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The goal of this work is to present results obtained by A. Douady and J.H.
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in [DH1] or [Do1].
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CHAPTER 1

Goal of the notes.

We will study the family of maps Pc : z 7→ z2+c, from C to C, from a dynamical
point of view. For each c, we denote by Kc the set of points z such that P ◦nc (z)
does not tends to ∞ (filled-in Julia set of Pc). By a theorem of Fatou and Julia
(1919), Kc is connected if 0 ∈ Kc; otherwise, it is a Cantor set. We denote by M
(Mandelbrot set) the set of parameters c for which Kc is connected, and by M ′ the
set of parameters c for which Pc has an attracting cycle. The set M is compact
and connected, M ′ is open and contained in M .

M

Figure 1. The Mandelbrot set M .

The two main conjectures are the following:
(MLC) The set M is locally connected.
(HG2) The interior of M is M ′.

We do not know how to prove either, but we intend to show that (MLC) ⇒
(HG2).1.

1Yoccoz proved that the Mandelbrot set is locally connected at every parameter c such that
Pc has an indifferent cycle (see [Hu]). He also proved that the Mandelbrot set is locally connected

9



10 1. GOAL OF THE NOTES.

Let K ⊂ C be a compact set which is connected and full (i.e., C \ K is con-
nected). Then, the Riemann mapping theorem asserts that there exists a unique
pair (r, ϕ) such that r ∈ R+ and ϕ = ϕK is a C-analytic homeomorphism between
C \K and C \Dr, with ϕ(z)/z → 1 as |z| → ∞. We say that rK = r is the capacity
of K. For t ∈ T = R/Z, the set

R(K, t) = ϕ−1
K

({
ρe2iπt

}
ρ>r

)

is the external ray of K of argument t (arguments are counted in turns, not modulo
2π). If ϕ−1

K (ρe2iπt) has a limit x ∈ K as ρ → rK , we say R(K, t) lands at x,
or that x has external argument t in K. If K is locally connected, a theorem of
Carathéodory asserts that every external ray land.

0

1/2

1/4
1/7

2/7

4/7

It is a quite remarkable fact that we know ϕM and the maps ϕc = ϕKc for
c ∈ M . 2 But without (MLC), we do not know that every external ray of M lands.

Theorem. Every external ray of M with rational argument lands.

The behavior is different for rational numbers which, in reduced form, have
odd denominators and even denominators.

If t ∈ [0, 1] is a rational number with odd denominator, the external rayR(M, t)
lands at a point c such that Pc has a rationally indifferent cycle. Each such point

at every parameter c such that Pc is finitely renormalizable (see [Hu] or [Ro]). Also, it is known

that
◦
M ∩ R = M ′ ∩ R (see [L3] or [GS]) Finally, if there exist a parameter c ∈

◦
M \M ′, then Kc

has empty interior, positive Lebesgue measure and carries an invariant Beltrami form (see [MSS]
for more details).

2It is rather easier to find the conformal mapping of C \ M than of the complement of a
triangle.



1. GOAL OF THE NOTES. 11

is obtained for 2 values of t (except c = 1/4 corresponding to t = 0). If t has even
denominator, R(M, t) lands at a point c such that the orbit of 0 under iteration of
Pc falls on a repelling cycle. Such values of c are called Misurewicz points. Each
Misurewicz point has a finite number of external arguments (each rational with
even denominator).

4/15

9/56

11/56

15/56

1/5

To show those properties, we attack the problem from the other end. We first
study the hyperbolic components of

◦
M , i.e, the connected components of M ′. We

will show that for each component U of M ′ and for each c ∈ U , Pc has a unique
attracting cycle {z0(c), . . . , zk−1(c)} of some period k. The map U → D given by
ϕU : c 7→ (P ◦kc )′(z0(c)) is a conformal mapping which extends injectively to the
boundary. We define the center of U to be ϕ−1

U (0) and the root of U to be ϕ−1
U (1).

We study Kc when c is the center of a hyperbolic component or a Misurewicz point.
In particular, we construct in Kc a combinatorial object: the Hubbard tree. Thanks
to this tree, we determine the arguments of c if c is a Misurewicz point, and if
c is the center of a hyperbolic component W , the 2 arguments of the root of W .
The analysis, rather elementary in the case of Misurewicz points, is more tricky for
the roots of hyperbolic components. It then remains to show that every rational
arguments are obtained in such a way. This time, it is much easier for rational
numbers with odd denominators.3

The technique that leads the implication (MLC) =⇒ (HG2) is the following.
Let c1 and c2 be two point of M with external arguments θ1 and θ2 which can
be written as p/2k (when a point has such an external argument, it has no other
external argument).

Assuming M is locally connected, we construct topological arcs Γ1 and Γ2 in
M , joining 0 to c1 and c2 (in fact, we impose certain conditions on those arcs –
“allowable arcs”). Let c3 be the point where Γ1 and Γ2 separate. We show that c3 is
a Misurewicz point or the center of a hyperbolic component, and we can construct
its tree in terms of those of c1 and c2.

If c3 is a Misiurewicz point, we will show that it has at least 3 external argu-
ments t1, t2, t3 such that t1 < θ1 < t2 < θ2 < t3. If c3 is the center of a hyperbolic
component W , we will call the external arguments of any point of ∂W an argument

3An alternate approach uses the spider algorithm (see [HS]).
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associated to c3. We will show that at least three external arguments t1, t2, t3
such that t1 < θ1 < t2 < θ2 < t3. All the combinatorial part of this study can be
performed without assuming M locally connected – the definition of c3 then seems
artificial.

Let us now assume that
◦

M has a ghost (i.e., not hyperbolic) component W .
Let w1, w2, w3 be three points of ∂W , and u1, u2 and u3 be external arguments
of respectively w1, w2 and w3. Let θ1 and θ2 be of the form p/2k such that u1 <
θ1 < u2 < θ2 < u3 and denote by c1 and c2 the landing points of R(M, θ1) and
R(M, θ2). Then, construct c3 and t1, t2, t3 as above. Set

S = W ∪ {w1, w2, w3} ∪ R(M,u1) ∪R(M, u2) ∪R(M,u3)

= W ∪R(M, u1) ∪R(M,u2) ∪R(M, u3);
S′ = R(M, t1) ∪R(M, t2) ∪R(M, t3) ∪ c3 if c3 is a Misurewicz point and

S′ = R(M, t1) ∪R(M, t2) ∪R(M, t3) ∪W ′ if c3 is the center of W ′.

The set S, S′ and R(θ1) ∪R(θ2) must be disjoint which yields a contradiction.

Remark. This technique does not rule out a ghost component whose closure
would only meet two external rays. This situation could occur if M were not
locally connected.
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Prerequisites.

Topology.

Jordan curve theorem. Let ϕ : S1 → R2 be continuous and injective. Then,
there exists a homeomorphism Φ : R2 → R2 such that Φ|S1 = ϕ.

Additional information. Assume L is an arc between a and b intersecting
Γ = ϕ(S1) at a point c. Assume there exists a homeomorphism ψ between a neigh-
borhood U of c and a neighborhood V of 0 of R2 such that ψ(U ∩Γ) = V ∩ (R× 0).
Then, a and b are in distinct connected components of R2 \ Γ.

We say that a compact set (respectively a bounded open set) A ⊂ R2 is full if
R2 \A is connected.

Proposition. Let U ⊂ R2 be a bounded connected open set. The following are
equivalent:

• U is full;
• for any Jordan curve Γ ⊂ U , the domain of R2 bounded by Γ is contained

in U ;
• U is simply connected;
• H1(U ;Z) = 0;
• H1(U ;Z/2) = 0; H1(U ;R) = 0;
• U is homeomorphic to D.

Proposition. Let K ⊂ R2 be a connected compact set. The following are
equivalent:

• K is full;
• K has a basis of neighborhoods homeomorphic to D;
• for every a ∈ R2 \ K, the universal covering (respectively the connected

covering of degree 2) of R2 \ {a} induces a trivial covering of K;
• every finite covering of K is trivial.

We will begin those notes with a more detailed study of full, connected and
locally connected compact subsets of R2.4

Holomorphic functions.

Uniformization Theorem. Every simply connected Riemann surface (i.e. C-
analytic manifold of dimension 1 over C) is isomorphic to D, C or C = C ∪ {∞}.

Poincaré metric. It is the metric defined on D by

‖dz‖ =
2|dz|

1− |z|2 .

Every automorphism of D is of the form

z 7→ λ
z + a

1 + āz
with |λ| = 1, |a| < 1,

and is an isometry for the Poincaré metric.

4For further developments on the descriptions of compact subsets of C, see for example [Do5].
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If X is isomorphic to D, we define the Poincaré metric on X by transporting
the one on D. If the universal covering X̃ of X is isomorphic to D, we define the
Poincaré metric on X by the condition that π : X̃ → X is a local isometry.5

Let X and Y be two Riemann surfaces such that X̃ and Ỹ are isomorphic to
D, and let f : X → Y be an analytic map. Then, f is 1-Lipschitz with respect to
the Poincaré metrics. We have ‖Txf‖ < 1 for all x ∈ X, except if f is a covering. If
f(X) is relatively compact in Y , f is k-Lipschitz with k < 1 except if T is compact
and f is a covering.

Carathéodory Theorem. Let U ⊂ S2 be an open set isomorphic to D and
ψ : D→ U be an isomorphism, i.e., the conformal of U . If ∂U is locally connected,
ψ has a continuous extension D→ U .

In fact, we will give a proof in theorem 2.1.

Corollary Assume U ⊂ C is a simply connected bounded open set and ψ : D→
U is an isomorphism. The following are equivalent:

• ψ has a continuous extension D→ U ;
• ∂U is locally connected;
• C \ U is locally connected;
• there exists L locally connected with ∂U ⊂ L ⊂ C \ U ;
• there exists γ : T→ ∂U surjective.

Morrey-Ahlfors-Bers’s Theorem. Let µ be an element of L∞(C) satisfying
‖µ‖∞ = k < 1. There then exists a unique homeomorphism f : C → C with
distributional partial derivatives locally in L2 such that ∂f/∂z̄ = µ · ∂f/∂z locally
in L2 and such that f(0) = 0 and f(1) = 1.

5This is feasible since the deck transformations are isomorphisms of X̃, hence isometries for
the Poincaré metric.



CHAPTER 2

Compact subsets of C.

1. Paths and arcs.

Let X be a topological space. A path in X is a continuous map γ : I = [0, 1] →
X. An arc in X is a subset of X homeomorphic to I, in other words, the image
of an injective path. It is usual to say that X is connected by arc if any pair of
points of X can be joined by a path. This terminology makes sense because of the
following proposition.

Proposition 2.1. Let X be a Hausdorff space, a and b be two distinct points
in X. If a and b can be joined by a path in X, they can be joined by an arc.

Idea of the proof. Let γ be a path joining a and b. Let Ω be the set of open
subsets W ⊂◦I=]0, 1[ such that, for any connected component ]α, β[ of W , we have
γ(α) = γ(β).

• For W ∈ Ω, there exists a unique path γW which coincides with γ on
I \W and is constant on each connected component of W .

• For any open subset W of
◦
I without adjacent connected components and

such that W 6=◦
I, there exists an increasing function λ : I → I, constant

on each connected component of W and satisfying λ(t) > λ(s) if t > s
and ]s, t[6⊂ W . If W ⊂ Ω, the path γW is of the form γ̃W ◦ λ.

