/.
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The mapping / induces f: 5C -> X by

/(..., X^ X^ XQ) = (. . .,/(^V( /̂(<)) =(..., ̂ i, ̂ o,/^o))

which is always bijective as

V (. . .3 A:2, ̂ , XQ) = (. . ., A?2, ̂ ).

Consider the projective limit of the mapping 8 : S1 -> S1 given by 8(^) == ^d.
Define 2^ == lim(S1, 8) and the bijection 8 : S^ -> S^ as in the introduction above.
This construction was studied carefully by Williams ([W]). The solenoid was first studied
by Vietoris ([V]) and van Danzig ([vD]).

Let Uf be one of the d — 1 mappings guaranteed by Theorem 3.1.

Proposition 3.6. — Let S, == fl „ /^(T). The mapping

X ̂  (. . ., TT//0-2^)), T^/-1^)), ̂ M, 7T,(/W))

^ a homeomorphism h^ : Sy -> S^.

Proo/*. — Let z = = ( . . . , ^, ^) be a point of S, and define

X^=={xe^\f-i(x) is defined and n^f-^x)) == ^ for O ^ ^ Y f e } .

Then/ofc maps TTy'1^) bijecdvely to X^. In particular, X^ ^ is a component of
/^(T) n Tc^^^o). Since these components have diameters tending to 0 as k ~> oo, and

^(z)=nx^,
we see that h^ is bijective. It is continuous, and the domain is compact, so it is a homeo-
morphism. D

Definition, — An injective mapping T : T -> T of degree d is unbraided if there exists
a fiber homeomorphism 9 : T -> T such that <p o T sends the core circle S1 X { 0 } into
S1 X S1 as a (d, 1)-torus (un)knot.

FIG. 3.1
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Remark. — No embedding of T in S3 is specified. In particular, the (d, 1)-torus
(un)knot and (^ d + l)-torus knot are equivalent from this point of view. Proposition 3.7
shows that if d = 2, all solenoidal mappings are unbraided; this is false for d^ 3. See
Figure 3.1.

Proposition 3.7. — For degree d == 2, all solenoidal mappings are unbraided.

Proof. — We will show that there exists a fiber homeomorphism

g : (T,/(Si x { 0 })) ^ (T, T^(SI x { 0 })).

Note that the pair of sets (T, r^(S1 X { 0 })) is independent of k.
Both (T,/(S1 X { 0 } ) ) and (T, r^(S1 x { 0 } ) ) are locally trivial fiber bundles

over S1 with fibers homeomorphic to disks with two marked points. Locally trivial fiber
bundles over S1 are classified by the isotopy classes of their monodromy. For the bundles
under consideration the monodromy homeomorphisms lie in Borneo CD, {a, b}).

The mapping Borneo (D, { a, b }) ^^erm{a,b} (the latter being the symmetric
group on two elements) is surjective with contractible fibers ([Ha]). So the isotopy class
of the monodromy of these bundles depends only on how they permute the boundary
components. For both bundles, the points are exchanged. So the bundles are fiber homeo-
morphic. D

Proposition 3.8. — For every unbraided solenoidal mapping/there exists a unique integer k
and a mapping h: T - int(/(T)) -> T - int(^^(T)) such that the following diagram com-
mutes:

BT ——h—> 8T

(3.9) \ ^

B/(T) -^ ar^(T)

Proof. — Step 1. There exists a fiber homeomorphism

g : T - int(/(T)) ^ T - int(T^(T))

mapping 8T to ffT. Note that the set T — int(T^(T)) is independent of k.
The definition of unbraided says that the bundles of pairs (T,/(S1 X {0})) and

(^^^(^ X { ° } ) ) ^e fiber-homeomorphic. Pick a base-point in S1, and let D be
the fiber above that base-point, { ̂ , ..., ̂ } == D n/(S1 X { 0 }), with the points
ordered along the circle/(S1 X { 0 }), { b^ ..., b,) == D n r^(S1 X { 0}) ordered
similarly. Then the bundles of pairs above are classified by their monodromies m.
^d m^ T^e definition of unbraided says that there exists a homeomorphism 9 : D -> D
with < p ( { f f i , ..., a^}) =={ b^, .... b^} and conjugating m^ to m^.

Let U^, . . . ,U^ be the components of D n/(T), labeled so that a, eU,, and
V^, ..., V^ be the components of D n T^(T), labeled so that b, eV,. Now deform 9
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so that <p(UJ = V,. This is (unpleasant) 2-dimensional topology. First adjust e in the
definition ofr^ so that <p(U,) n V, == 0 for z +J. Therefore the sets V, n <p(V,) have
disjoint neighborhoods D^ homeomorphic to disks.

Lemma 3.10. — IfV and V ̂  cZoW j^to? o/*^ c^ ̂  rf^ D, with 0 e U n V
and both homeomorphic to closed disks, then there exists a homeomorphism ^ : D -> D which is
the identity on 8 D and with ^(U) = V.

Proof, — Use conformal mapping to represent both D — U and D — V as stan-
dard annuli, giving a system of " polar coordinates " where the radial curves are labeled
by the points at which they intersect 8 D and the circular curves by their relative distance
to 8 D. Then making points with the same coordinates in D — U and D — V correspond
gives a homeomorphism of D — U onto V — V. This can be continued to U and V
since any homeomorphism of the boundary of a disk extends to a homeomorphism of
the interior, by radial extension, for instance. D (Lemma 3.10)

Find a homeomorphism ^ : (D,{ b^, .. .,^}) ->V such that ^ o <p is isotopic
to 9 and ^ o 9(U,) = V,. Unfortunately, this mapping does not now conjugate the
monodromies, but it does up to isotopy, and that is enough, since bundles are classified
by the isotopy classes of their monodromy.

Step 2. Next it will be shown that k can be chosen so that diagram (3.9) commutes
on the level of homology. The homology group Hi(BT) is isomorphic to Z2. Choose
the basis { S1 X { 2 }, { 1 } X 2S1}, the circles oriented counterclockwise in C.

Consider the mapping g of~1 o g~1 o TO. This is a fiber homeomorphism 8T -^ 8T,

hence induces a mapping given by a matrix j j for some integer I on H^T).

Since the construction of g is unique up to isotopy, £ is an invariant of/.
Observe that T^ can be written r^o^, where w is the twist mapping

^,^)=(^,^).

So g of~1 o g~~1 o T^ ̂  = g of~1 og~1 O^QO wk. Since w^ induces the mapping given
/I k\

by the matrix on Hi(BT), set k = — i so that gof~1 og~1 o T^ induces the

identity on the homology.

Step 3. Finally, adjust g into h so that the desired diagram commutes.
There exists a homotopy G< : BT x I-> 8T with Go = ̂ t°g °f°S~1 and

GI == Id. Let U C T — int(T^(T)) be a narrow thickening of 8T homeomorphic to
I x 8T. Denote points in U by (/, x). Let

- , f^OO. ^fg-W
h{jy) ==

IG(W, V ^'(U) so that g(y) == {t, x)
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on T — int(/(T)). Now for y e 8T, set x == g(jy) and compute

(/-'o^oT^oAHj/) =f~log-lo^o{^ogofog-l){x)
:==<?-1(A:) =J- 0 (Proposition 3.8)

Next comes the classification of the conjugacy classes of unbraided solenoidal
mappings.

Theorem 3.11. — Every unbraided solenoidal mapping is conjugate to one of the T^ ^, and
no two of these are conjugate,

Proof. — The second part was proved above, when it was shown that different
values of k lead to different values of /', which are conjugacy invariants.

