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A Hénon mapping is written

Hp,b

(
x
y

)
=

(
p(x)− by

x

)
.

for some polynomial p of degree d ≥ 2.

When the Jacobian b satisfies b = 0, the Hénon
mapping Hp,0 reduces to the polynomial

x #→ p(x).

If b %= 0, the mapping Hp,b is invertible:

H−1
p,b

(
x
y

)
=

(
y

1
b (p(y)− x)

)
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To Hénon mappings
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mapping Hp,0 reduces to the polynomial

x #→ p(x).

If b %= 0, the mapping Hp,b is invertible:

H−1
p,b

(
x
y

)
=

(
y

1
b (p(y)− x)

)

Some new approaches
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mapping Hp,0 reduces to the polynomial

x #→ p(x).

If b %= 0, the mapping Hp,b is invertible:

H−1
p,b

(
x
y

)
=

(
y

1
b (p(y)− x)

)

The important dynamical objects are:

K±
p,b =

{(
x
y

)
|

∥∥∥∥H◦n
(

x
y

)∥∥∥∥ bounded as n→ ±∞
}

J±p,b = ∂K±
p,b

Kp,b = K+
p,b

⋂
K−

p,b, Jp,b = J+
p,b

⋂
j−p,b

Some new approaches
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mapping Hp,0 reduces to the polynomial

x #→ p(x).

If b %= 0, the mapping Hp,b is invertible:

H−1
p,b

(
x
y

)
=

(
y

1
b (p(y)− x)

)

The important dynamical objects are:

K±
p,b =

{(
x
y

)
|

∥∥∥∥H◦n
(

x
y

)∥∥∥∥ bounded as n→ ±∞
}

J±p,b = ∂K±
p,b

Kp,b = K+
p,b

⋂
K−

p,b, Jp,b = J+
p,b

⋂
j−p,b

Some new approaches
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more or less known: small perturbations of

hyperbolic polynomials. Suppose p is
hyperbolic, and define

Ĉp = lim
←

(C, p) = {(. . . , z−2, z−1, z0) | p(zi) = zi+1}

Choose D a disk so large that Jp ⊂ D, and
define fp : Jp × D→ Jp × D by

fp(ζ, z) =
(

p(ζ), ζ + ε
z

p′(ζ)

)

where ε > 0 is sufficiently small that fp is
defined and injective.

Set

Čp = lim
→

(C, fp)
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A Hénon mapping is written

Hp,b

(
x
y

)
=

(
p(x)− by

x

)
.

for some polynomial p of degree d ≥ 2.

When the Jacobian b satisfies b = 0, the Hénon
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Čp = lim
→

(C, fp)

Some new approaches
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To Hénon mappings
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The projection Ĉp → C given by
(. . . , z−2, z−1, z0) "→ z0 makes Ĉp into a
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The projection Ĉp → C given by
(. . . , z−2, z−1, z0) "→ z0 makes Ĉp into a
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Ĉp

is a the infinite cone over the d-adic solenoid.

The projection Ĉp → C given by
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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Ĉp

is the infinite cone over the d-adic solenoid.
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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“ramified cover” whose fibers are Cantor sets,
ramified above the post-critical set.

In the case where p(z) = zd,

Ĉp
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Ĉp

is the infinite cone over the d-adic solenoid.
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The projection Ĉp → C given by
(. . . , z−2, z−1, z0) "→ z0 makes Ĉp into a
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The projection Ĉp → C given by
(. . . , z−2, z−1, z0) "→ z0 makes Ĉp into a
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The space Čp is more exotic. Recall that if
f : X → X is a map, then

lim
→

(X, f)

is the quotient of X × N by the equivalence
relation

(x, n) ∼ (f(x), n + 1)

It is often pathological (non-Hausdorf at least)
but if X is a manifold and f is an open

inclusion, it is an increasing union of manifolds,
hence a manifold.

In this case, p(z) = zd

fp : S1×D→ S1×D, (ζ, z) "→ (ζd, ζ+ε
z

dζd−1
)

the inductive limit is a 3-sphere with a d-adic
solenoid removed.