• Ω is inductive. If W ∈ Ω is maximal, W does not have two adjacent
components and W 6=◦

I.
• For W maximal, γ̃W is injective.

2. Locally connected compact sets.

Let X be a metric space and h : [0, a[→ R be a continuous and increasing
function with h(0) = 0. We say that h is a modulus of local connectivity for X if
for x and y in X such that d(x, y) = r < a, there exists a connected subset L ⊂ X
containing x and y, of diameter less than or equal to h(r). Any space having a
modulus of local connectivity is locally connected. Any compact metric space X
which is locally connected has a modulus of local connectivity (defined on R+ if X
is connected).

Proposition 2.2. Any compact metric space which is locally connected is con-
nected by arcs.

Additional information. Assume h is a modulus of local connectivity for X.
Let x and y be two distinct points in X such that d(x, y) = r and suppose η > h(r).
Then, there exists an arc joining x to y with diameter at most η.

15



16 2. COMPACT SUBSETS OF C.

Proof. We can assume that X is embedded isometrically in a Banach space E, for
example, by taking E = C(X,R) and r(x) = (y 7→ d(x, y)). A polygonal path γ with
vertices in X is a path γ : I → E equipped with a finite set S = {s0, . . . , sn} ⊂ I
with s0 = 0 < s1 < . . . < sn = 1 such that γ(si) ⊂ X, γ affine on [si, si+1].
We say that (γ′, S′) refines (γ, S) if S′ ⊃ S and γ′|S = γ|S . The step of γ is
sup d(γ(si), γ(si+1).

Lemma 2.1. Let γ : I → E be a polygonal path of step less than or equal to δ
with vertices in X, and δ′ > 0. There exists a polygonal path γ′ with vertices in X
refining γ with step less than or equal to δ′, such that d(γ, γ′) ≤ h(δ).

Proof. Let (δn) be a sequence of positive numbers tending to 0 such that
∑

h(δn) <
η−h(r). Let γ1 be a polygonal path joining x to y with vertices in X and step less
than or equal to δ1, diameter less than or equal to h(r), and construct recursively a
sequence of paths (γn) such that γn has step less than or equal to δn, d(γn, γn+1) ≤
h(δn). This sequence converges uniformly to a path γ∞ continuous in X joining x
to y, of diameter less than or equal to h(r) + ε = η. In the image of γ∞, we can
find an arc Γ joining x to y.

3. Carathéodory Theorem.

Let K ⊂ C be a compact set which is full (i.e., such that C \K is connected).
It follows from Riemann’s uniformization theorem that there exists a unique pair
(r, ϕ) such that ϕ is an isomorphism between the Riemann surfaces C \ K and
C \ Dr, tangent to the identity at ∞, i.e., such that ϕ(z)/z → 1 as |z| → ∞. The
number r is the capacity of K.

For z ∈ C \K, log |ϕ(z)| is the potential of z and the argument of ϕ(z) is the
external argument of z relatively to K. The arguments are counted in turns (not
modulo 2π). The set of points z ∈ C \K of argument θ is the external ray R(K, θ).

Theorem 2.1. (Carathéodory) Let K ⊂ C be a full compact set. Assume
there exists a locally connected compact set L such that ∂K ⊂ L ⊂ K. Then, the
map ψ = ϕ−1 : C \ Dr → C \K has a continuous extension Ψ : C \ Dr → C\ ◦

K.

Proof. For a ∈ ∂Dr and ρ0 < 2r, set Ua,ρ0 = Da,ρ0 ∩C\Dr. The open set ψ(Ua,ρ0)

a

Ua,ρ0

ρ0

ψ(Ua,ρ0 )

is bounded, so its area is finite, equal to
∫ ρ0

0

A(ρ)dρ, where

A(ρ) =
∫ θ+

ρ

θ−ρ
|ψ′(z(ρ, θ))|2ρdθ =

1
ρ
‖ρψ′‖2.
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Set Γρ = ∂Da,ρ ∩ (C \ Dr) and λ(ρ) the length of ψ(Γρ). We have:

λ(ρ) =
∫ θ+

ρ

θ−ρ
|ψ′(z(ρ, θ))|ρdθ = 〈ρψ′, 1〉 ,

and so,
λ(ρ)2 ≤ ‖ρψ′‖2 · ‖1‖2 = ρA(ρ)(θ+

ρ − θ−ρ ) ≤ 2πρA(ρ).

Lemma 2.2. There exists a sequence ρn tending to 0, such that λ(ρn) tends
to 0.

Proof. ∫ ρ0

0

λ(ρ)2

2πρ
≤

∫
A(ρ)dρ < ∞.

¤

Let h be a modulus of local connectivity for L. Let a ∈ ∂Dr and (ρn) be as
in the lemma; set Un = Uaρn

. The curve (Γρn
) has finite length, thus has two end

points αn and βn in ∂K, whose distance is less than or equal to λn = λ(ρn). We
can join the two points αn and βn in L by an arc Hn of diameter less than or equal
to h(λn) and ϕ(Γn)∪Hn is a Jordan curve Jn whose diameter is at most λn+h(λn).
The open set ψ(Un) is contained in the open set bounded by Jn, thus it also has
a diameter less or equal to λn + h(λn). It follows that the Un converge to a point
ψ(a). For h ∈ ∂Dr, with |b− a| ≤ ρn, we have |Ψ(b)−Ψ(a)| ≤ λn + h(λn), which
proves the continuity of Ψ.

Remark. The map Ψ induces a surjective map γK : T = R/Z → ∂K that we
will call the Carathéodory loop. For x ∈ ∂K, the elements of γ−1

K (x) are called the
external arguments of x.

4. Components of the interior of K.

Proposition 2.3. Let K ⊂ C be a full, locally connected, compact set and
denote by (Ui)i∈I the family of connected components of

◦
K.

a) For all i, U i is homeomorphic to the closed disk.
b) diam(Ui) → 0 (i.e., ∀ε > 0, the set of i such that diam(Ui) > ε is finite)

Proof. a) If Γ is a Jordan curve in Ui, the domain bounded by Γ is contained in K,
thus in Ui. It follows that Ui is simply connected, thus isomorphic to D or C. Since
Ui is bounded, it is isomorphic to D. Let ψ : D→ Ui be an isomorphism. We have
∂Ui ⊂ ∂K ⊂ C \ Ui, and ∂K is locally connected. It follows from Carathéodory’s
theorem that ψ extends to a continuous mapping Ψ : D → U i. We need to show
that Ψ|∂D is injective.

α) Analytical part. ∀x ∈ ∂Ui, Ψ−1(x) has empty interior in T. This follows
from Schwarz reflection principle.

β) Topological part. ∀x ∈ ∂Ui, Ψ−1(x) is connected. If this were not the case,
we could find t1, t2, u1, u2 such that u1 and u2 do not belong to the same connected
component of T\{t1, t2}, Ψ(t1) = Ψ(t2) = x, Ψ(u1) 6= x and Ψ(u2) 6= x. Let A and
B be C1 arcs with extremities (t1, t2) and (u1, u2) intersecting transversally at a
point. Then, Ψ(A) is a Jordan curve Γ ⊂ K and Ψ(B) intersects it transversally at
a point. Thus, one of the two points Ψ(u1), Ψ(u2) belongs to the domain bounded
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by Γ, and the other is outside this domain. But, there cannot be any point of
∂Ui ⊂ ∂K in the domain bounded by Γ.

a) follows from α) and β).
b) Assume n > 0, h is a modulus of local connectivity for K and (Uiν ) is a

sequence of connected components of
◦
K such that diam(Uiν ) > m. In each Uiν ,

let (xν , yν) be a pair of points such that |yν − xν | ≥ m. Extracting a subsequence
if necessary, we may assume that xν → x and yν → y. We have x ∈ K, y ∈ K,
|y−x| ≥ m. Let A1 and A2 be two disjoint connected neighborhoods of x and y in
K, k be such that xk and xk+1 are in A1 and yk and yk+1 are in A2. Let H1 be an
arc from xk to xk+1 in A1, H2 from yk to yk+1 in A2, J1 from xk to yk in Uik

and
J2 from xk+1 to yk+1 in Uik+1 . The Jordan curve Γ ⊂ H1∪H2∪J1∪J2 with Γ∩J1

and Γ∩ J2 non empty. Then, Γ ⊂ K, the domain bounded by Γ is contained in
◦
K,

thus in a connected component of
◦
K, and intersects both Uik

and Uik+1 , which is a
contradiction.

H1
x y J2

H2

J1

5. Projection to a component.

Proposition 2.4. Let K ⊂ R2 be a full connected and locally connected com-
pact set, U be a connected component of

◦
K and x ∈ K. Let γ1 and γ2 be two paths

in K, with γ1(0) = γ2(0) = x, γi(1) ∈ U ; denote by ui the smallest t such that
γi(t) ∈ U . We have γ1(u1) = γ2(u2). This point is called the projection of x on U
and is denoted by πU (x).

Proof. If x ∈ U , we have ui = 0 and γi(ui) = x. We may therefore assume that
x /∈ U . Set yi = γi(ui) and assume y1 6= y2. The set L = γ1([0, u1]) ∪ γ2([0, u2]) is
a compact set in which y1 and y2 are joined by a path, thus also by an arc J , and
we have J ∩U = L∩U = {y1, y2}. By adding an arc H joining y1 to y2 in U , such
that H ∩ ∂U = {y1, y2}, we get a Jordan curve Γ. If z1 and z2 are two points in
∂U intertwined with (y1, y2), one is in the domain V bounded by Γ, but V ⊂ K,

and so V ⊂ ◦
K. Since V ∩ U 6= ∅, we have V ⊂ U , which gives a contradiction.

Corollary 2.1. For any arc Γ ⊂ K, the set Γ ∩ U is connected.

Proposition 2.5. Let K ⊂ R2 be a full connected and locally connected com-
pact set and U be a connected component of

◦
K. The projection πU : K → U is

continuous, locally constant on K \ U .
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Additional information. Let h be a modulus of local connectivity for K.
Then, h is a modulus of continuity for πU . If h(d(x, y)) < d(x, U), we have πU (x) =
πU (y).

Proof. Let x and y ∈ K, δ > h(|y − x|) and γ be a path joining x to y with
diameter less than or equal to δ. If γ([0, 1]) ∩ U 6= ∅, let u and v be the smallest
and the largest t such that γ(t) ∈ U . We have π(x) = γ(u), π(y) = γ(v), and
d(π(x), π(y)) ≤ diamγ([0, 1]) ≤ δ. If γ([0, 1]) ∩ U = ∅, we can adjoin to γ a path
from y to a point of U . we obtain a path between x and a point of U , and so,
π(x) = π(y). If δ > d(x, U), we are necessarily in the latter case.

6. Allowable arcs.

Let K ⊂ C be a full connected and locally connected compact set; denote
by (Ui)i∈I the family of connected components of

◦
K. Choose in each Ui a point

wi. This determines, up to multiplication by λ of modulus 1, a homeomorphism
ϕi : U i → D inducing a C-analytic isomorphism between Ui and D such that
ϕi(wi) = 0.

Definition 2.1. An arc Γ ⊂ K will be called allowable if for every i ∈ I,
ϕi(Γ ∩ U i) is contained in the union of two rays of D.

Proposition 2.6. Let x and y be two distinct points of K. There exists a
unique allowable arc Γ joining x to y.