We wish to extend h from Proposition 3.8 to T. Take x e T. If x e S^, then define
hW = Q^\ o or/ e 2^ and if x ^ 2^, then define h{x) == T^ o g o T^^A;), where m is
such that/0-^) eT-int(/(T)). If/0-^) e B/(T) so that/0-^^) e BT, then
both choices, m and TTO + 1, give the same value of h by Proposition 3.8. So the mapping
is well-defined, bijective, and conjugates/to T^ ^.

It remains to show that h is continuous on S^,. Take XQ e 2^. The sets

U^o) = = { A ; eT]/0-^) exists for all n^ N
and | 7r//0-^)) - Tr//0-^)) | ^ s for 7,^ N }

form a basis of closed neighborhoods of XQ as e -> 0 and N -^ oo. Clearly h maps this
basis of neighborhoods of XQ to the corresponding basis of neighborhoods otf^Xo). So
h is continuous and hence a homeomorphism. D

4. Embeddings of the solenoid in S3

In this section we will try to describe the inductive limit of T under T^ y. Intui-
tively, this corresponds to taking a solid torus winding around d times in a larger torus
which winds around d times in a yet larger torus, etc., and taking the increasing union.
This intuitive picture is ambiguous. To make this precise, the embedding mapping
each torus into the next must be specified. This is made precise in this section. Smale
first studied solenoids as hyperbolic attractors in S3 ([Sm]).

Recall the mappings T^ ^ from the example near the beginning of section 3.

Proposition 4.1. — The mappings T^ o extend to orientation-preserving homeomorphisms
h, : S3 -> S3.

Remark. — Note that T^ ^ obviously extends to S3 for some k. After all, one can
take a solid torus (think of a bicycle tire tube) and wrap it d times around itself. The
outside of the unwound tube and of the wound tube are both unknotted tori, so there
exists a homeomorphism between them. This homeomorphism will map the inner rim



H^NON MAPPINGS IN THE COMPLEX DOMAIN. I 19

of the tube to some curve on the wound tube; the object of this proposition is to describe
this curve. The skeptical reader might experiment with a tube for d = 2, 3.

The proof of Proposition 4.1 depends on the following:

Lemma 4.2. — If T^ and Tg are two solid tori, andf: 8T-^ -> 8T^ is a homeomorphism
which sends curves on 8T^ which bound disks in T^ into curves which bound disks in T^ then/extends
to a homeomorphism T^ -> Tg.

Proof of Lemma 4.2. — We may suppose Ti = Tg = T = S1 x D. The homeo-
morphisms of a torus are classified up to isotopy by their action on 1-dimensional homo-
logy. If a homeomorphism of ST extends to T, then any isotopic homeomorphism extends
also. Clearly the linear homeomorphisms mapping curves of the form { ^ } X 8 D
extend. D (Lemma 4.2)

FIG. 4.1

Proof of Proposition 4.1. — The key point is that T^ Q maps curves on 8T which
bound embedded disks in S3 — T into curves which bound embedded disks in S3 — ̂  oC^')«
This can be seen in Figure 4.1. This is a drawing of S1 X D, with the disks { 1 } X D,
{ i } x D, { — 1 } x D, { — i} x D; the reader is expected to fill in the other slices.
Within these disks are d subdisks. The case d == 3 is represented, and the triangle formed
by these three subdisks rotates by 1/3 of a turn while going around S1 once. Thus these
subdisks represent T^(T).
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The curves drawn on the outside of the disks represent a disk X in S3 — ^ ^(T).
Verifying that this is indeed a disk is the essence of the proof. We leave to the reader to
verify that X is a manifold with boundary 8XC^^(T). To see that this manifold
is simply connected, notice that it is clearly a deformation retract of the subset consisting
of X n S3 — int(S3 — T), and the star above — 1. This is a contractible set: d disks,
each with a leash and all leashes connected at one point, as in Figure 4.2.

Now going around S1 once, the angle at which X touches a subdisk rotates by
— (d — l)/rf, so that altogether BX is the curve

^mt ̂  ̂ 2d^ ^nit _^ ^2nita-d)^

The mapping r^o maps e^ (a curve bounding in S3 — T) to this curve, so r^o extends
as required, by Lemma 4.2. D (Proposition 4.1)

FIG. 4.2

Reflections with respect to a torus. A different way of understanding the exten-
sion ofr^o to S3 will be given requiring a definition of reflection with respect to a torus.

The simplest context in which to describe such reflections is to write

S3={{u,v)\\u^+\v\2^l}.

Then S3 = T' uT",

where T' = {{u, v) e S3 | [ u | < 1/V2} and T" == {{u, v) eS3 | \v \ < 1/V2).

These are two unknotted solid tori, and clearly they are exchanged by the mapping
lu\ lv\^ L ^ J-
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To give an intuitive description, we will work in S3 = R3 u { oo }. So this mapping
needs to be translated into a mapping R3 u { oo } ->• R3 u { oo }. Stereographic pro-
jection from the point (0, i) maps S3 to R3 u oo according to the formula

/Re ul{l - Im v)\
( l ^ Im^( l -Imv) .

\Re y/(l -Imv)]

This mapping takes the torus | u | = ̂ /V^, M == e^/V^ to the parametrized
torus in R3

/cos6i/(V2--sine2)\
sin 6i/(V2-sin62) |,

\cose2/(V2-sine2)/

which just happens to be the torus of revolution obtained by rotating the circle of radius 1
centered at (v2, 0) in the (x, z) -plane around the ^-axis. Conjugated by this change of
variables, the mapping p becomes

/x\ I 2z \
Pi ; I V I -̂> ———————————— I x2 + y2 + z2 — 1 Ipl Y ] x^+^^i^+z^r ^y +z 'r

2x

Note that pi commutes with reflection in thej-axis.

FIG. 4.3

Construction of h^. Consider two unknotted solid tori To and T^ embedded
in R3, linked with linking number d, as in Figure 4.3. Then R^: S3 -> S3, the rotation
by 7r/rf around the -s-axis, is a homeomorphism of each onto the other.

For any homeomorphism a : S3 -^ S3 set pa = a~1 o pi o a.
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Proposition 4.3. — There exists an orientation-preserving homeomorphism

oi:R3u{oo}^'S^u{oo}

such that

a) a maps To to T';
b) a commutes with reflection in the y-axis,
c) the restriction of h^: pa o R^ ^ To ^ a solenoidal mapping conjugate to ̂  o;
^ Aj ^ conjugate to its inverse.

Proof. — Fiber both To and Ti over the circle by the radial angles, as measured
from thej^-axis, and similarly for T'. Choose first the restriction of the homeomorphism a
to To, so as to map the slice with a given radial angle of To to the corresponding disk
of T' and so that a commutes with symmetry with respect to the j^-axis.

Next choose a curve y winding d times around T', symmetric with respect to the
jy-axis and such that the (< radial angle " of T" is monotone along the curve, and a small
tubular neighborhood S around it. Note that this radial angle of T" will increase by 2dn
along Y. Fiber S by the radial angle, starting at the highest intersection on the j^-axis.
See Figure 4.4.

FIG. 4.4

Next, define a on T^ by sending the slice at a given angle to the slice of S at d
times that angle, still preserving the symmetry with respect to the j^-axis. Extend the
homeomorphism to S3 so as to preserve the symmetry.