The projection Ĉp → C given by
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The projection Ĉp → C given by
(. . . , z−2, z−1, z0) "→ z0 makes Ĉp into a
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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bijective dynamics:

p̂ : Ĉp → Ĉp
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bijective dynamics:

p̂ : Ĉp → Ĉp
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bijective dynamics:

p̂ : Ĉp → Ĉp
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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Ĉp

is the infinite cone over the d-adic solenoid.
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bijective dynamics:

p̂ : Ĉp → Ĉp
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Ĉp

is the infinite cone over the d-adic solenoid.
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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Theorem 1. For all hyperbolic polynomials p
with Kp connected, there exists ε > 0 such that
if 0 < |b| < ε, there exist homeomorphisms

Φ− : Ĉp → J−p,b, Φ+ : Ĉp → J+
p,b

such that the diagrams

Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
Φ+

!!

p̌

""

J+
p,b

Hp,b

""

Ĉp
Φ− !! J−p,b Čp

Φ+
!! J+

p,b

commute.

Until recently, there was only one case where
we understood how to place these objects in

R4.

Describing this situation requires linked
solenoid mappings.

T0 T1 R ρT0

If T is an unknotted torus in S3,

there exists a homeomorphism ρT

that maps the inside to the outside and the

outside to the inside.

Take two tori T0 and T1 linked

with linking number d in the simplest way.

Let R rotate T0 to T1.

Then σ = ρT0 ◦R is a linked solenoid map.
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is given by

p̂(. . . , z−2, z−1, z0) = . . . , p(z−2), p(z−1), p(z0))

The inverse erases the last entry

The projection Ĉp → C given by
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p,b

such that the diagrams

Ĉp
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In all cases, Ĉp has non-algebraic singularities
anywhere the postcritical set accumulates, in

particular attracting cycles.
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bijective dynamics:

p̂ : Ĉp → Ĉp
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Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
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Ĉp
Φ− !! J−p,b Čp
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bijective dynamics:

p̂ : Ĉp → Ĉp
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Čp
Φ+

!!

p̌

""

J+
p,b

Hp,b

""

Ĉp
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Ĉp
Φ− !! J−p,b Čp
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Čp
Φ+

!!

p̌

""

J+
p,b

Hp,b

""

Ĉp
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Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
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Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
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Φ+
!! J+

p,b

commute.

Until recently, there was only one case where
we understood how to place these objects in

R4.

Describing this situation requires linked
solenoid mappings.

T0 T1 R ρT0

If T is an unknotted torus in S3,

there exists a homeomorphism ρT

that maps the inside to the outside and the

outside to the inside.

Take two tori T0 and T1 linked

with linking number d in the simplest way.

Let R rotate T0 to T1.

Then σ = ρT0 ◦R is a linked solenoid map.

Note that R maps the inside of T0 to the inside
of T1, hence completely outside T0.

Thus

ρT0 ◦R(T0) = ρT0(T1) ⊂ T0

So σ maps T0 inside itself; it is easy to see that
is is a “solenoidal mapping.”

such that the diagrams

Ĉp
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Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
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Φ+
!! J+

p,b

commute.

Until recently, there was only one case where
we understood how to place these objects in

R4.

Describing this situation requires linked
solenoid mappings.

T0 T1 R ρT0

If T is an unknotted torus in S3,

there exists a homeomorphism ρT

that maps the inside to the outside and the

outside to the inside.

Take two tori T0 and T1 linked

with linking number d in the simplest way.

Let R rotate T0 to T1.

Then σ = ρT0 ◦R is a linked solenoid map.

Note that R maps the inside of T0 to the inside
of T1, hence completely outside T0.

Thus

ρT0 ◦R(T0) = ρT0(T1) ⊂ T0

So σ maps T0 inside itself; it is easy to see that
it is a “solenoidal mapping.”

such that the diagrams

Ĉp
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Φ+
!! J+

p,b

commute.

Until recently, there was only one case where
we understood how to place these objects in

R4.

Describing this situation requires linked
solenoid mappings.

T0 T1 R ρT0

If T is an unknotted torus in S3,

there exists a homeomorphism ρT

that maps the inside to the outside and the

outside to the inside.

Take two tori T0 and T1 linked

with linking number d in the simplest way.

Let R rotate T0 to T1.

Then σ = ρT0 ◦R is a linked solenoid map.

Note that R maps the inside of T0 to the inside
of T1, hence completely outside T0.

Thus

σ(T0) = ρT0 ◦R(T0) = ρT0(T1) ⊂ T0

So σ maps T0 inside itself; it is easy to see that
it is a “solenoidal mapping.”

There is an attracting solenoid Σ+ contained in
T0

and a repelling solenoid Σ− contained in T1

such that the diagrams

Ĉp
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Čp
Φ+

!!

p̌

""

J+
p,b

Hp,b

""

Ĉp
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Čp
Φ+

!!

p̌

""

J+
p,b

Hp,b

""

Ĉp
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Ĉp
Φ− !!

p̂
""

J−p,b

Hp,b

""

Čp
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Describe R4 by polar coordinates r ≥ 0, θ ∈ S3.