Proof.
a) Existence. If x and y are in the same U i, this is clear: if ϕi(x) and ϕi(y)

have the same argument, ϕi(γ) is the segment [x, y], otherwise it is [x, 0] ∪ [0, y].
In general, let γ be an injective path between x and y. Order the elements i

of I such that γ−1(U i) has more than 2 points, in a sequence (in), and denote γn

the path obtained by modifying γ on γ−1(U i1), . . . , γ−1(U in) so that it becomes
allowable on those intervals. It follows from proposition 2.3.b) that the γn converge
uniformly to a path γ∗. We check that γ∗ is an injective path and that its image is
an allowable arc.

b) Uniqueness. It is a consequence of the following lemma.

Lemma 2.3. Let Γ1 and Γ2 be two allowable arcs. Then, Γ1∩Γ2 is connected.

Proof. Assume this is not the case and let ]u, v[Γ1 be a connected component of
Γ1 \ (Γ1 ∩ Γ2). Then, [u, v]Γ1 ∪ [u, v]Γ2 is a Jordan curve J . Let V be the domain

[u,v]Γ1

[u,v]Γ2

u

v

bounded by J . Then, V ⊂ K, thus V ⊂ ◦
K, so there exists i such that V ⊂ Ui and

J ⊂ U i. The arcs [u, v]Γ1 and [u, v]Γ2 are distinct allowable arcs between u and v
in U i, which is not possible. ¤
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Notation. We denote by [x, y]K the allowable arc between x and y. This
notation depends on the choice of wi. If x = y, we set [x, y]K = {x}.

Properties of allowable arcs. Every sub-arc of an allowable arc is itself
allowable.

Let x, y, z be three points of K. Then, [x, y]K ∩ [y, z]K is of the form [y, c]K
(lemma above). We denote by c(x, y, z) the point c defined in this way.

We have [x, y]K = [x, c]K ∪ [c, y]K , [y, z]K = [y, c]K ∪ [c, z]K , [x, z]K = [x, c]K ∪
[c, z]K . In particular, if [x, y]K ∩ [y, z]K = {y}, the arc [x, y]K ∪ [y, z]K is allowable.

7. Allowable trees.

We will say that a subset X ⊂ K is allowably connected if, for x and y in
X, we have [x, y]K ⊂ X. A union of a family of allowably connected subsets
having a common point is allowably connected. The intersection of a family of
allowably connected subsets is allowably connected. We define the allowable hull
[A] of a subset A ⊂ K as the intersection of all the allowably connected subsets of
K containing A.

Proposition 2.7. Let x1, . . . , xn be points in K. The allowable hull [x1, . . . , xn]
of the set {x1, . . . , xn} is a topological finite tree.

Proof. By induction on n, it is clear for n = 1 or 2 or for n = 3. Assume
[x1, . . . xn] is a topological finite tree and let xn+1 ∈ K. Let a be an arbitrary
point of [x1, . . . xn] and denote by c the first point on the arc [xn+1, a] (starting at
xn+1) which belongs to [x1, . . . xn]. Then, [x1, . . . xn+1] = [x1, . . . xn]∪ [c, xn+1] and
[x1, . . . xn] ∩ [c, xn+1] = {c}.

Remark. 1) Every end point of [x1, . . . , xn] is one of the points xi, but there can
be points xi which are not end points.

2) We could define geodesic arcs. But proposition 2.7 would not hold.



CHAPTER 3

Local connectivity of some Julia sets.

1. Julia sets.

Let f : C → C be a polynomial of degree d > 1. We call filled-in Julia set of
f the set Kf of points z such that f◦n(z) 6→ ∞. It is a compact set. Indeed, let
fi : z 7→ adz

d + . . . + a0, set

R∗ = sup
(

1,
1 + |ad−1|+ . . . + |a0|

|ad|
)

.

For |z| > R∗, we have |f(z)| ≥ |z|d/R∗. It follows that Kf =
⋂

f−n(DR∗).
Set Jf = ∂(Kf ); it is the Julia set.

Kf Jf

Figure 1. The filled-in Julia set and the Julia set of a quadratic polynomial.

We study more specifically the family (fc)c∈C defined by fc(z) = z2 + c. Every
polynomial of degree 2 is conjugate to a unique fc via a unique affine map. For
example, z 7→ λz + z2 is conjugate to fc for c = λ/2− λ2/4. We denote by Kc the
filled-in Julia set of fc.

Proposition 3.1. (Julia, Fatou)

a) If 0 ∈ Kc, the set Kc is connected.
b) If 0 /∈ Kc, the set Kc is homeomorphic to a Cantor set.

Proof. Choose R > 1+ |c| and set Vn = f−n
c (DR) for every n. We have Vn+1 ⊂ Vn

and Kc =
⋂

Vn.
a) For every n, fc : Vn+1 → Vn is a covering of degree 2 ramified at one point,

V0 is a disk, and so, Vn is homeomorphic to a disk for every n, and Kc =
⋂

Vn is
connected.

21
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b) There exists m such that 0 ∈ Vm and c = fc(0) /∈ Vm. Then, Vm is
homeomorphic to a disk, but for every n ≥ m, fc : Vn+1 → Vn is a double unramified
covering. It follows that for all k, the open set Vm+k has 2k connected components
homeomorphic to a disk. Let δk be the maximum diameter of those connected
components for the Poincaré metric µ on Vm. The map fc : Vm+1 → Vm has
2 sections g0 and g1, λ-Lipschitz for µ with λ < 1, and so, δk ≤ λk−1δ1. In
particular, δk → 0, which implies b).

For a polynomial f of degree d > 2, there are in general several critical points,
and so more possibilities. If all the critical points belong to Kf , the set Kf is
connected. If no critical point belong to Kf , then Kf is a Cantor set. If there is at
least one critical point outside Kf (and possibly others in Kf ), the set Kf has an
uncountable number of connected components, but some may not be reduced to a
point. The proof is analogous.

For every polynomial f , the compact set Kf is full: this follows from the max-
imum modulus principle. We have f(Kf ) = f−1(Kf ) = Kf . The map f induces a

holomorphic (hence open) and proper map from
◦

Kf to
◦

Kf . As a consequence, for

each connected component U of
◦

Kf , its image f(U) is a connected component of
◦

Kf and f induces a proper map from U to f(U).
There are polynomials for which Kf is locally connected and others (even in

degree 2) for which it is connected but not locally connected.1 The goal of this
chapter is to give sufficient conditions for local connectivity of Kf .

2. Conformal representation of C \Kf .

Proposition 3.2. Let f : C → C be a monic polynomial of degree d ≥ 2.
Assume Kf is connected. Then, the capacity of Kf is 1 and the conformal rep-
resentation ϕ : C \ Kf → C \ D, tangent to the identity at ∞, conjugates f to
z 7→ zd.

Proof. Let R be the capacity of Kf ; set r = 1/R, Φ(z) = 1/ϕ(z) for z ∈ C \Kf ,
and define g : Dr → Dr by g = Φ ◦ f ◦ Φ−1 on Dr \ {0} and g(0) = 0. The map
g is holomorphic with a zero of order d at 0, therefore it is of the form z 7→ uzd

and u does not vanish on Dr. Moreover, g is proper, so |u(z)| tends to 1/rd−1 as
|z| → r; it follows that u is constant. As f is monic and ϕ is tangent to the identity
at ∞, we have u(0) = 1, and so, u(z) = 1 for all z, r = 1, g(z) = zd for z ∈ D and
ϕ ◦ f ◦ ϕ−1(z) = zd.

Remark. 1) Assume that 0 ∈ Kf , let z ∈ C \Kf and set zn = f◦n(z). It follows
from the functional equation ϕ(zn+1) = (ϕ(zn))d that ϕ is given by the infinite

1The Julia set of a geometrically finite polynomial (i.e., the critical points are either in
attracting basins, in parabolic basins or are preperiodic) is locally connected (see chapters 3 and
10). The Julia set of a finitely renormalizable quadratic polynomial without indifferent cycle is
locally connected (see [Hu]). The Julia set of a polynomial having a non linearizable irrationally
idifferent fixed point is not locally connected (see [Do1]). Finally, there exist examples of infinitely
renomalizable quadratic Julia sets with connected but non locally connected Julia sets (see [Mil]).
For further papers related to local connectivity of Julia sets, see for example [Ki], [Pe], [PM],
[Sø1], [Sø2], [Z]
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product

ϕ(z) = z

∞∏
n=0

(
1 +

ad−1

zn
+ . . . +

a0

zd
n

)1/dn+1

,

with the notation of section 1. The ambiguity due to the fractional exponent is
solved as follows: for n such that |zn| > R∗, take the branch of (1 + ζ)1/dn+1

that
sends 0 to 1. Also, for each factor, as a function of z, there is a unique choice of
continuous branch which tends to 1 as z → ∞. This infinite product converges
with a fantastic speed as soon as |zn| > R∗.

2) In the proof (and even in the statement) of proposition 3.2, we assume that
Riemann’s theorem of existence of a conformal representation is known. We do not
really need it since we can effectively construct the conformal representation.

3. The Carathéodory loop.

Let f : C→ C be a monic polynomial of degree d ≥ 2 such that Kf is connected.
If Kf is locally connected, the conformal representation ψ = ϕ−1 : C \D→ C \Kf

tangent to the identity at ∞ has a continuous extension to C \ D (Carathéodory
Theorem), and so, there is a surjective and continuous map γ : R = R/Z → ∂K
defined by t 7→ ψ(e2iπt): it is the Carathéodory loop of Kf (or of f). We will give a
process of constructing the Carathéodory loop, process that converges if and only
if Kf is locally connected. In the following, we will use the convergence of this
process as a criterion to know whether Kf is locally connected.

Let us consider the external ray R(Kf , 0) of external argument 0. Let γ0 : T→
C be a loop such that γ(T) ⊂ C \Kf , γ0(0) ∈ R(Kf , 0), γ0 of index 1 relatively to
a point (and therefore to all points) of Kf .

Proposition 3.3. a) We can define by induction a sequence (γn) of
loops T→ C by the conditions f(γn+1(t)) = γn(d · t), γn+1(0) ∈ R(Kf , 0).

b) The sequence (γn) converges uniformly if and only if Kf is locally con-
nected.

c) If Kf is locally connected, lim(γn) is the Carathéodory loop of Kf .

Proof. (a) The map ϕ ◦ γ0 is of the form t 7→ ρ(t)e2iπθ(t), where ρ : T →]1, +∞[
and θ : T→ T are continuous, with θ of degree 1 and θ(0) = 0. The map θ lifts to
θ̃ : R→ R, continuous with θ̃(0) = 0 and θ̃(t + 1) = θ̃(t) + 1. Then, γn is given by
t 7→ ϕ−1(ρn(t)e2iπθn(t)), where

ρn(t) = ρ(dnt)1/dn

and θn : T→ T comes from

θ̃n : t 7→ 1
dn

θ̃(dnt).

(b – ⇐) and (c). Uniformly on T, ρn → 1 and θn → Id. If Kf is locally
connected, ψ = ϕ−1 has a continuous extension to C\D, thus γn converges uniformly
to t 7→ ψ(e2iπt).