With this choice of a, a) and b) are clearly true. All the work was designed to
satisfy c ) and d): the restriction ofA^ simply multiplies radial angles by din To, hence is
expanding in that direction. By choosing the tubular neighborhood S of y sufficiently
thin, ha can clearly be made contracting in the slices. Since y is unbraided in T", the sole-
noidal mapping ^ : To -> To is conjugate to T^ for some k, which must be 0 since ^
extends to S3.

The inverse of ^ is Rj^op^ which is conjugate to p^oR^-1 . Conjugate the
mapping by symmetry around the j^-axis. This conjugates R^ to R^-1, and since the
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reflection with respect to the j/-axis commutes with p^, R o po is conjugated to its
inverse. D

This shows that the mapping h^: S3 ->• S3 is a homeomorphism, which has two
invariant solenoids 2^. C To and S_CTi, attracting and repelling, respectively; every
point is attracted to S^_ under forward iteration of^ and is attracted to S_ under itera-
tion of h^1.

Inductive limits. Given a space X and a mapping/: X -> X, define the inductive
limit lim(X,/) to be

lin^(X,/) == X x N/-,

where the equivalence is generated by setting {x, m) ̂  (/(^), m + 1).
The notion of inductive limit is pathological when / is not injective (the spaces

created fail to be Hausdorff). We will use the notion only for injective mappings/ where
it really is some sort of increasing union.

Proposition 4.4. — The inductive limit lim(T, T^) is homeomorphic to S3 — S^ and
s,=n,T^(T). ~^

Proof. — The mapping {x, m) ^-> h^ ""(x) induces a mapping

Im^^^^U.^-^To).

The mapping h^ is conjugate to its inverse, and the conjugating mapping is a homeo-
morphism of S3 — Aj-^To) onto A^o)- D

Corollary 4.5. — The fundamental group n^{S3 — 2^) is isomorphic to the additive group
Z[l/^] of rational numbers with powers ofd in the denominator.

Proof. — Fundamental groups commute with inductive limits, so, by Proposition 4.4,
7Ti(S3 — SJ is isomorphic to the inductive limit of

Z-^Z^Z . . . D

Remark. — It is usually dangerous to speak of fundamental groups without spe-
cifying a base point, but in this case the fundamental group is abelian, so there is no
ambiguity.

Knots and the mappings T^ ^. We will not need the following results in the
sequel, but they may help the reader to understand why the mappings T^ ^ are different.
We will only discuss the case d = 2, but a similar discussion can be made for arbitrary rf,
and is a bit simpler in fact when d > 2.
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Proposition 4.6. — The solid tori T^(T) are all unknotted if k == 0 and all knotted/or
n^ 2 if k^ 0, except that T|_i(T) is unknotted.

Proof. — The case k == 0 is dealt with in Proposition 4.1.
Next show that T|^(T) is the (2, 2k — 1) torus knot. This is genuinely knotted

unless k == 0 or 1. Since T^^T) is a companion of T^(T), this proves the result for
all k except k == — 1, which requires a separate argument.

Observe that T^ can be written ̂  o w\ where w is the twist w{^ z) = (?;, ̂ ).
Then TJ^(T) = Tg^o z^o T^o o ̂ (T). The z^ on the right can be ignored since
T = ^(T) and since Tg o extends to a homeomorphism of S3, the Tg o on the left can
be ignored also. The result follows from the computation

0 1 ^2 \

wko^ ==^-+^-l)•

The mapping ^ h-> (^2, ̂ 2k+l) is a parametrization of the (2, 2k + l)-torus knot, which
is indeed knotted unless 2k + 1 = ± 1.

To finish the proof, it must be shown that TJ _^(T) is knotted. As above,

^-iW = ^2,0 ° w-l ° ^2,0 ° w-l ° ^2,0 ° W~1(T^

and again ignore the w~1 on the right and the r^o on the left. The reader may check
that the core of the solid torus is then parametrized by ^ h-^ (^4, ^-2 + e^-7). We leave
it to the reader that this is a parametrization of the (2, —• 5)-torus knot. D

5. The functions G^ and 9^

Recall the generalized H^non mappings of degree d,

(PW - V\ _ ( ^ + qW - ay\
\ - }~\ - r

where a + 0 and the degree of q is less than d. Recall also the definitions of sets K^
and U^ from the introduction.

Looking at the formula for the H^non mappings, note that if x is reasonably large
and large with respect to j/, then the predominant behavior is that the ^-coordinate
gets raised to the rf-th power. The following definitions are designed to state this rigo-
rously. Set a to be at least as large as the absolute value of the largest root of

M'-kWI^M+^A^o.
If p{x) = x2 + ^ then the following value of a works:

a == ^ (I a | + 2 + ̂ {\^+2)2+4\c\).
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Define the regions V+, V_, and WCC2 by

\jy | < | A; | and | x \ > a >,V+=

25

' x\
\y)V_ = I x I < \y | and | x \ ̂  a ,

and W x | < a and \y \ < a }.

Lemma 5.1. — The sets V+ and V_ have the following properties:
a) V± C U^ and U+ = U^o F°-"(V+), U_ = U^o F°»(V_);
b) F(V+)CV+, F-^VJCV.;
c; ?y (x,^ eV+, ^» | (F°»)i {x,y) | ̂  2" /or n = 1, 2, ... and if {x,y) eV_, then

| (F°-")2 (^^) | > (l + ——)" ̂  » = 1, 2, ...;

d) F(W)CWuV+;
^ if {x,y) eV_, ̂ « | Fa^j)! < \y \ and if {x,y) eV+, then \ ̂ \x,y}\ <\x\.

Proof. — First consider the statements for V+. To see part b) let {x,y) eV+, and
calculate:

\p{x) -ay\^ \p{x)\ -\a\\y\> \p{x)\ - \a\\x\^ 2\x\.

Thus F(V+)CV+ and

(F°")i
^

> 2"|a;

for all n = 1, 2, ... Hence part c) and also part a).
Part d) is obvious since F(W) ^-{{x,y)\ \y \ < a}. Part e) is obvious also.
For {x,y) eV_, the proofs are analogous using

7\IM^)- ̂ —1(/0)1-M)
1 ^ 1 1 ^ 1

^(l^)l-l^l)^(l+^)bl. n

Remark. — The proof of part ^ of Lemma 5.1 shows that the first coordinates of
an orbit starting in V+ grow at least geometrically. This is actually misleading. Since
the dominant term of Fi is of degree d, the growth is like k^. Lemma 5.1 shows that
every point eventually lands in V^. U W.
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Proposition 5.2. — There exist unique analytic functions 9^ : V^ —> C — D such that

T+ F
.y = ?+ ^

arerf 'P+
^

• x, <p_
^

and 9- F-1 = ?+\yu \ \yil
oo in V^_ or V_, respectively.•/j/ as

Proof. — The function 94. is constructed below and shown to have the required
property. The proof for <p_ is analogous. The proof of uniqueness will be given at the
end of section 8.

To simplify the formulas below set the notation x^ == (F0^"1^ [ x ^ y ) and
j^ = (F0^"1^ {x,jy). Note that x^ is a polynomial in x andj of degree d" whose sole
leading term is y^ andj^ is a polynomial in x andj^ of degree dn~l whose sole leading
term is A^"~1.

To define 94., meaning must be given to the limit

9^=1^^
^JV n^

or rather the equivalent telescoping infinite product
ylfd

^U-"'
yl/<i"+1

"n+l

Examine the individual terms of this infinite product:

^T _ i< + g(^) - ̂ r^
yl/d" vVffl

1 + g(^) - ̂ 'r"
^«

For (A;,J>) eV+, F°"(.v,j>) belongs to V+ and

q{x) — ay
^

9W I + M b U ?(^) I + I a I I x I .,\x I" - 2 | ̂

2 , 2
^-iTF^-a-

Now, for the d"-th root use the principal branch of (1 + z}11*". The infinite product
converges as the series of the logarithms of the terms in the product converges.