Consider the map F : R4 → R4 given by

F (r, θ) =
(
r2, σ(θ)

)

Let

X = R4 − {(r, θ) | r ≥ 1, θ ∈ Σ−}
Clearly the restriction of F to X is a

homeomorphism.
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the Hénon maps conjugate to the Bonnot

model are the simplest Hénon mappings, the
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ones to which all others are compared.

They correspond to the polynomials z %→ zd.

Recall that if p is monic and Kp is connected,
there is a unique Böttcher coordinate
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ones to which all others are compared.

They correspond to the polynomials z %→ zd.

Recall that if p is monic and Kp is connected,
there is a unique Böttcher coordinate
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the Hénon maps conjugate to the Bonnot

model are the simplest Hénon mappings, the
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ψp : C− D → C−Kp

such that

ψp(zd) = p(ψp(z)).

If Kp is in addition locally connected, ψ
extends to the unit circle, and we can define

Describe R4 by polar coordinates r ≥ 0, θ ∈ S3.

Consider the map F : R4 → R4 given by

F (r, θ) =
(
r2, σ(θ)

)

Let

X = R4 − {(r, θ) | r ≥ 1, θ ∈ Σ−}

The space X is homeomorphic to R4, and
F -invariant.

The mapping F : X → X is our model.

Theorem 2 (Sylvain Bonnot). For all polyno-
mials p having an attracting fixed point with all
the critical points in its immediate domain, there
exists ε > 0 such that if 0 < |b| < ε, then there
exists a homeomorphism Φ : X → C2 such that
the diagram

X
Φ !!

F
""

C2

Hp,b

""
X

Φ !! C2

commutes.

This model is already rather non-trivial, but
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Hénon mappings, by pinching the ball of the

Bonnot model.



the Caratheodory loop γp by the formula

γp(t) = ψp(e2πit) = lim
r↘1

ψp(re2πit).

This map γp : R/Z→ Kp induces an
equivalence relation on S1 by

t1 ∼p t2 ⇐⇒ γp(t1) = γp(t2).

The convex hulls of the equivalence classes
form the invariant lamination of p.

The quotient of C by ∼p is a topological model
for (C, Kp), called the pinched disk model.

Our aim is to provide a model for (some)
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Hénon mappings, by pinching the ball of the

Bonnot model.

Rather than treat a general case, we will try to
understand the equivalence relation for the

small perturbations of p : z %→ z2 − 1.

In this case the invariant lamination of p is
especially simple.

1
3

1
3

2
3

2
3

1
6

1
6

5
6

5
6

5
12

5
12

7
12

7
12

1
12

1
12

1
24

1
24

5
24

5
24

7
24

7
24

1
12

1
12

1
24

1
24

the Caratheodory loop γp by the formula

γp(t) = ψp(e2πit) = lim
r↘1

ψp(re2πit).

This map γp : R/Z→ Kp induces an
equivalence relation on S1 by

t1 ∼p t2 ⇐⇒ γp(t1) = γp(t2).

The convex hulls of the equivalence classes
form the invariant lamination of p.

The quotient of C by ∼p is a topological model
for (C, Kp), called the pinched disk model.

Our aim is to provide a model for (some)
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Hénon mappings, by pinching the ball of the

Bonnot model.

Rather than treat a general case, we will try to
understand the equivalence relation for the

small perturbations of p : z %→ z2 − 1.

In this case the invariant lamination of p is
especially simple.

1
3

1
3

2
3

2
3

1
6

1
6

5
6

5
6

5
12

5
12

7
12

7
12

1
12

1
12

1
24

1
24

5
24

5
24

7
24

7
24

1
12

1
12

1
24

1
24

the Caratheodory loop γp by the formula

γp(t) = ψp(e2πit) = lim
r↘1

ψp(re2πit).

This map γp : R/Z→ Kp induces an
equivalence relation on S1 by

t1 ∼p t2 ⇐⇒ γp(t1) = γp(t2).

The convex hulls of the equivalence classes
form the invariant lamination of p.

The quotient of C by ∼p is a topological model
for (C, Kp), called the pinched disk model.