(b – ⇒) Assume that the γn converge uniformly to a loop γ∞ : T → C, and
let us show that γ∞(T) = ∂Kf . Every compact subset of C \ Kf is contained in
a ϕ−1(C \ D1+ε). As ρn → 1 uniformly, for every neighborhood V of Kf , we have
γn(T) ⊂ V for n sufficiently large. It follows that γ∞(T) ⊂ ∂Kf .
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Let x ∈ ∂Kf and y ∈ C \Kf be a point close to x. Let L be a path in C \Kf

joining y to ∞. For n sufficiently large, γn(T) ∩ L = ∅, so γn has index 0 with
respect to y. Since it has index 1 with respect to x, γn(T) intersects the segment
[x, y], and there exists a tn such that γn(tn) ∈ [x, y], and so, |γn(tn)− x| < |y − x|.
Since this occurs for every y ∈ C \Kf , we can find a sequence (nk) and a sequence
(sk = tnk

) such that γnk
(sk) → x. Extracting a subsequence if necessary, we may

assume that (sk) has a limit s, and then γ∞(s) = x.
This shows that γ∞(T) = ∂Kf . As the image of a locally connected compact

set by a continuous map is locally connected, ∂Kf is locally connected, and it
follows that Kf is locally connected.

4. Expanding and sub-expanding maps.

Let Ω be an open subset of C. A Riemannian metric (compatible with the
complex structure, often called a conformal metric) on Ω is the data at every point
z ∈ Ω of a complex norm on Tz(Ω) = C; this norm is necessarily of the form
t 7→ ‖t‖ = u(z)|t|, where u is a function on Ω taking its values in R∗+. We shall
write ‖dz‖ = u(z)|dz|. If u is continuous (respectively C1,C∞, . . . ) we shall say
that it is a Riemannian metric with continuous coefficients (respectively C1, C∞,
. . . ). If Ω is equipped with a Riemannian metric defined by a continuous function
u, we define the length `u(γ) of a C1 path γ by

`u(γ) =
∫ 1

0

‖d(γ(t))‖ =
∫ 1

0

u(γ(t))|γ′(t)|dt.

The distance du(x, y) for x and y in Ω is the infimum of the length of paths between
x and y. Let f : Ω → Ω1 be a holomorphic map, where Ω and Ω1 are open subsets of
C equipped with Riemannian metrics defined by respectively u and u1. For x ∈ Ω,
the norm of Txf : TxΩ → Tf(x)Ω1 (each of those spaces being equipped with its
norm) is:

‖Txf‖ =
u1(f(x))

u(x)
|f ′(x)|.

Let Ω be an open subset of C, f : Ω → C be a holomorphic map and Λ a subset
of Ω such that f(Λ) ⊂ Λ. Let u : Ω → R∗+ be a continuous function. We say that
f is strongly dilating on Λ for the Riemannian metric defined by u if

(∃λ > 1) (∀x ∈ Λ) ‖Txf‖ ≥ λ.

If Λ is compact and u is continuous, it is sufficient that

(∀x ∈ Λ) ‖Txf‖ > 1.

Definition 3.1. We say that f is expanding on Λ if there exists a neighborhood
V of Λ in Ω and a continuous function u : V → R∗+ such that f is strongly dilating
on Λ for the Riemannian metric defined by u.

Exercise. If Λ is a compact set, the following are equivalent:
• f is expanding on Λ;
• (∃λ > 1), (∃c > 0), (∀x ∈ Λ), (∀n ∈ N), |(f◦n)′(x)| ≥ cλn;
• (∀x ∈ Λ), (∃n ∈ N), |(f◦n)′(x)| > 1.

We will show that if a polynomial f is expanding on its Julia set Jf , the compact
set Kf is locally connected (and also Jf ). But this is true under weaker hypothesis.
For the formulas, we will introduce the notion of sub-expanding map.
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A Riemannian metric ‖dz‖ = u(z)|dz| is admissible on Ω if u is defined, contin-
uous and positive on Ω \ {a1, . . . , ak}, and if mi ≤ u(z) ≤ ci

|z − ai|βi
with mi > 0,

0 < βi < 1 and ci < ∞, in a neighborhood of each point ai.
An admissible metric allows us to define a finite length for every arc which

is piecewise R-analytic, and a distance which defines the usual topology (in fact

mi|z − ai| ≤ d(ai, z) ≤ |z − ai|1−βi

1− βi
.) We say that f : Ω → C is strongly dilating

on Λ if each f(αi) is equal to a αj , and if there exists a neighborhood V of Λ and
a λ > 1 such that for all x ∈ V \ ({ai}i ∪ f−1({ai}i)

)
,

‖Txf‖ ≥ λ.

Definition 3.2. Let Λ ⊂ Ω be a compact set such that f(Λ) ⊂ Λ. We will say
that f is sub-expanding on Λ if there exists a neighborhood V of Λ in Ω and an
admissible Riemannian metric on V such that f is strongly dilating on Λ.

5. Local connectivity for sub-hyperbolic polynomials.

Definition 3.3. Let f be a polynomial. We say that f is hyperbolic (respectively
sub-hyperbolic) if f is expanding (respectively sub-expanding) on its Julia set Jf .

Proposition 3.4. Let f be a polynomial such that Kf is connected. If f is
sub-hyperbolic, Kf is locally connected.

Proof. We will show that the sequence (γn) defined in section 3 converges uni-
formly. Let V be a neighborhood of Jf on which there exists an admissible metric
µ for which f is strongly dilating, V1 be a connected neighborhood of Jf relatively
compact in V . For n sufficiently large (let’s say n ≥ N), we have γn(T) ⊂ V1,
and γn and γn+1 are homotopic in V1 \ Jf . Let us denote by E the set of loops
η : T → V 1 and F the set of loops η : T → V1 \ Jf , homotopic to γn for n ≥ N ,
and such that η(0) ∈ R(Kf , 0). Equip V with the distance defined by µ, V 1 with
the induced distance, E with the distance of uniform convergence with respect to
this distance, and F with the following distance:

dF (η, η′) = inf
h homotopy between

η and η′

h(s,0)∈R(Kf ,0)

sup
t∈T

`µ(s 7→ h(s, t)).

We can assume that ϕ(V1 \ Kf ) is homeomorphic to an annulus. We have, for
n ≥ N ,

dF (γn+1, γn+2) ≤ 1
λ

dF (γn, γn+1).

It follows that (γn) is a Cauchy sequence in F , and so also in E since dE ≤ dF . But
E is complete, thus (γn) converges in E and the topology on E coincides with the
distance of uniform convergence for the usual distance since V 1 is compact, so (γn)
converges uniformly for the usual distance.

6. Periodic points.

Let f : C→ C be a polynomial (or a holomorphic function).
A periodic point for f is a point x ∈ C such that there exists a n > 0 for which

f◦n(x) = x. The smallest such n with this property s called the period k of x. The
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cycle of x is then {x0, . . . , xk−1}, where xi = f◦i(x), and the multiplier of this cycle
is ρ = (f◦k)′(x) =

∏
i f ′(xi). We say that x is an attracting (respectively repelling,

respectively indifferent) cycle if |ρ| < 1 (respectively |ρ| > 1, respectively |ρ| = 1).
A periodic point is super-attracting if ρ = 0; this is equivalent to the existence of a
critical point in the cycle. We say that x is a preperiodic point if there exists an
integer ` such that f◦`(x) is periodic.

If x is an attracting periodic point of period k, the basin of x is the set of points
x such that f◦nk(z) tends to x as n tends to ∞. The immediate basin of x is the
connected component of the basin of x that contains x. The basin (respectively
immediate basin) of an attracting cycle is the union of the basins (respectively
immediate basins) of the points of this cycle.

Let f be a polynomial and x be an attracting periodic point of f . The basin

of x is contained in Kf , so x ∈
◦

Kf .

Lemma 3.1. The immediate basin of x is the connected component Ux of
◦

Kf

that contains x.

Proof. This immediate basin is clearly contained in Ux.
Let V be a closed disk for the Poincaré metric on Ux centered at x. The map

f◦k induces a holomorphic map from Ux into itself, which is not a isomorphism, so
which is λ-Lipschitz on V with λ < 1; it follows that every point in V is attracted
by x.

Proposition 3.5. (Fatou, Julia)2 The immediate basin of every attracting
cycle contains at least one critical point.

Proof. The immediate basin Ux of a point x of the cycle contains at least one
critical point of f◦k; otherwise Ux would be isomorphic to the disk D and f◦k

would be an automorphism of Ux, the inverse of which would contradict Schwarz’s
lemma. The proposition follows.

Corollary 3.1. A polynomial of degree d has at most d− 1 attracting cycles.

If x is an indifferent periodic point, its multiplier ρ is of the form e2iπθ; we
say that x is a rationally or Diophantine3 indifferent periodic point, if θ has those
properties. We say that x is linearizable if there exists a diffeomorphism ϕ from
a neighborhood V of x to a disk such that ϕ ◦ f◦k ◦ ϕ−1 is z 7→ ρz. The largest
possible domain V is the linearizing domain of x.4

Theorem 3.1. (Siegel 1942) Every Diophantine indifferent periodic point is
linearizable.

For a proof, see [Si]. One can give an simpler proof for θ Diophantine of
exponent 2 (Herman).5

2This is one of the most important results in dynamics in one complex variable.
3A Diophantine number is an irrational number θ satisfying the condition |θ − p/q| ≥ C/qν

for some constants C > 0 and ν ≥ 2 for all rational number p/q. Equivalently, it is an irrational
number θ such that log qn+1 = O(log qn), where pn/qn are the approximants to θ given by the
continued fraction algorithm.

4A linearizing domain is also called a Siegel disk.
5Assume θ is an irrational number and let pn/qn be the approximants to θ given by the

continue fraction algorithm. In 1938, Cremer [Cr] proved that when sup
log qn+1

qn
= +∞, there



7. CHARACTERIZATION OF HYPERBOLIC OR SUB-HYPERBOLIC POLYNOMIALS. 27

0
0

Figure 2. Left: the Julia set of the polynomial z 7→ e2iπ
√

2z + z2.
Right: the Julia set of the polynomial z 7→ e2iπ

√
10z + z2. In both

cases, there is a linearizing domain (light grey).

7. Characterization of hyperbolic or sub-hyperbolic polynomials.

Theorem 3.2. Let f : C→ C be a polynomial.
a) For f to be hyperbolic it is necessary and sufficient that every critical point

of f which belongs to Kf is attracted by an attracting cycle
b) For f to be sub-hyperbolic) it is necessary and sufficient that every critical

point of f which belongs to Kf is preperiodic or attracted by an attracting
cycle.

Proof. a) It is necessary. Let V be a neighborhood of Jf , µ be an admissible
Riemannian metric on V , E ⊂ V a finite set and λ > 1 such that µ has continuous
coefficients on V \E and that, for all x ∈ (V \E)∩f−1(V ∩E), we have ‖Txf‖ ≥ λ.
For ε > 0, denote by Vε the set of points x ∈ V such that dµ(x, Jf ) ≤ ε. If ε is

small enough, we have f−1(Vε) ⊂ V ; then f−1(Vε) ⊂ Vε/λ ⊂
◦
Vε. Indeed, for every

x ∈ Vε and all ε′ > ε, we can find a path γ whose µ-length is less than ε′ joining x
to a point of Jf avoiding E; if y ∈ f−1(x), we can lift γ to a path starting at y, we
obtain a path whose µ-length is less than ε′/λ joining y to a point of Jf , and so,
dµ(y, Jf ) < ε′/λ.