In the product above, consider the factor

1 + g(^) - ̂ V^
< \ '
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The terms of highest degree in both polynomials involve only x. Since \y\^ \ x |, the
term {q{x^ — ay^fyf^ is of order I/A^. That is, there exists a constant G such that in V+

(5.3) ?(^J - ̂ n ̂  G

^
Id"

which tends to 0 as {x,y) -> oo in V^.. Therefore the product is equivalent to its first
term x. D

A refinement of this result will be needed, pushing the asymptotic development
of cp^ a bit further. We find it easiest to write

?+(^JO == u^x) + u^x)y + . „ .

as a convergent power series inj/, with coefficients Laurent series in x, which is clearly
possible by the structure of V+.

Proposition 5.4. — The following asymptotic development holds:

u^x) = x + o{\ x 1) and u^x) = - ——— + o (———).
ay. \\x \ I

Proof. — The development of UQ is already in Proposition 5.2. From (5.3) above,
the second and higher factors of the product cannot contribute larger terms than those
given, and the first term gives the result. D

Proposition 5.5. — The limits

' x \ , 1 , II. M i l
Gj^=lim-log,. F071^±^; ^-rf" 0+ \^

exist, are continuous on C2, are pluri-harmonic on U+, and have the properties that

r F x}} AC x}"TUr^U and G_ F-1 = dG\ \y]
Moreover,

u±== \y G, \y >o .

Proof. — Again, the proof will be given for G^ and the proof for G_ is analogous.
On V^., define G^_ = log [ <p^. |. Extend this definidon to {x,_y) e U_,. as follows.

By part a) of Lemma 5.1, there exists n> 0 such that F°"(;c,^) eV^.. For such (x,_y),
define

G, \y >W
Further extend G^ to be zero on K^..
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The definition is consistent: if a higher n had been used, then the result would be
the same by Proposition 5.2 and clearly satisfies G+(F(A;,j)) == dG+{x,y).

The function G+ is harmonic on U+ since it is a real part of an analytic function
on V+ and elsewhere the pullback of a pluri-harmonic function by an analytic mapping.

It remains to see that it is continuous. Fix {x^f) ej^.. Then there exists N such
that \\Ton{xf,y)\\< a for all n ̂  N. For any M > N, there exists s so that if
|| (^y) __ (^y) || < s, then || F^.y7) || < a. Note that F(W+) C W+ u V+. So
the value of G+ on the first forward image of F°V,y') which is in V+ is bounded by
G == sup{G,.(F(^)) | (^j) eW}. So, G^'.y') ^ C/^. D

Remark. — The functions G^ are obviously subharmonic. This fact has been
observed by Bedford and Smillie ([BS2]) and by Fornaess and Sibony ([FS]). They use
the fact that dd° G^ are positive (1, 1)-currents supported on J^ to derive analogs of
the Brolin measure ([Br]) for H^non mappings. Fornaess and Sibony also prove that
G^ are Holder continuous.

6. The global topology of H6non mappings

The behavior of G+ is partially described by the following, in which solenoids
make their first appearance in this subject.

Theorem 6.1. — The mapping G+ : U+ ̂  R+ is a trivial fibration whose fibers are homeo-
morphic to S3 — S^o, embedded using the mapping r^o as in section 3.

Proof. — Represent the set U+(r) == G l̂ogr) as the increasing union

U+(r) = V+(r) u F-^V^r2)) u F-^V^r4)) u ...,

f Ix\ I x\ }
where V^(r) = ^j eV^ G^^=logrj.

Proposition 6.2. — a) For large s, V+(^) is homeomorphic to a solid torus, and

9+:V^)->{^M==^}

is a fibration with fibers homeomorphic to closed disks.
b) The mapping G+ : V+ -> R+ is a trivial bundle with fibers homeomorphic to solid tori

above (R, oo) for R sufficiently large.

Proof of Proposition 6.2. — For any z with | z | ̂  1 consider the function
y^ ^ ̂ ^ zx). The function is defined and analytic for | x \ > a. By Proposition 5.2,
9^ has a simple pole at oo. The following lemma, which is an immediate consequence
of Montel's Theorem, will be required.
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Lemma 6.3. — Let R> 1 ; then the space of analytic functions f \ D ->D^, satisfying
/(O) = 0 andf\0) == 1 is compact. In particular, there exist numbers Ri and Rg such that all
such functions f are injective on D^ , and satisfy f(D^) 3D^ .

Applying Lemma 6.3 to

1
y+(l/A;,^)5

which maps the disk of radius I/a < 1 to the disk of radius 1, we see that there exist R^
and R2 such that if ^ > Rg and | z \ ̂  1, then there exists a unique x such that | x \ > R^
and (p+(A;, zx) = ^. This shows that the mapping ^ : {x,y} h-> {^j^{x,y),yjx) is a homeo-
morphism V+(r) -> S^. X D for r ^ Rr D (Proposition 6.2)

To compute F in the coordinates (^, z) 5 asymptotic developments of A; and y as
functions of ^ and z must be found.

Proposition 6.4. — 7^ following asymptotic development holds:

»=^+^^+(^+o[^^ = ^ + . ( | ! : | ) + . — — , + < , — — — — . + o ( | . I ) .

Proof. — This is a standard inversion of an analytic function from Proposi-
tion 5.3. D (Proposition 6.4)

Now compute F in the coordinates (^, z):

(^ (x^,z)\ (pW, z)) - azx^, z))\ [ J

U"^^) M )̂ ^z}
v / v / v / VW.))-^,^

Only the term ^d in the denominator contributes to the leading terms of the development
of F, to give

/ Xs

F U = \ . ( \ \ . i a I \
1^-1 + ° (i^Ti) + (d^ + ° (m2-^)) z+o{\2 ̂

This mapping is not quite one of the T(, '̂s from section 3, but almost. Change
variables once more, to (^, Y)), where Y) = z^. In these coordinates, the following expres-
sion holds:

/ ^lr\ / '( ^/^\ "
^= ^+<,(|^|)+^+^^^+0(|7)

(6.5) F = ( l a / 1 \\
W ^+o{\^+{———+o{r———\)^

In particular, it is conjugate to T^ o.
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Consider 3V+(r) with r sufficiently large so that Lemma 5.2 applies. Let Yr be
the curve parametrized by t \-> (^ = ^27ti(, T) == ar^, 0 ̂  ̂  1, and let 8y be the curve
parametrized by t ̂  (^ = r, T] == ar^ ^2TO<), 0 ̂  ̂  1.

Proposition 6.6. — T/*^ : V+(r) -> T is a homeomorphism with ̂ (Yr) a curve on T bounding
a disk in S3 — T, then there exists a homeomorphism g': V^r^) -> T such that the diagram

V+(r) -^ T

p! .̂°

V^) -^ T

commutes. Moreover^ g'^yd) is again a curve which bounds in S3 — T.

Proof of Proposition 6.6. — The existence of g ' and its uniqueness up to homotopy
is an unpleasant topological generality. The substance of the proposition is in what g '
does to Yyrf.

The generality is a consequence of the following lemma.

Lemma 6.7. — Let X be a 2-sphere with three open disks with disjoint closures removed.
Then the space of homeomorphisms of X mapping each boundary component to itself is contractible.