Our aim is to provide a model for (some)
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The corresponding equivalence relation in the
ball model is an injective map

Ψ : R2 × [0, 1]→ B

such that Ψ(R2 × {0}) is the stable manifold of
. . . 10.10 · · · ∈ Σ+

and

Ψ(R2 × {1}) is the stable manifold of
. . . 01.01 · · · ∈ Σ+

The equivalence classes are all {x}× [0, 1] for
x ∈ R2.
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Not quite a theorem [Radu and Tanase]
There exists such a mapping Ψ so that for all c
satisfying |c− 1| < 1/4, there exists ε > 0 such

that when |b| < ε, there exists a
homeomorphism

Φ : X/ ∼Ψ→ C2

conjugating the dynamics on the model to the
Hz2+c,b.
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Hénon map



Let ∼Ψ be the equivalence relation.

Not quite a theorem [Radu and Tanase]
There exists such a mapping Ψ so that for all c
satisfying |c− 1| < 1/4, there exists ε > 0 such

that when |b| < ε, there exists a
homeomorphism

Φ : X/ ∼Ψ→ C2

conjugating the dynamics on the model to the
Hz2+c,b.

The stable manifolds really

look like this.

But structurally they look like this.

The curves are the intersections with the tori
σ◦n(T0).

Stable manifold of . . . 10.10 · · · ∈ Σ+

Stable manifold of . . . 01.01 · · · ∈ Σ+
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Hénon map

The identifications identify

points at the same level,

and must be compatible

with the dynamics.

But there are other identifications possible.

Look at the following picture of parameter
space,

and the corresponding movie.



complex c plane: connecteds
constant a = -0.3 + 0i
Re(c) =  -1.1625 … -0.2625
Im(c) =  -0.4742385787 … 0.575

6/11/09
max iter = 500
CP followed: 1
max subdiv = 256

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
Re(c)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Im(c)

Parameter space for
Jacobian = -.3







Let ∼Ψ be the equivalence relation.

Not quite a theorem [Radu and Tanase]
There exists such a mapping Ψ so that for all c
satisfying |c− 1| < 1/4, there exists ε > 0 such

that when |b| < ε, there exists a
homeomorphism

Φ : X/ ∼Ψ→ C2

conjugating the dynamics on the model to the
Hz2+c,b.

The stable manifolds really

look like this.

But structurally they look like this.

The curves are the intersections with the tori
σ◦n(T0).

Stable manifold of . . . 10.10 · · · ∈ Σ+

Stable manifold of . . . 01.01 · · · ∈ Σ+
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points at the same level,

and must be compatible

with the dynamics.

But there are other identifications possible.

Look at the following picture of parameter
space,

and the corresponding movie.

We think we know how to construct a pinched
ball model for all the “fingers”

without modifying the image of Ψ, but by
changing what is connected to what in

R2 × [0, 1].

To prove that this is correct, we will need to
perturb not from the polynomials, but from the
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Hénon map

The identifications identify

points at the same level,

and must be compatible

with the dynamics.

But there are other identifications possible.

Look at the following picture of parameter
space,

and the corresponding movie.

We think we know how to construct a pinched
ball model for all the “fingers”

without modifying the image of Ψ, but by
changing what is connected to what in

R2 × [0, 1].

To prove that this is correct, we will need to
perturb not from the polynomials, but from the



Let ∼Ψ be the equivalence relation.

Not quite a theorem [Radu and Tanase]
There exists such a mapping Ψ so that for all c
satisfying |c− 1| < 1/4, there exists ε > 0 such

that when |b| < ε, there exists a
homeomorphism

Φ : X/ ∼Ψ→ C2

conjugating the dynamics on the model to the
Hz2+c,b.

The stable manifolds really

look like this.

But structurally they look like this.

The curves are the intersections with the tori
σ◦n(T0).

Stable manifold of . . . 10.10 · · · ∈ Σ+

Stable manifold of . . . 01.01 · · · ∈ Σ+
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The pinched ball approach to Hénon mappings
is an “inside-out” approach.

There is also an outside-in approach,
corresponding to exploring what corresponds to the 

outside of the Mandelbrot set:

The horseshoe locus



curve in parameter space where the Hénon map
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Choose a base point

P0 =
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in the “real horseshoe region”, for instance
b = .3, c = −5, and identify the fiber above

that point with the full 2-shift S2.
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Here are some slices of parameter space
for Hénon mappings

They are produced by the program 
Saddledrop

written by Karl Papadantonakis

The hope is that the colored points are all horseshoes.
At the moment, our only way of proving such things

is to use Zin Arai’s program, which is very time-consuming
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you exchange whatever symbol * is for the 
opposite symbol.  

• The formula is obtained from the kneading 
sequence  *BABAA  of all points of  M  beyond the 
*BABA polynomial.

• AAB   the name of the sheet of cone over     
Cantor x Circle that the loop surrounds.
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