Let us choose such an ε and set L = Kf\
◦
Vε. The set L is compact, so, the

family (Ui)i∈J of connected components of
◦

Kf that intersect L is finite, and each
such component is preperiodic. Also, we have f(L) ⊂ L; thus, if f◦k(Ui) ⊂ Ui,
we have f◦k(Ui ∩ L) ⊂ Ui ∩ L and f◦k induces a map from Ui ∩ L into itself,
strongly contracting for the Poincaré metric on Ui. It follows that every point of L
is attracted by an attracting cycle.

exists a germ f(z) = e2iπθz +O(z2) which is not linearizable. Around 1965, Brjuno [Brj] refined

Siegel’s arguments and proved that when the sum
∑ log qn+1

qn
converges, every germ f(z) =

e2iπθz + O(z2) is linearizable. In the 80’s, Yoccoz [Yo] proved that when the sum diverges, the
quadratic polynomial e2iπθz+z2 is not linearizable at 0. This proves the optimality of the Brjuno
condition.
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Let E∗ be the set of points a ∈ E such that the coefficient of µ is bounded in
a neighborhood of a. For a ∈ E∗, we have f(a) ∈ E∗ if f(a) ∈ V . Also, for every
critical point c of f which belongs to V , we have f(c) ∈ E∗ if f(c) ∈ V . Let c be a
critical point of f which belongs to Kf . If for all n, f◦n(c) ∈ Vε, the set of points
f◦n(c) for n > 0 is contained in E∗, thus finite, and c is preperiodic. If there exists
n such that f◦n(c) /∈ Vε, for such an n we have f◦n(c) ∈ L and c is attracted by an
attracting cycle.

If E = ∅, every critical point is attracted by an attracting cycle.
b) Let Cf be the set of critical points of f and Pf :=

⋃

n≥1

f◦n(Cf ) be the

postcritical set of f . Let x = (x0, . . . , xk−1, xk = x0) be an attracting cycle, and
let Ux be the basin of x.

Lemma 3.2. There exists an open set Vx ⊂ Ux such that f(Vx) ⊂ Vx (the
closure is in C, not in Ux), and Pf ∩ Ux ⊂ Vx.

Proof. Choose V0, . . . Vk−1 neighborhoods of x0, . . . , xk−1 so that f(Vi) ⊂ Vi+1.
These exist because x is attracting. Choose n sufficiently large so that f◦n(Cf ) ⊂
V := V0 ∪ . . . ∪ Vk+1. Then, the set Vx = f−n(V ) satisfies the requirements. ¤

Construct for each attracting cycle x a subset Vx ⊂ Ux and moreover choose R

so that f−1(DR) ⊂ DR. Define

U = DR \

 ⋃

x attracting cycle

Vx


 and U ′ = f−1(U).

Lemma 3.3. U ′ is relatively compact in U and f : U ′ → U is a covering map,
ramified at the points of Jf ∩ Cf .

The theorem follows in the case where Jf ∩ Cf = ∅. Let µ = ‖ · ‖U be the
Poincaré metric of U and ‖ · ‖U ′ be the Poincaré metric of U ′. Since f is then a
covering map U ′ → U , we have for x ∈ U ′

‖Df(x)(ξ)‖U = ‖ξ‖U ′ > ‖ξ‖U .

The case where Jf ∩Cf 6= ∅ is considerably more elaborate and will require the
orbifold metric of U .

Give each point x ∈ Pf ∩ Jf the weight

δx = lim
n→∞

LCM
y∈f−n(x)

degyf◦n.

The sequence n 7→ LCM
y∈f−n(x)

degyf◦n is eventually constant since the critical points

in Jf are assumed preperiodic, so δx is well defined.
Let π : X∗ → U \Pf be the covering map corresponding to the normal subgroup

G ⊂ π1(U \Pf ) generated by γδx
x , where γx is a small loop around x ∈ Pf . Note that

since G is normal, there are no difficulties associated to the choice of base-point.
If Dx is the disk bounded by γx, then every component of π−1(Dx \ {x}) is

a δx-fold connected cover. It follows that we can add a point above x to each
such component, creating a Riemann surface X and a ramified covering map still
denoted π : X → U , ramified of order δx at every invers image of each x ∈ Pf .
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Lemma 3.4. a) X is a simply connected Riemann surface isomorphic
to D

b) π is a Galois cover, so that for all y1, y2 ∈ π−1(y), there exists a deck
transformation σ : X → X such that σ(y1) = y2.

c) The Poincaré metric of X induces en admissible metric on U .

Proof. a) By definition, π1(X) = G. So it is enough to show that for any α ∈ π1(X)
in the conjugacy class of γx, the element αδx ∈ π1(X∗) is contractible in π1(X).
This is clear. Moreover, π : X → C is a bounded analytic function, so X ' D.

b) Since G is normal, π : X∗ → U \ Pf is Galois. Thus, it is enough to show
that the deck transformations of X∗ extend analytically to X. Again, this should
be clear.

c) By part b), if x ∈ U \ Pf , y1, y2 ∈ π−1(x) and ξ ∈ TxU , then the POincaré
metric ‖ · ‖X of X satisfies

∥∥(Dπ(y1))−1ξ
∥∥

X
=

∥∥(Dπ(y2))−1ξ
∥∥

X
,

so ‖ · ‖X does induce a metric µ on U∗. To see how it behaves near a point of Pf ,
we can choose charts z near x and ζ near y ∈ π−1(x) such that z = ζδ, and the
Poincaré metric on X is u(ζ)|dζ| with u continuous and satisfies u(ζ) = u(λζ) if
λδ = 1. Then, the induced metric on U is

v(z)|dz|, where v(z) = δ|z| δ−1
δ u

(
z

δ−1
δ

)
.
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¤

The following lemma ends the proof of the theorem.

Lemma 3.5. The map f : U ′ → U is strongly dilating on Jf for the orbifold
metric µ.

Proof. Consider the diagram of covering spaces

X∗
g

//____________

π

»»1
11

11
11

11
11

11
11

1 (X ′)∗

π

{{www
ww

ww
ww

(U ′)∗

f

||yy
yy

yy
yy

U∗

The existence of g making the diagram commute follows from the lifting criterion
in covering spaces: g exists if and only if π∗(π1(X∗)) ⊂ (f ◦ π)∗(π1(X ′)∗).

Note: this might seem ambiguous because f ◦ π is not a Galois cover, so (f ◦
π)∗(π1(X ′)∗) is not a normal subgroup, and only well defined after choosing base
points. But π∗(π1(X∗)) is a normal subgroup, so if it is contained in so;e (f ◦
π)∗(π1(X ′)∗), it is contained in all its conjugates, and there is no ambiguity.

Thus we see that the condition for the existence of g is that for every γx,
y ∈ (f ◦ π)−1γx (read ”every path connecting (f ◦ π)y to a base point of U”), γδx

x

can be lifted to (X ′)∗. This requires that δx be a multiple of δz(degzf) for all
z ∈ f−1(x), and the weights δx were chosen so that this is true.

The same argument implies that g can be uniquely extended to an analytic
mapping X → X ′ making the diagram

X g
//

π

ºº0
00

00
00

00
00

00
00

X ′

π

~~||
||

||
||

U ′
f

~~}}
}}

}}
}

U

commute.
Since g is analytic, it is contracting for the Poincaré metrics of X and X ′, and

even more contracting if we use the Poincaré metric of X for both X and X ′. More
precisely, there is a continuous function k : X ′ → [0, 1[ such that for every x ∈ X ′

and ξ ∈ TxX ′, we have ‖ξ‖X′ = k(x)‖ξ‖X . If π(x1) = π(x2) then k(x1) = k(x2)
and since Jf ⊂ U ′ = π(X ′) is compact, we see that there exists k0 < 1 such that
k(x) ≤ k0 for all x ∈ π−1(Jf ).

Now, assume x ∈ Jf and let ξ ∈ TxU ′ be a tangent vector to U ′. We can write
(choosing x̃ ∈ X such that π ◦ g(x̃) = x, and suppressing the points where the
derivatives are evaluated)

‖Tf (ξ)‖µ = ‖(Tπ)−1Tf(ξ)‖X ≥ ‖Tg(Tπ)−1Tf(ξ)‖X′

≥ 1
k0
‖Tg(Tπ)−1Tf(ξ)‖X =

1
k0
‖TπTg(Tπ)−1Tf(ξ)‖µ =

1
k0
‖ξ‖µ.
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Therefore f is strongly dilating on Jf , for the metric µ. ¤





CHAPTER 4

Hubbard trees.

1. Action on π0(
◦

Kf ).

Let f be a polynomial of degree d ≥ 2, and denote by (Ui)i∈I the family of

connected components of
◦

Kf , so that I = π0(
◦

Kf ). Remember that for all i ∈ I,
f(Ui) is one of the Uj , and we note j = f∗(i). Also, f : Ui → Uj is proper and
holomorphic of degree di, where di−1 is the number of critical points counted with
multiplicities in Ui. In particular,

∑
(di − 1) ≤ d− 1, with equality if and only if f

is hyperbolic and Kf is connected.

Proposition 4.1. Assume f is sub-hyperbolic.
a) Every element of I is preperiodic for f∗.
b) For every periodic i, Ui contains a periodic attracting point and is its

immediate basin.
c) Every cycle of connected components of

◦
Kf contains at least a critical

point.1

Remark. a) is true without the hypothesis of sub-hyperbolicity (Sullivan)2 but
the proof is much more difficult.
Proof. Let V be a neighborhood of Jf , µ be an admissible Riemannian metric on
V and λ > 1 such that ∀x ∈ V ′ = f−1(V ), ‖Txf‖µ ≥ λ. Let ε > 0 be such that
V1 = {x ∈ V | dµ(x, Jf ) < ε} is relatively compact in V ; set V ′

1 = f−1(V ) and
L = Kf \ V ′

1 . The set L is compact and we have f(L) = Kf \ V1 ⊂ L. Denote by
IL the set of i ∈ I such that Ui ∩ L 6= ∅. Since the Ui ∩ L form a covering of L by
disjoint open sets, IL is finite.

(a) We have f∗(IL) = IL, thus, every element of IL is preperiodic. Let i ∈ I,

x ∈ Ui and n ≥ log ε− log d(x, Jf )
log λ

. Then, f◦n(x) ∈ L, and so, f◦n∗ (i) ∈ IL, thus i

is preperiodic.
(b) Let i be such that f◦k∗ (i) = i with k ≥ i. We then have f◦k(L ∩ Ui) ⊂

L′ ∩ Ui ⊂ L ∩ Ui. It follows that diam(f◦k(L ∩ Ui)) < diam(L ∩ Ui), where the
diameter is taken for the Poincaré metric on Ui. It follows that f◦k : Ui → Ui is not
an isomorphism, ‖Txf◦k‖ < 1 for all x ∈ L ∩ Ui, sup

L∩Ui

‖Txf◦k‖ < 1, f◦k : L ∩ Ui →
L ∩ Ui is strongly contracting, thus has an attracting fixed point αi.

The periodic point αi attracts every point in L∩Ui, and varying ε, we see that
it attracts every point in Ui, so Ui is contained in the immediate basin of αi. As

1This has already been proved in proposition 3.5.
2Sullivan proved that every Fatou component of a polynomial (in fact of a rational map) is

eventually periodic (see [Su1] or [Mil] appendix F for a proof). The proof is based on the use of
quasiconformal surgery.
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it is connected, it is contained in the immediate basin. This immediate basin is

connected, contained in
◦

Kf and contains αi, so is contained in Ui and is equal to
it.

(c) The map f◦k : Ui → Ui is holomorphic and proper but is not an isomor-

phism, so its degree is δ > 1. Observe that
k−1∏

j=0

df◦j
∗ (i) = δ, so one factor is greater

than 1, and the corresponding Uf◦j
∗ (i) contains a critical point.