Proof of Lemma 6.7. — See [EE] and [Ha]. D (Lemma 6.7)
Both V^) — F(V^.(r)) and T — T^(T) are locally trivial fiber bundles over

the circle with fibers homeomorphic to the sphere with three holes above. In each case,
the functions called ^ are the fibrations. The following shows that these two spaces are
fiber-homeomorphic. ^

Gut the circle at some point, to manufacture two bundles V^.(r) and T of spheres
with three holes over the interval I. Both are trivial bundles, and hence homeomorphic
to I X X. ^^

Choose trivializations v : I X X ->V^.(r) and u: I X X —^T. These induce
monodromy mappings

^ == (^{Dxxr^lwxx and m. = ( ^ {DXX^^ IWXX-

The mapping uov~1 would induce the desired homeomorphism V^.(r) ->T if
m^o m~y 1 were the identity. To arrange this, let m^ be a family of homeomorphisms
of X such that m^ = m^1 o m^ and m^ = Id and define m : I x X - > I x X by
m{t^ x) == (^, m^x)). If u is replaced by the trivialization u^ === u o w, then the require-
ment is satisfied.

This manufactures a homeomorphism

w = u,o v-1: V^) - F(V,.(r)) ->T - T,,o(T).
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It is clear from the construction that its isotopy is unique (among fibered homeomor-
phisms).

It must be shown that w can be adjusted so as to coincide on a(F(V+(r))) with
T^ o o g o F"1 and that w maps Yr</ to a curve on T which bounds a disk in S3 — T. Both
questions are homotopy class questions: the second one obviously and the first because
the restriction of w to the boundary can be adjusted to coincide with any homeomor-
phism in its homotopy class.

Both of these statements follow from the asymptotic expansion (6.5):

F|
t: + ̂  + ̂  ̂

where the error term is so small that if a parameter is put in front of it and varied from
1 to 0, then no homotopy classes are changed. Once the parameter is 0, the formula
looks exactly like the formula for r^o. This is slightly misleading since ^ and T) are in
the circle of radius r and the disk of radius r, respectively, whereas the arguments of T^ o
are in the circle of radius 1 and disk of radius 2, respectively. We leave it to the reader
to make the appropriate scaling after which the identity is a possible candidate
for w. D (Proposition 6.6)

The proof of Theorem 6.1 is completed by induction. The same construction as
above gives a sequence of homeomorphisms g ' , g " , . . . , where g^ : V+(r^) ->• T. Define
G^ : F-^V^)) —T^(T) by G^ == ̂  o g^ o F\ That is, the following diagram
commutes:

In the end, U+(r) = U^o F-^V^)) is homeomorphic to

U^o^SW^s3-^^.

This proves that the fibers of G+ are homeomorphic to S3 — S^ o for r sufficiently
large.

Proposition 6.6 admits parameters: if g^ were a family of homeomorphisms as
in the proposition, depending on a parameter t in an interval, then there exists g\ depen-
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ding continuously on t and satisfying the conditions of the proposition. In particular, there
exist homeomorphisms g, g ' , g'\ ... such that the following diagram commutes:

U^V,.(r) ^> U^V+(r)...

4 °i^ y

T x [R, oo) ^°> T x [R, oo) ...

Applying this extension of Proposition 6.6 to the inductive proof above shows
that the mapping G+ : U+ -> R+ is a trivial bundle above (R, oo), with the same R as
in Proposition 6.2. Now F0^ is a fiber homeomorphism of G;1 ((R/2^, oo)) to G;1 ((R, oo)),
covering x }->2k x. Thus the mapping G+ is a trivial fibration over any compact subset
of R+, hence locally trivial over R+, hence trivial since R+ is contractible. D (Theo-
rem 6.1)

7. The foliations of U+

The fibers ofG+ are 3-dimensional manifolds, and not obviously objects of complex
analysis. But because G+ is a pluri-harmonic submersion, U+(^) is naturally foliated
by Riemann surfaces. We will show that every leaf is isomorphic to C and dense in U+(^).
The proof also shows that <p+ cannot be extended to all of U+.

Lemma 7.1. — Let W be open in C" and let h: W -> R be a pluri-harmonic submersion.
Set W(A?) == h'1^). Then each W(;v) is a real (2n — lydimensional manifold, and it is naturally
foliated by complex manifolds of dimension n — 1, with tangent space at w e W{x) given by
T,WW niT.WW.

proof. — Each Vf{x) is a manifold by the Implicit Function Theorem. The uni-
queness of the foliation follows from the fact that a real hyperplane Tofa complex vector
space contains a unique complex hyperplane, namely T n iT.

The existence can be seen by setting locally h == Re/ for some complex analytic
function/, which is also a submersion, and observing that W(.v) =/- l({^ | Re z = x})
is naturally foliated by the fibers of /, which are complex manifolds of dimen-
sion n — 1. D

Theorem 7.2. — The leaves of the natural foliation ofV^.{s) are isomorphic to C and each
is dense in U+(^).

proof. — Choose ^ e C — D with | ^ | = s, with s so large that Proposition 6.2
applies. The leaf through any point of 94:1^) can be written

y;1^) UF-1^;1^)) UF-2^;1^)) U ...

By Proposition 6.2, this is an increasing union of simply-connected surfaces, hence
simply connected.
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F

c-^2

FIG. 7.1

r^v^)) F-^V^8))

FIG. 7.2

To see that this leaf is dense in U^.(^), note that

P- ;̂̂ )) = u ̂ w(.i^i
(see Figure 7) and more generally

F°-W(^)) = U v^).
0><'*=1

Since the ^^-th roots of 1 are dense in the unit circle, each leaf is dense inV^.(J). Applying
F repeatedly will make it dense in each term of the increasing union

V+M u F-^V^)) u F-^V^)) u ...,

which occurred in the proof of Theorem 6.1.
It remains to show that the leaves are isomorphic to C. This requires the following

proposition.
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Proposition 7.3. — Let X be a simply connected Riemann surface, and KC X a compact
connected simply connected subset not reduced to a point. Suppose AQ, A^, ... is a sequence of disjoint
annuli in X — K such that the inclusion of A, into X — K is of degree 1. If

00

S mod (A,) = oo,
i=0

^TZ the surface X ^ isomorphic to C.

Proo/; — The alternative is that X is isomorphic to D and X — D is an annulus
with finite modulus M. However, by the subadditivity of moduli of disjoint homotopic
annuli ([A], [BH]), S^omod(A,) ^ M. D (Proposition 7.3)

So find a sequence of annuli in a leaf with a divergent series of moduli. This is
actually easy, as the annuli considered grow very rapidly.

Consider the annulus

x\ f x\ 1 y

^6V+ ̂ U'^ -i
A.- , .V, „ = ! ; , - <

For ^ sufficiently large, the function yfx is an isomorphism of A^ onto the annulus
1/2 ^ | z | < 1 of modulus (log 2)/(27r).

The annuli

A^F-^A^.F-^A^),...

have constant moduli. They are embedded in the leaf which contains (p^:1^), disjoint
by Lemma 5.1, and embedded with degree 1 in the leaf with (p;:1^) removed. So the
leaf is isomorphic to C by Proposition 7.3 (see Figure 7.2).

This proves the result for | ^ | = s sufficiently large. The statement follows
in general by observing that F maps bijectively leaves in U+(^) onto leaves
in U+(^). D (Theorem 7.2)

Proposition 7.4. — The mapping

induces a bijection of the set of leaves onto the (non-Hausdorjf) group R/Z[l/rf].