2. The centers of the Ui’s.

We keep the notations of the preceding section.

Proposition 4.2. Assume every critical point of f is periodic or preperiodic.
Then, we can choose, for all i ∈ I, an isomorphism ϕi : Ui → D so that ∀i,
ϕf∗(i) ◦ f ◦ ϕ−1

i : D→ D is the map z 7→ zdi . If di = 2, this choice is unique.

Proof.

Lemma 4.1. Let h : D → D be a holomorphic and proper map of degree δ,
such that h(0) = 0. Assume every critical point of f is periodic or preperiodic.
Then, h is of the form z 7→ λzδ with |λ| = 1.

Proof. If δ = 1, h is an isomorphism, so of the form z 7→ λz. We may therefore
assume that δ > 1. Then, 0 attracts D, and every critical point of h falls on 0 in
finite time.

Denote by A the union of the forward orbits of the critical points of h. The
set A is finite. Let γ be a loop surrounding A such that γ ∩ h−n(A) = ∅ for all n,
and set γn = h◦n(γ). For n large enough, γn is contained in a small disk centered
at 0, which contains no other point of A. Then, γn is homotopic in D \ A to a
loop ηn whose length for the Poincaré metric on D \ A is arbitrarily small. Since
h◦n : D\f−n(A) → D\A is a covering, γ is homotopic in D\h−n(A) (and a fortiori
in D \ A) to a loop η lifting ηn. We then have lengthD(η) ≤ lengthD\h−n(A)(η)
arbitrarily small, which shows that A is reduced to a point, which is necessarily 0.
The multiplicity of 0 as a critical point is δ − 1.

The map h is therefore of the form z 7→ u(z) · zδ, where u is holomorphic, does
not vanish, and |u(z)| → 1 as |z| → 1 since h is proper. It follows that u is constant
of modulus 1. ¤

Let i ∈ I be a periodic point of period k and αi be the periodic attracting point
of f which belongs to Ui. Let ϕi : Ui → D be an isomorphism such that ϕi(αi) = 0
and set h = ϕi ◦ f◦k ◦ ϕ−1

i . It follows from the preceding lemma that h is of the
form z 7→ λzδ, and we have δ > 1 according to proposition 4.1 (c). If we replace
ϕi by µϕi with |µ| = 1, we replace λ by µδ−1λ. It follows that we can choose ϕi so
that λ = 1. This choice can be made in δ − 1 ways.

For 0 ≤ ` ≤ k−1, the equivalence relation defined on Ui by f◦` is finer than the
one defined by f◦k; carried to D via ϕi, it becomes of the form z ∼ z1 ⇔ zδ′ ∼ zδ′

1 ,
where δ′ divides δ. We can therefore choose in a unique way ϕf∗(i)◦` : Uf◦`∗ (i)

'→ D,
such that ϕf∗(i)◦` ◦ f◦` ◦ ϕ−1

i is z 7→ zδ′ . We then have ϕf∗(j) ◦ f ◦ ϕj = (z 7→ zdj )
for all j in the cycle {f◦`∗ (i)}`=0,...,k−1. We proceed in the same way for each of the
cycles of f∗. We then construct recursively on ν the ϕi for the i such that f◦ν∗ is
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periodic. The point ϕ−1
i (0) is called the center of Ui. The inductive step is done by

observing that, if there is a critical point in Ui, its image is necessarily the center
of Uf∗(i) since in this open set, the center is the only point which is preperiodic.
We then have di possible choices for ϕi. Finally, the number of possible choices for
the whole family (ϕi) is

∏

ζ cycle





∏

i∈ζ

di


− 1


 ·

∏

i non periodic

di.

In particular, if d = 2, there is one simple critical point (so with di = 2) in the
unique cycle, so one choice for the family.

Remark. Even if there are choices for the ϕi, for each i the center ϕ−1
i (0) of Ui is

uniquely determined.

3. The Hubbard tree.

In the following, f is a polynomial of degree d ≥ 2 such that every critical point
is periodic or preperiodic. Remember that this implies that f is sub-hyperbolic
and that Kf is connected and locally connected. We keep the notations of the two
preceding sections. In particular, each Ui is equipped with a center, which enables
us to define allowable arcs.

Remember that if x and y are two points in Kf , there exists a unique allowable
arc [x, y]f with extremities x and y, and that if (xs) is a family of points in Kf ,
the set

⋃
[xs1 , xsi ]f is a finite topological tree, called the allowable hull of the xs.

Definition 4.1. We will call the Hubbard tree of f the allowable hull Hf of
the union of the forward orbits of the critical points.

x3

x0=x4

x1

x2

Figure 1. An example of Hubbard tree.
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Denote by C the set of critical points of f and (Hσ) the closures of the connected
components of Hf \ C.

Proposition 4.3. The map f induces a continuous map from Hf to itself
whose restriction to each Hσ is injective.

Proof.

Lemma 4.2. Let Γ ⊂ Kf be an allowable arc which does not contain any
critical point of f , except possibly its extremities. Then, f|Γ is injective and f(Γ)
is an allowable arc.

Proof. Let γ : I → Kf be a path with image Γ. If f ◦γ is injective, its image is an
allowable arc because f maps an internal ray of U i to an internal arc of Uf∗(i). Let
us show that η = f ◦ γ is necessarily injective. It is clear that γ is locally injective,
so S = {(t1, t2) | t1 < t2 and η(t1) = η(t2)} is compact. Assume S 6= ∅ and let
(t1, t2) ∈ S2 with t2 − t1 minimum and t3 ∈]t1, t2[. Then, η([t1, t3]) and η([t3, t2])
are allowable arcs with the same extremities; they coincide, which contradicts the
injectivity of η on ]t1, t2[. So, we have S = ∅, η injective and f(Γ) = η(I) is an
allowable arc. ¤

Lemma 4.3. Let (xs) be a finite family of points in Kf and H be the allowable
hull of the (xs). Then, f(H) is the allowable hull of the f(xs) and the f(w) for
w ∈ H ∩ C.
Proof. The set H is a union of allowable arcs of the form [xs1 , xs2 ]f , [xs, w]f ,
[w1, w2]f not containing elements of C except possibly their extremities. Then, f(H)
is the union of the corresponding [f(xs1), f(xs2)]f , [f(xs), f(w)]f , [f(w1), f(w2)]f ,
thus is contained in the allowable hull of the f(xs) and the f(w). Since it is
connected and contains the f(xs) and the f(w), f(H) is equal to this hull. ¤

We now come to the proof of the proposition. The first assertion follows from
lemma 4.3. If x and y are two distinct points in the same Hσ, the arc Γ = [x, y]f
does not contain any critical point, except possibly x or y, so f|Γ is injective and
f(x) 6= f(y).

4. The case of quadratic polynomials.

Assume now that d = 2 and f is of the form z 7→ z2 + c. The critical point is
0. We set an = f◦n(0) and we denote by A the forward orbit of 0 (which is finite
by hypothesis). Two cases are possible.
Periodic case. 0 is periodic, we denote by k its period; so we have #A = k,

A = {a0, . . . , ak−1. The points ai are super-attracting, so in
◦

Kf ; we denote by

Ui the connected component of
◦

Kf containing ai (which is its immediate basin).
Hence, we have d0 = 2, di = 1 for i = 1, . . . , k − 1, and f◦k : U0 → U0 is of degree
δ = 2:

U0
f−→

2→1
U1

f−→
1→1

U2
f−→

1→1
. . .

f−→
1→1

Uk−1
f−→

1→1
U0.

Every other connected component of
◦

Kf is mapped by a finite number of iterates,
homeomorphically, to one of the Ui.
Strictly preperiodic (Misurewicz) case. 0 is mapped after ` iterates in a cycle
of order k: we have a` = ak+`, a`−1 6= ak+`−1, and so ` ≥ 2 and a`−1 = −a`+k−1.
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The set K has empty interior and the cycle {a`, . . . , a`+k−1 is repelling. Denote by
ν(i) the number of branches of the tree Hf at ai.

Proposition 4.4. Assume d = 2.
a) Periodic case. If k = 1, we have c = 0, ν(0) = 0. If k > 1, there exists r,

2 ≤ r ≤ k, such that ν(i) = 1 for 1 ≤ i ≤ r and ν(i) = 2 for r < i ≤ k.
The internal arguments of the branches at ai are: 0 if ν(i) = 1, 0 and 1/2
if ν(i) = 2.

b) Strictly preperiodic case. We have ν(0) = 2, ν(1) = ν(2) = 1 ≤ . . . ≤
ν(`) = . . . = ν(` + k − 1).

Proof. a) Since f(Hf ) ⊂ Hf , we have ν(1) ≥ 1/2ν(0), and ν(1) ≤ ν(2) ≤ ν(k) =
ν(0). Also, if Hf 6= {a0}, this tree has at least two extremities, so there exist at
least 2 values of i such that ν(i) = 1, and so ν(1) = ν(2) = 1 ≤ . . . ≤ ν(k) =
ν(0) = 2. Denote by Ai the set of internal arguments of the branches at ai (so
that νi = #Ai), and q : T → T the map t 7→ 2t. We have q(A1) ⊂ A1 since
f◦k(Hf ) ⊂ Hf , and so, a1 = {0}. We have q(A0) ⊂ A1 ⊂ A2 ⊂ . . . ⊂ Ak = A0,
and so A0 ⊂ q−1(0) = {0, 1/2} and {0} ⊂ Ai ⊂ {0, 1/2}.

b) We still have
1
2
ν(0) ≤ ν(1) ≤ . . . ≤ ν(`) ≤ ν(` + k + 1) ≤ ν(` + k) = ν(`).

Let us show that ν(0) > 1. If we had ν(0) = 1, the map f : Hf → Hf would
be injective, contradicting f(a`−1) = f(a`+k−1). Since Hf must have at least two
extremities, we have ν(1) = ν(2) = 1.





CHAPTER 5

Julia sets with zero Lebesgue measure.

The results in this chapter have been obtained independently by M. Yu Lyubich.
A short proof is given in [L1].1

The problem of knowing whether Jf has zero Lebesgue measure for every poly-
nomial f is still open (even for the polynomials z 7→ z2 + c). We show that it is the
case if f is hyperbolic, or only sub-hyperbolic (in this last case, the proof is only
sketched).

1. Distortion.

Definition 5.1. Let U be a connected open subset of C and f : U → C be a
holomorphic function. We call distortion of f on U the quantity:

distU (f) = sup
x,y∈U

∣∣∣∣log
f ′(y)
f ′(x)

∣∣∣∣ .

Comment. If f is affine, we have distU (f) = 0. We have distU (f) = ∞ if f has
a critical point or if f ′ is a map U → C∗ not homotopic to a constant. In other
cases, one must take the determination of log that is 0 when x = y.

If f : U → V and g : V → C are holomorphic maps, we have

distU (g ◦ f) ≤ distU (f) + distV (g).

If f : U
'−→ V is an isomorphism, we have distU (f) = distV (f−1). We have

distU (f) ≤ diam(U) · sup
∣∣∣∣
f ′′

f ′

∣∣∣∣ ,

where

diam(U) = sup
x,y∈U


 inf

γ path between
x and y

(length(γ))


 .

Theorem 5.1. (Quasi-self-similarity). Let U be an open subset of C,
f : U → C be a holomorphic map, Λ ⊂ U be a compact set such that f(Λ) ⊂ Λ and
such that f is expanding on Λ. Then,

(∀m > 0) (∃b > a > 0) (∀ε ∈]0, a[) (∀x ∈ Λ) (∃n ∈ N)

B(f◦n(x), a) ⊂ f◦n(B(x, ε)) ⊂ B(f◦n(x), b) and distB(x,ε)(f◦n) ≤ m.