Proof. — This was already shown in the proof of Theorem 6.2. D

Remark. — There are analogous results for those in Sections 7, 8, and 9 if " F~1 "
replaces (< F 5).
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8. An analytic description of U^

In this section the analytic structure of U^. is analyzed completely. This is done
by showing that the " Riemann surface of 9^ " is a covering space of U^ isomorphic
to (C — D) x C. Therefore U+ is a quotient of (C — D) x C by some discrete group

of automorphisms, isomorphic to Z o /Z. The group of automorphisms of (C — D) X C

is infinite-dimensional, and since the covering group we are after is only defined up to
conjugation, there is a good deal of freedom in the description. The particular choice
is algebraically very pleasant, but may not be the best one from a dynamical point of
view.

The Riemann surface of 9^.. Let U+ be the smallest quotient of the universal
covering space of U+ on which cp^ is defined. This covering space should be thought
of as the Riemann surface of 9^, but it cannot be defined as a subset of U^ X C since
the fiber above a point of U+ is a coset of the group of dyadic angles, and hence not
discrete in C, so the topology would be wrong.

Being a covering space of an analytic manifold, U+ is a 2-dimensional complex
manifold. The set V+ is naturally embedded as an open subset ofU+, using the natural
definition of 9^ on V^_, and of course there is an analytic function ^+ : U+ -> C — D
which extends 9 on V+. This mapping ^+ is a submersion, and its fibers are simply
connected Riemann surfaces, hence isomorphic to D, C, or the Riemann sphere.

Theorem 8.1. — The fibers of ̂  are isomorphic to C.

Proof. — This follows from Theorem 7.2. D
It is unfortunately not true that a 2-dimensional complex manifold with a sub-

mersion to a subset of C and with fibers isomorphic to C is a locally trivial family of
copies of C.

Example. — Let U == D X C, where C is the Riemann sphere. Choose some non-
analytic continuous mapping a : D -> C, such as a (-2:) == z. Consider the set

U == U - (graph of a).

The projection U -> D does have all fibers isomorphic to C, but if it were analytically
a locally trivial fiber bundle, then the section a would be analytic.

However, with an extra condition, such submersions are locally trivial fiber
bundles. Let X, Y be complex manifolds, and/:Y -> X an analytic submersion. Let
the vertical tangent bundle Ty/x == ker df. Recall that a vertical 1-form is a section
ofj^ow(Ty/x,C).

Proposition 8.2. — If all the fibers of f are isomorphic to C, and ifY carries an analytic
vertical 1-form <o, such that the integral of co along a path in one fiber vanishes only if the path is
closed, then the mapping f'. Y -> X is a locally trivial fiber bundle.
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Proof. — Choose any x e X, there exists a neighborhood U of x and a section
CT : U ~-> Y of/. Now define a mapping^ ^/"^U) -> U X C by sending^ to (/(j0, f co),
where y(j/) is a path in/""^/^)) joining <r(/(^)) tojy. There exists such a path since
the fibers are connected, and the integral is independent of the choice since the fibers
are simply connected, and all analytic 1-forms on a Riemann surface are closed.

Clearly g makes the diagram

y-i(U) -^> U x C

7\ j/pr»

U

commute, and g is an isomorphism fiber by fiber. Indeed, the hypothesis implies that g is
injective on each fiber, and an injective analytic mapping C ->- C is an isomorphism. D

Theorem 8.3. — The projection $4. : U_^ -> C — D is a trivial analytic fiber bundle.

Proof. — By Gartan's Theorem B ([G]), it is enough to prove that it is locally
trivial, since there are no topologically non-trivial affine-line bundles over C — D.
Moreover, C — D is a Stein domain, so the topological and the analytic classifications
of such bundles coincide.

Since log 94. is well defined up to an additive constant, the 1-form co = dlog 94.
is well defined on TJ_(. . Moreover, co has no zeros since any branch of log 94. is a sub-
mersion. Therefore one can locally find a function g on U+ such that dg A co = dx A dy.
Let ^ be the restriction of 9^ dg to vertical tangent vectors. Since dg is well defined up
a multiple of co, this restriction gives a well defined vertical 1-form.

To avoid conflict of notation with the exterior derivative set 8 == d in the following.

Lemma 8.4. — We have F* ^ == (a/8) ^.

Proof. — Clearly F* co = 8co, and F* dx A dy == a dx A dy. Thus up to multiples
of co, F* dg = (<z/8) dg. The result follows. D (Lemma 8.4)

Now to show that the criterion of Proposition 8.2 applies to ^, project a curve
in one fiber of ©4. to U^.. This projection will be closed only if the original curve was
closed. Further take forward images of the curve until it lies in V^r), for sufficiently
large r. This will change the integral of ^ by dividing it by a power of a[5. So it is enough
to show that for ^ sufficiently large, the integral

L*
over a curve y i11 9+(^) vanishes only i fyis closed. By Proposition 5.2, 94. ̂  x, so that
co ̂  dxlx, so that g can be chosen with dg ̂  x dy. Since the path y is nearly vertical,
this term of dg contributes more than all other terms, and hence for such an integral to
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vanish, thej^coordinates of the endpoints must agree. But this means that the endpoints
agree, by Proposition 6.2. D (Theorem 8.3)

Next the structure of the group FCAutU^. such that U+ == U^./r is examined.

Proposition 8.5. — The fibration 0+ -> U+ induces an exact sequence of fundamental
groups

o —> ^(u+) —> 7ri(u+) ———> r ——. o
I d 4 d I4, 4, 4, 4^ v._, z c ^ y f i i _ _ ^ z n / z — > oo ——. z ——> z ̂ j —. z ]^z —> o

so that r ^ canonically isomorphic to Z . /Z.

Proo/*. — By Corollary 4.5, ^(U^.) is isomorphic to Z . , where 1 is represented

by the canonical generator of ^i(V+). Since V+ lifts to LJ+, this verifies that the left
square is commutative, and the remainder follows. D

Proposition 8.6. — There is a unique lift F of 7 to U+ mapping V+ ̂ V+, and it satisfies
F(y(A;)) = (8y) F(;c) /or a// Y e rl? ^r<? ̂  composition law of F is written additively.

Proof. — Elementary covering space theory shows that the lift exists and is unique.
The formula then comes from the fact that F : V+ -> V+ induces multiplication by 8
on the fundamental groups. D

For the remainder of this section, let us restrict ourselves to degree 2, with
p(x) = x2 + c. It is possible to find similar formulas in higher degrees, but they require
inverting a power series, and the computations are difficult and do not lead to simple
expressions.

Theorem 8.7. — There exists a unique isomorphism LJ+ -> (C — D) X C such that in
that trivialization, the mapping F is written

F^^-^j^+S 3 -^) .

Proof. — Choose a trivialization of the bundle U+ -> C — D so that the zero
section is tangent to a high order to the section SQ : ̂  ̂  (^), 0) at oo. There exists such

a trivialization: in any trivialization, SQ is a power series in ,; which converges in some

neighborhood of oo. The sum s^ of the first n terms of this series is an analytic section
over all of C — D and arbitrarily close to SQ as n -> oo. Now change trivializations so
that s^ becomes the zero section.

Next an aymptotic expansion of F in this trivialization will be computed.
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Lemma 8.8. — Ifn is sufficiently large, then F has an asymptotic expansion

a . ^ c
F^z)=l^^+^--^+o{A

Proof, — Using a trivialization such that dz corresponds to ^5 then by Lemma 8.4,
P* dz = (<z/2) dz. This means that F will act on each fiber as z ^-> (<z/2) z + constant,
and we are left with computing the constant (which depends on the fiber, i.e., on ^,
of course).

This < e constant 3? can be understood as follows: in the chosen trivialization, take
the point ̂ (^ and integrate ^ from s^2) to F(.yj^)) along a path in the fiber. Return
to the definition of <p above. It was found from a function g on V+ satisfying
rflog 9^ A dg == dx A dy; so this integral is just

g^m-gW))'
In the formula above, replace s^ by SQ, and only change arbitrarily small terms

in the asymptotic expansion. Since 9^ is to first order x, setting g [ x ^ y ) == xy satisfies
the equation d log <p+ A dg == dx A dy to first order. We invite the reader to check that
ignoring the other terms of g will not affect the asymptotic expansion above. Setting
(^), 0) = ^o(^)? compute

g{x^ + c, ̂ )) - gW), 0) - TO2 + c) ̂ ) + terms to be neglected.

In Proposition 6.4, we started to compute x{'Q, but dit not quite go to the required
precision. In fact, it would have been quite difficult to extract the relevant terms of
the o(| ^ |) in arbitrary degree. The goal is the following formula:

*K)=t-^ +.(-),
which we leave to the reader to verify. Then

c\2 . w., cg(x{^ + c, ̂ )) - gW), 0) = k - ^1 + c\ k - ^1 + 0(1)

= ̂  — -^ + o(l). D (Lemma 8.8)
^c

To complete the proof of Theorem 8.7, the o(l) above must be dealt with. This is
some function v{'Q on C — D which vanishes at infinity. Making a change of trivia-
lization (^, z) h-+ (^, z + u{'Q), the expression of F in the new trivialization is

vF\=L c v .
W l^+P-^+'K) -,«(':)+»(':')
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Next find u(^) so that »(^) — ^ u{^) + M(^2) = 0. This can be done by formal power
series, or by setting

oo /<)\'m'

u(^) == S - v^").
m==i \a]

Clearly this series formally solves the problem and it converges since | v^) | ̂  G | ̂  I"2"*
for some constant C.

This shows the existence of the required trivialization. The uniqueness is clear
from the uniqueness to the solution for u above. D (Theorem 8.7)

Finally the group F may be computed.

Theorem 8.9. — For each element j^ e F, there exists a unique polynomial pj ^(^) such
that in the trivialization above, the element of F corresponding to j^ is given by

f^\ I e2^ z \
[,f^[,+p^f-

Proof. — First, compute Yi/2* By Proposition 8.6,

H))-'2^)^?kQ)=(^)?Q-^^:_^

This leads immediately to Yi/a^? ^) = ( — ^5 ^ + - (^3 — - ̂ ) )•

More generally, suppose that y^-i has been determined. Then Proposition 8.6
gives

^)=^^^._^
which can be rewritten

^.iTtjl^-1 ^2 \ / ^2m3/2^-1 Y2

^ +pa^ + (^72^)3 - ̂ 2i-72^l== \z + ̂  - ̂  +p,-^2)'
This gives us ^,^(^). D

Finally, we fill in a gap in section 5, the uniqueness of <p^ in Proposition 5.2. This
actually requires knowing Theorem 8.7 for H^non mappings of any degree; the proof
goes through with minor changes.



40 JOHN H. HUBBARD AND RALPH W. OBERSTE-VORTH

Proof of uniqueness for <p^. — Suppose ^ : V -> C — D satisfies

First observe that ^ lifts to ^: LJ^_ -> C — D. This is an application of the lifting cri-
terion for covering spaces. For all n, the space V^ = ?""(¥+) has the homotopy type
of a circle, and F : V^ —>• V^_i induces multiplication by d on the fundamental groups.
Thus ^ can be lifted recursively to all V^ by the formula

and the proper choice of roots will guarantee that all lifts agree with ^ on V^_.
On each fiber of ^, the function ^ must be constant, since it is a mapping

C -> C — D. Thus we can write ip == a o ̂ , where a : C — D -> C — Disan analytic
function; by restriction to V^_, ^ = a o 9^.. But a look at the functional equation shows
that a must be of the form ^ i-> a^y with k a positive integer and ad~l = 1. Now the
asymptotic expansion shows that a == 1 and k == 1. D

9. The canonical compactification of K+

Let C be the compactification of C adding a circle at infinity. Then any poly-
nomial extends continuously to C and its restriction to the circle at infinity multiplies
angles by the degree of the polynomial.

This section contains a description of an analogous compactification C2 of C2,
to which H^non mappings extend continuously. A 3-sphere is added at infinity and the
mapping extends as the solenoidal mapping a on S3. This further emphasizes the similar
role which solenoidal mappings play for H^non mappings and angle doubling plays
for quadratic polynomials. _

In particular, the closures of K_ and K^_ in C2 are the solenoids S^. and S_ res-
pectively (note the reversal). This sometimes allows us to measure c( angles of external
rays 5? in K_ in the solenoid S_^. This will turn out to be important in the description
of the topology of these sets.

Theorem 9.1. — There exists a compact Hausdorjf space X homeomorphic to a closed
four-ball with underlying set C2 LJ S3 such that
a) the induced topologies on C2 and S3 are the standard topologies \
b) C2 is dense in X; _
c ) the Henon mapping F extends to a homeomorphism F : X -> X; and
d) the restriction of F to S3 is the solenoidal mapping TO .
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Remark. — This is a surprisingly difficult result to prove, considering that the
analogous results have already been worked out at finite distance. The difficulty is that
if a 3-sphere is added at infinity in the obvious way, with points corresponding to oriented
directions in C2, then all non-vertical directions are mapped to horizontal directions.
In particular, the H^non mapping does not extend continuously, and even where it is
defined, it fails to be injective. To make the extension of the H^non mapping injective,
the horizontal (and vertical) directions will be examined with a microscope.

More precisely, a delicate blowup of the circle at infinity in the ;v-axis will be
made, replacing a point p by a way of approaching p, the method of approach which
we focus on being the images of straight lines.

Proof. — Step 1. Blowing up a circle in S3. Consider a compact differentiable
curve r C S3, and define the oriented blowup S3. of S8 along F as follows. First choose
a tubular neighborhood U of F such that there exists a unique geodesic of S3 joining
any point of U to F in U. For x e U, let ^ be the tangent vector at x to the geodesic
joining x to F. Now define the blowup Up as a subset of the unit tangent bundle Ti(U)
to U C S3 to be

' S = ̂  for some A > O i f ^ e U - m
Ur= MeT,(S3)

^ is perpendicular to F if A? G F j j

The obvious mapping TC : Up -> U is an isomorphism on Or — TT'^F), so glue S3 -— F
onto Up to make b3.. Above F, there is a torus, mapping to F as a bundle of circles.

Step 2. A first microscope. Consider the solid torus T^ parametrized by

{(X,(i) eC 2 ] | X | = l,|(i|< 2}.

The point (X, p.) of this solid torus will be (c at the end of " the ray

Mt^ M
Let FI be the curve of equation y = 0 in S3. Glue 8T^ = {(X, ^) \ \ X | == 1, | (JL | = 2 }
to ^ as follows: choose the circle in ^ above the point of Fi corresponding to
the point in the circle at infinity on the A;-axis in the direction X. Radial projection
of the curve

Mt^ M
onto the sphere at infinity gives a curve which approaches the circle orthogonally in a
definite direction. Identify (X, pi) with this direction.