1In all the cases where it is known, the area of the Julia sets of polynomials is zero. For
example, this is known for all sub-hyperbolic polynomials (see this chapter), for geometrically
finite polynomials (see [L1]), for finitely renormalizable quadratic polynomials (see [L2] or [Sh]),
for some cubic polynomials (see [BH]) and for some infinitely renormalizable polynomials (see
[Ya]).
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Proof. Let U1 be an open neighborhood of Λ with U1 relatively compact in U ,
u : U1 → R∗+ a continuous map defining a Riemannian metric µ and λ > 1, such
that ‖Tzf‖µ ≥ λ for all z ∈ U1 ∩ f−1(U1).

Set

M1 = inf
U1

u, M2 = sup
U1

u, M3 = sup
U1

∣∣∣∣
f ′′

f ′

∣∣∣∣ , M4 = sup
U1

|f ′| > 1,

M =
M2M3

M1
, and b0 = d(Λ,C \ U1).

Let m be such that 0 < m ≤ 1; set b = inf
(

b0
M1

M2
,
m(λ− 1)

2M

)
and a = be−2m/M4.

Let x ∈ Λ; set xk = f◦k(x) and ρk = |(f◦k)′(x)| for all k. Choose n ∈ N arbi-
trarily, set Vn = B(xn, b) and, for 0 ≤ k ≤ n, denote by Vk the connected component
of f−(n−k)(Vn) which contains xk, so that f◦(n−k) induces a homeomorphism from
Vk to Vn. We have

diam(Vk) ≤ 2bM2

M1λn−k
,

and so,

distVk
(f) ≤ 2bM

λn−k
and distV0(f

◦n) ≤
n−1∑

k=0

distVk
(f) <

2bM

λ− 1
≤ m.

It follows that

V0 ⊃ B

(
x0,

b

ρn
e−m

)
and f−n(B(xn, a)) ∩ V0 ⊂ B

(
x0,

a

ρn
em

)
.

Set ε0 = be−m and let ε be such that 0 < ε ≤ ε0.
We may now come back on the choice of n. Since we have ρk < ρk+1 ≤ M4ρk

for all k, and M4e
ma = e−mb, if n is the largest value of k such that ρkε ≤ e−mb,

we have: ρnε ≥ ema, and so

f−n(B(xn, a)) ∩ V0 ⊂ B(x0, ε) ⊂ V0, B(xn, a) ⊂ f◦n(B(x0, ε)) ⊂ B(xn, b)

and distB(x0,ε)(f◦n) ≤ m.

2. Density.

In RN (here N = 2), let Λ and V be two measurable sets, with 0 < mes(V ) < ∞
(mes(V ) stands for the Lebesgue measure on V ). We call density of Λ in V the
quantity

dV (Λ) =
mes(Λ ∩ V )

mes(V )
.

If V ⊂ V ′ with mes(V ′) < ∞, we have

dV ′(Λ) ≥ mes(V )
mes(V ′)

dV (Λ) and 1− dV ′(Λ) ≥ mes(V )
mes(V ′)

(1− dV (Λ)).

Recall the Lebesgue density theorem: for almost every x ∈ Λ, the density
dB(x,r)(Λ) tends to 1 as r → 0. We shall use the following weaker result.

Proposition 5.1. Let Λ ⊂ RN be a compact set. If mes(Λ) > 0, we can choose
for every ρ > 0 a point xρ ∈ Λ such that dB(xρ,ρ)(Λ) → 1 when ρ → 0.
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Proof. For ρ > 0, denote by Pρ a tiling of RN by cubes of side-length 4ρ, and Λ(ρ)
the union of the tiles P of Pρ that intersect Λ. We have mes(Λ(ρ)) → mes(Λ), and
so; dΛ(ρ)(Λ) → 1. But dΛ(ρ)Λ is the mean value of the dPρ

(Λ), so we can choose for
each ρ a tile Pρ in such a way that dPρ(Λ) → 1. Let P ′ρ be the cube centered at the
same point with side-length 2ρ. For ρ small enough, we have dPρ

(Λ) > 1 − 1/2N ,
hence Λ ∩ Pρ 6= ∅ and we can choose xρ ∈ Λ ∩ P ′ρ. Then, B(x, ρ) ⊂ Pρ, and

mes(B(x, ρ))
mes(Pρ)

≥ mes(B)
4N

,

and so

1− dB(x,ρ)(Λ) ≤ 4N

mes(B)
(1− dPρ(Λ)) → 0.

Proposition 5.2. Let f : U → C be a holomorphic map, Λ ⊂ U be a compact
set and V ⊂ U be an open set such that f|V is injective. If distV (f) ≤ m, we have

1− df(V )f(Λ) ≤ e2m(1− dV (Λ)).

Proof. Let h = infV |f ′|. We have mes(f(V )) ≥ h2mes(V ) and

mes(f(V )\f(Λ)) ≤ mes(f(V \Λ)) ≤ h2e2mmes(V \Λ) = h2e2m(1−dV (Λ))mes(V ),

and so

1− df(V )f(Λ) =
mes(f(V ) \ f(Λ))

mes(f(V ))
≤ e2m(1− dV (Λ)).

3. The hyperbolic case.

Theorem 5.2. Let f : U → C be a holomorphic map and Λ ⊂ U be a compact
set such that f(Λ) ⊂ Λ and f is expanding on Λ. Then, Λ has Lebesgue measure
zero.

Corollary 5.1. For any hyperbolic polynomial f , the Julia set Jf has Lebesgue
measure zero.

Lemma 5.1. The set Λ has empty interior.

Proof. Assume W is a connected component of
◦
Λ, and let x ∈ W . The family f◦n|W

is bounded, so the |(f◦n)′(x)| form a bounded sequence on each compact subset of
W . However, since f is expanding on Λ, this sequence tends to +∞. Contradiction.

Proof of theorem 5.2. Assume mes(Λ) > 0. Let us choose m > 0 and let (ρn)
be a sequence of positive numbers tending to 0. By proposition 5.2, we can find for
each ν a point xν ∈ Λ such that dB(xν ,ρν)(Λ) → 1. By theorem 5.1, we can find
numbers a and b (independent of ν), and for each ν an integer nν ∈ N such that,
setting yν = f◦nν (xν), we have

B(yν , a) ⊂ f◦nν B(xν , ρν) ⊂ B(yν , b) and distB(xν ,ρν)(f◦nν ) ≤ m.

So,

1− dB(yν ,a)(Λ) ≤ b2

a2

(
1− df◦nν B(xν ,ρν)(Λ)

) ≤ b2

a2
e2m

(
1− dB(xν ,ρν)(Λ)

) → 0.
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Extracting a subsequence if necessary, we can assume that (yν) has a limit y, and
that |y − yν | < a/2 for all ν. Then, B(y, a/2) ⊂ B(yν , a) and

1− dB(y,a/2)(Λ) ≤ 4 · (1− dB(yν ,a)(Λ)
) → 0.

But this does not depend on ν, and so, dB(y,a/2)(Λ) = 1 and Λ ⊃ B(y, a/2) since
Λ is compact. This contradicts the preceding lemma.

4. The sub-hyperbolic case: construction of a covering.

We will pattern the above construction, modifying it in order to take into
account the presence of critical points.

Let f be a sub-hyperbolic polynomial. Denote by A (respectively A∗) the union
of the forward orbits (respectively of strict forward orbits) of the critical points of
f that are in Jf . It is a finite set. For any critical point α, we denote by degαf the
degree of ramification of f at α (the value of d such that f(α+z) = f(α)+czd + . . .
with c 6= 0). For α ∈ A, denote by ν(α) the product of degβ(f) for critical points
which are in the strict backward orbit of α.

Let U be a relatively compact neighborhood of Jf such that U ′ = f−1(U) b
U , u : U →]0, +∞] a continuous function, such that u−1(∞) = A∗, defining an
admissible Riemannian metric µ, and λ > 1 such that ‖Txf |µ ≥ λ for all x ∈ U ′ \A.
For all α ∈ A, choose three disks ∆α, ∆′

α and ∆′′
α centered at α, with radii rα, r′α,

r′′α, with r′′α < r′α < rα, so that

∆f(α) b f(∆α), ∆′
f(α) b f(∆′

α), ∆′′
f(α) b f(∆′′

α),

and so that the ∆α are disjoint.
We will now construct a ramified covering (which is usually not Galois) Y of

U , which is ramified only above A∗. Let β be a repelling periodic point of f which
does not belong to A, with period k. Denote by Y the set of sequences x = (xn)n∈N
in U such that f(xn) = xn−1 for n ≥ 1 and such that there exists r with xkp+r → β
as p →∞. We equip Y with the topology of uniform convergence.

Let x ∈ Y . There exists an n such that xn /∈ A∗. Then, for all p ≥ n,
we have xp /∈ A∗, since f(A∗) ⊂ A∗. If we set ρ = d(xn, A∗), for all q ≥ 0,
the map f◦q has a continuous inverse branch σn+q defined on D(xn, ρ), such that
σq(xn) = xn+q. Setting σn−q(z) = f◦q(z), we obtain a section σ of πn : (zν) → zn,
and so a neighborhood x homeomorphic to the disk D(xn, ρ), and equipped with
a chart in this disk. These charts give Y the structure of a manifold. The map
π : Y \ π−1(A∗) → U \ A∗ is a covering. For α ∈ A∗, the preimage of ∆α is the
union of analytic disks with ramification degree dividing ν(α) (but usually not the
same for two different disks, this is why the covering is usually not Galois).

The map f̃ : x → (f(xn)) = (f(x0), x0, x1, . . .) is an isomorphism between
Y ′ = π−1(U) and Y : its inverse is (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .).

We equip Y with the following charts. On π−1(U \⋃
∆
′′
α), we take the charts

induced by π. If α̃ ∈ π−1(α) with α ∈ A, the connected component ∆α̃ of π−1(∆α)
containing α̃ projects to ∆α by a map which is ramified at α̃ with degree dα̃. We
equip ∆α̃ with a coordinate w = wα̃(x) such that

(wα̃(x)) = π(x)− α = x0 − α.

These charts define an atlas A.
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We will now equip Y with a Riemannian metric µ̃. On Y \ π−1(A∗), consider
the Riemannian metric π∗(µ). For each α ∈ A, denote by `(α) the smallest i such
that f◦i(α) is periodic.

On each cycle, we can define a family (να) of positive numbers such that
|f ′(α)|νf(α)/να > 1, since in A, every cycle is repelling. We define µ̂α̃ for peri-
odic α by ν

1/dα̃
α |dwα̃|. We then have ‖Tα̃f̃‖µ̂ > 1 for every α̃ above a periodic

point. We can then, by induction on `(α), define for all α ∈ A a να so that, defin-
ing µ̂α̃ by the same formula, we still have ‖Tα̃f̃‖µ̂ > 1: it is enough to take να

sufficiently small.
We can then find for each α a disk ∆′′′

α ⊂ ∆′′
α so that ‖Tα̃f̃‖µ̂ > 1 for x ∈ ∆′′′

α̃ =
∆α̃ ∩ δ′′′α , α̃ ∈ π−1(α). we set µ̃ = inf(π∗µ,M∗µ̂), where M∗ is chosen sufficiently
large so that π∗µ < M∗µ̂ on ∂∆′′′

α̃ for all α̃ (it is sufficient to check a finite number
of α̃, since two point with the same degree of ramification above the same point α
give the same thing).