Let S3 be the 3-sphere blown up along Fi with the torus T^ attached as above.
6
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Step 3. A second microscope. Unfortunately, distinguishing these (< eventually
horizontal curves " do not resolve the images of straight lines. Blow up the circle Fg
of equation (A2 == X in this torus further to see the constant term in a ray of the form^\lt't'}.[ ^ + v J

More formally, consider the solid torus Tg = {((JL, v) | | ^ | == 1J v | ^ [ a \}. Glue Tg

to S^ by identifying the point ((JL, v) e BTg (i.e. | v | == | <z |) to the unit vector in the
direction ofv at ((JL2, p.).

Let S3 be S3 blown up along 1̂  with the torus Tg attached as above.

Step 4. A topology on C2 U S3. A basis of neighborhoods of each point ofS3 is
needed. There is no difficulty at those points which correspond to points of S3 not on
the A;-axis: take the cone over a neighborhood of such a point, and cut it off at some
radius.

It is not much harder to define a basis of neighborhoods of a point (Xo, ^o) in T\
which is not on the circle 1̂  or on the boundary ofT^. Take a neighborhood

V = {(X, (i) | | X - Xo | < e, 1 (x - ̂  I < e)

of (X, [L) e TI and let the neighborhood consist of V and the points which can be written
(X<2, ^) for t > T and (X, ^) e V.

An analogous description is possible for the points inside T^. Given ̂  with | [LQ \ = 1
and vo with [ VQ | < | a |, choose a neighborhood W of ({jig, v^) in the solid torus T^ defined
by | mu — V.Q | < e^, | v — VQ | < eg and a number T > 0. Then a neighborhood of
(^•0^0) wm consist of W and the points of C2 which can be written {^t\ \Lt 4- v)
with (pi, v) e W and ^ > T.

It is a good bit harder to define a neighborhood basis for a point on the boun-
dary BTi or BTg. Let P be the solid paraboloid of points in C2 which can be written
{\t\ ̂ f) with | (x | < 2 (i.e. the set defined by the inequality \y |2^ 4 | x |). Choose
(Xo, (io) e ^Ti, i.e. | Xo | = 1 and | (AO | = 2, and a neighborhood W^ of (Xo, p.o) in Ti.
The intersection Wi n 8T^ corresponds to a set of unit vectors normal to I\. Set Wg
to be the set of points in S3 which are obtained by traveling a distance less than e from I\
on the geodesic tangent to such a normal vector. Now a neighborhood of (Xo, .̂o) consists
of Wi u Wg, and the points which can be written (X^2, ^) with (X, p.) e Wi and t > T,
and the points on rays through W^ of norm greater than T and outside the paraboloid P.

We will leave to the reader the analogous construction for the boundary ^Tg,
as well as the proof of the following lemma.

Lemma 9.2. — The space C2 U S3 with the topology above is compact Hausdorff.

Step 5. The space C2. The compactification of C2 constructed so far is adequate
to do the Hdnon mapping once in appropriate regions. It needs to be adapted to the
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Hdnon mapping as a dynamical system. One way of doing this would consist of making
an infinite sequence of <( blow ups " as above, so as to resolve the images of parabolic
rays, etc., and taking the projective limit. A different method will be used, inspired
by the fact that a model for the locus at infinity already exists, as a dynamical system.

Let S^ be a <( new " copy of the 3-sphere, and a : S^ -> S^ a solenoidal mapping.
Let ToCS^ be a solid torus, such that Tg = a (To) is contained in the interior of T^.
The reason for this funny notation will become clear below.

Back in S3, consider the solid torus To of equation \y \ < | x |. A ray in the cone
over the boundary of To can be written (^a, t^) with | a | = | (B | = 1. The image of
such a ray is the parametrized curve t \-> (a2 t2 + c — a^t, a?), which is asymptotic to
the curve

(9.3) s^l^s^^s+l^\
\ 4 a/

This last curve converges as s -> oo to a point in 3Tg, and it is easy to see that the first
is sufficiently close to the second so it converges to the same point.

0 0

Choose a homeomorphism h: To — Tg --> To — Tg, conjugating the mapping
a: ^TO -> yTg to ̂  mapping To -> Tg induced by the H&ion mapping as above. This
is possible, by the classification of solenoidal mappings and the formula (9.3). Now put
a topology on C2 U S^ as follows. Attach To — Tg to C2 by h. For any point p of
S? — (S+ U S_), choose n such that ^{p) e To — Tg, choose a neighborhood U of a"^)
and define a neighborhood of p to be F0-^ n C2) u ^-"(U n S^).

This defines a neighborhood basis for all points in C2 U S^, except for those of
the solenoids S^ and S_. Recall that both solenoids are canonically homeomorphic
tolim(S1, 2), and that there exists a unique mapping ̂  : To -> S1 which semi-conjugates (T
to angle-doubling (Theorem 3.1). A neighborhood of p == ( . . - ^ p ^ ^ P i ^ F o ) eS+ ls ^e
union of the set of {x,y) e C2 such that

F^d eV. for all k^ N
V/

r^R^i-^^^1"'^
and the set of points p in

n o^To
fc^N

such that | ^((y0"^) — A I < e- _
The union C2 U S?, with this topology, is the space C2.

Step 6. Compactness of C2. It remains to verify that C2 is compact, Hausdorff,
and that the mapping F: C2 ->• C2 which is F on C2 and a on S^ is continuous.
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To show compactness, take a sequence in C2. Suppose that the sequence is in C2

and that the norms of the elements (A^,J\J tend to infinity, as otherwise the sequence
obviously has a convergent subsequence. Further, assume that the sequence lies in V^..

Either there exists k and a subsequence (^.,j^.) such that

F0-^.^)^^
or there isn't. In the first case, recall the set P from step 4, and choose k and a sub-
sequence, which will still be called (A^.,J^.) such that

F0-^^)^-^.

If a subsequence can be chosen so that the rays through these points converge to a non-
horizontal ray, then this subsequence converges to the point of S^ corresponding to this
ray. If the rays through these points tend to the horizontal, then choose a subsequence
so that the directions of the rays tend to I\ on a curve orthogonal to I\. This direction is
then a point of S^, which is the limit of the subsequence. This shows that the F0"^ ,j^ )
have a subsequence which converges, and hence so does (^.,J^.), by the second part
of sept 5.

Now suppose that the number of times F~1 can be iterated on points of the sequence
and stay in V^. tends to infinity. Then by the compactness of the circle and a diagonal
argument, a subsequence of the (^,jJ can be chosen so that the sequences

^(F0-^,^))
l9+(F°-^n^J)l

converge for all A, say to p^. Clearly |̂ ==A-r Let p == ( . . . , p^ j&i, po). The subse-
quence clearly converges to p eS^.. This shows compactness.

Step 7. The space C2 is Hausdorff. It remains to show that distinct points
of C2 have disjoint neighborhoods. Clearly only points in S^ need to be considered,
and Lemma 9.2 shows that only points in the solenoids need to be considered. Even

here there is no problem. Ifpo + PQ, then let s == - | ?Q — p^ |. Then the s-neighborhoods

of p and p ' are disjoint. If p^ = p[ for i < k and p^ 4= p^ then \pjc— Pk\ = 2 and so

the --neighborhoods are disjoint.
K

Since clearly the mapping F, given by F on C2 and a on S3, is continuous (the bases
of neighborhoods are invariant under F), this ends the proof of Theorem 9.1. D

Corollary 9.4.— The closure ofK^. in C2 is K .̂ u S_, and the closure ofK_ is K_ U S+.

Proof. — Clearly points ofK_ and large norm are points where o~"1 can be iterated
many times staying in V^_. Such points are in smaller and smaller neighborhoods of
points of S^.. D
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