Proposition 5.3. The metric µ̃ has the following properties.
a) It has continuous coefficients.
b) There exists λ > 1 such that ‖Tx̃f̃‖µ̃ ≥ λ for all x̃ ∈ Y ′.
c) Every point in U \ ⋃

∆
′′
α has a connected neighborhood above which the

change of charts are isometries. For each α ∈ A, we can find a finite
number α̃1, . . . , α̃r of component of π−1(∆α) such that each component of
π−1(∆α) is isometric above ∆α to one of the ∆α̃i .

All this follows from the construction of µ̃.

5. The sub-hyperbolic case.

Theorem 5.3. If f is a sub-hyperbolic polynomial, Jf has Lebesgue measure
zero.

We only explain the modifications with respect to the proofs of theorems 5.1
and 5.2.

Let V ⊂ Y be an open set and g : V → Y be a C-analytic mapping such that
V and g(V ) are contained in the domain of the charts of A. Denote by distV (g)
the distortion of the expression of g in the charts. If there is a choice of charts for
V or g(V ), we take the supremum of distortions in different expressions.

Let x ∈ Y and r > 0. If there exists a chart w : Ω → C of A such that
B(w(x), r) ⊂ w(Ω), we set B(x, r) = w−1(B(w(x), r). If there is a choice, we
choose the chart induced by π (or we take the intersection).

Let Λ ⊂ U be a compact set and V be an open subset of U contained in one of
the ∆α. Set

d̃V (Λ) = inf
α̃∈π−1(α)

dwα̃(π−1(V ))

(
wα̃(π−1(Λ))

)
.

We choose b0 > 0 such that, for all x ∈ Y ′ = π−1(U ′), B(x, b0) is defined and for
all n ≥ 0, f−n(B(x, b0)) is contained in the domain of a chart of A. With those
conventions, the proof is analogous.





CHAPTER 6

Constructing a polynomial with a given tree.

This chapter uses ideas and techniques which revealed their power in the work
of Thurston (see [DH3]). The iteration leading to the Φn’s is an early example of
the iteration in Teichmüller sapce Thurston uses.

Notations and introduction.

Let f : C → C be a polynomial of degree d such that every critical point is
preperiodic. Denote by C the set of critical points of f , A the finite set

⋃
n≥0 f◦n(C),

J and K the Julia set and filled-in Julia set, H the Hubbard tree, i.e., the allowable
hull of A in K. For α ∈ A, denote by ν(α) the number of branches f H at α, τ(α)
the ramification degree of f at α (the multiplicity of α as a critical point is τ(α)−1;
we have τ(α) = 1 if α ∈ A \ C). The points of A are called marked points, adding
the branching points of H, we obtain the remarkable points.

We will remember on H the structure given by the following data:
• its topology
• the cyclic order of the branches at the branching points (which determines

the embedding of H in C up to isotopy),
• the set A of marked points,
• the dynamics on A, i.e., f|A : A → A,
• the function τ : A → N (if f has degree 2, we have τ(α) = 2 if α is the

critical point and τ(α) = 1 otherwise).
Those data are the primary structure.

We will show that a polynomial of the form z 7→ z2 + c, such that 0 is preperi-
odic, is determined by its tree equipped with its primary structure.

The proof is done in two parts, the first one topological and combinatorial, the
second analytic. The second part can be performed as well in degree d arbitrary.
To extend the first part, one must define on the tree a complementary structure.
We then obtain the following result: a polynomial such that every critical point
is preperiodic is determined, up to affine conjugacy, by its tree, equipped with its
primary and complementary structures.

1. Combinatorial part.

1.1. The tree H1. We set H1 = f−1(H). This set is also the allowable hull
of A−1 = f−1(A) in Kf . The marked points of H1 are the points of A−1. A point
of H can be marked (or remarkable) in H1 without being marked (or remarkable)
in H. We define in the same way a primary structure on H1 (we have τ(α) = 0 if
α ∈ A1 \ A). If we denote by ν1(α) the number of branches of H1 at α, we have,
for all α ∈ A:

ν(α) ≤ ν1(α) = τ(α) · ν(f(α)).

45



46 6. CONSTRUCTING A POLYNOMIAL WITH A GIVEN TREE.

For the tree H of a quadratic polynomial with its primary structure, it is easy to
construct H1 with its primary structure, together with the embedding H → H1,
from H with its primary structure.

If T is a tree and F ⊂ T is a finite set, the set obtained by cutting T at F is
the disjoint union of the closures of the connected components of T \ F .

Assume f is of degree 2, let us say z 7→ z2 + c. Let a0 = 0 be the critical point,
and ai = f◦i(a0). We have ν(a1) = 1, and so ν1(a0) = 2. Cutting H1 at {a0}, we
obtain H1

+ and H1
− with, let us say, a1 ∈ H1

+. The map f induces a homeomorphism
from each of the H1

± to H, denote by bi
± the preimage of ai in H1

±. We obtain a
homeomorphism bi

± 7→ (ai,±) from H1 to H × {+,−}/(a1, +) ∼ (a1,−). The
natural injection ι : A → H1 is given by ι(ai) = bi+1

s with s = + if ai is on the
same side of a0 as a1 in H and s = − otherwise (in H1, we have b1

+ = b1
− = a0).

This determines ι : H → H1 up to homotopy fixing the remarkable points. The
point a0 is not a branching point in H1, so every branching point is in H1

+ \{b1} or
H1
− \ {b1} and the cyclic order of the branches is given by the one of the branches

of H at the corresponding point.

a2

a1

a0=a4

a3

a2

a1

a0=a4

a3

b2−

b3−

b3+ b2+

b0+

b1+

b1−

b0−

1.2. The complementary structure. This subsection is relevant only for
d ≥ 3. We will add two complementary pieces of data to the primary structure.

Let α ∈ A. We have α ∈
◦

Kf if and only if there exist n, k such that f◦n+k(α) =
f◦n(α) and τ(f◦n(α)) ≥ 2. This can therefore be read on the primary structure of
H.

If α ∈
◦

Kf , the branches of H are, in a neighborhood of α, internal rays of the

component Uα of
◦

Kf containing α. The first complementary data is the data, for
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each α ∈ C∩
◦

Kf , of the internal angles between the branches of H at α; counted in
turns, those are elements of T = R/Z. Those angles determine the angles between

the branches at every point in A∩
◦

Kf . Indeed, let α ∈ A∩
◦

Kf , and n0 be the
smallest n ≥ 0 such that f◦n(α) ∈ C; if ξ and ξ′ are two branches at α, their angle
is equal to the one of f◦n0(ξ) and f◦n0(ξ′) at f◦n0(α). Those angles are rational,
with a denominator that can be computed given the primary structure. The first
data therefore contains a finite information.

For α ∈ A, we call buds at α the τ(α) · ν(f(α)) − ν(α) branches of H1 at α
which are not branches of H. If τ(α) = 1, the way the buds are inserted in the
cyclic order of the branches of H at α is determined by the primary structure. If

α ∈ C∩
◦

Kf , this way is determined by the angles between the branches at α and
f(α).

The second complementary data is made of the way the buds at α are inserted
in the cyclic order of the branches of H for α ∈ C ∩ Jf .

1.3. Rebuilding H1 (degree d ≥ 3). Denote by H∗ the union of H and the
buds (represented by small arcs), and let

⊔

σ∈S

H∗
σ be the set obtained by cutting H∗

along C. For all σ ∈ S, set Cσ = H∗
σ ∩ C and denote by H1

0 the component of H1

cut along C that contains H∗
σ. The set H1 is the union of the H1

σ.

Lemma 6.1. The map f induces a homeomorphism from H1
σ to the component

H ′
σ of H cut along f(Cσ) that contains f(H∗

σ).

Proof. The map f is injective on H1
σ, thus is a homeomorphism from H1

σ to its
image which is compact. It therefore induces a homeomorphism from H1

σ \ Cσ to
a closed subset of H \ f(Cσ). Since it is open on H1

σ \ Cσ and since H1
σ \ Cσ is

connected, this closed set is a connected component, and the lemma follows.

We give now give the following description of H1: H1 is obtained by gluing to
H∗ the H ′

σ via the maps:

H∗

H∗
σ

i

=={{{{{{{{

f ÃÃB
BB

BB
BB

B

H ′
σ

The sets H∗, H∗
σ and H ′

σ are known once H, its primary structure, its complemen-
tary structure and f are known, up to homotopy fixing the remarkable points.

As a consequence, we get the following proposition.

Proposition 6.1. Let f and g be two polynomials of degree d ≥ 2, such that
every critical point is periodic or preperiodic. Let ϕ be a homeomorphism from Hf

to Hg, respecting the primary and complementary structures. Then there exists a
unique homeomorphism ϕ1 : H1

f → H1
g which coincides with ϕ on Af and such that

ϕ ◦ ϕ1 = ϕ ◦ f .
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Additional information. 1) We have ϕ1(Hf ) = Hg and the restriction of ϕ1

to Hf is homotopic to ϕ among the homeomorphisms which coincide with ϕ on the
remarkable points of Hf .

2) The map ϕ1 respects the primary structures and the angles at the points of

A1∩
◦
K.

Remark. 1) In general, we cannot have at the same time g ◦ ϕ1 = ϕ ◦ f and
ϕ1|Hf

= ϕ; an homotopy is required on one side or the other. We have chosen the
statement that will be useful for us.

2) The proposition is true in degree d = 2 without the hypothesis on the
complementary structures which is automatic since they do not give any additional
information; this follows form subsection 1.1.

1.4. Decorated trees. We will now transform the trees in Christmas trees.
Coming back to f , let (Ui) be the family of connected components of

◦
Kf , for

α ∈ A∩
◦

Kf , we will denote by Uα the component centered at α. Let (ζi) be the
family of C-analytic charts ζi : Ui

'→ D such that the expression of f in those charts
is ζi 7→ ζf∗(i) = ζri

i . For z ∈ Ui, we set ρ(z) = |ζi(z)|.
The decorated tree is the union of H and the disks Nα = {z ∈ Uα | ρ(z) ≤

1/2} for α ∈ A∩
◦

Kf (see figure 1).

x3

x0=x4

x1

x2

Figure 1. A decorated tree.

1.5. Construction of homeomorphisms.

Proposition 6.2. 1 Under the hypothesis of proposition 6.1, we can find two
homeomorphisms ψ0, ψ1 : C→ C such that:

a) ψ0(Hf ) = Hg and ψ0|Hf
is homotopic to ϕ among the homeomorphisms

Hf → Hg which coincide with ϕ on Af .

b) ψ0 induces a C-analytic isomorphism from
◦
N

f

α to
◦
N

g

ϕ(α) for α ∈ Af∩
◦

Kf .
c) g ◦ ψ1 = ψ0 ◦ f .

1Proposition 6.2 shows that if two postcritically finite polynomials have the same tree, then
they are Thurston equivalent (see [DH3] for a definition). Proposition 6.6 then shows that the
polynomials are affine conjugate, which is the uniqueness part of Thurston’s theorem. The proof
is in fact the similar.
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d) ψ1 is homotopic to ψ0 among the homeomorphisms C → C inducing a
homeomorphism Hf → Hg and coinciding with ψ0 on

⋃

α∈Af∩
◦

Kf

Nα ∪Af .

Proof.
α) Construction of ψ0. We can modify ϕ so that ρg(ϕ(z)) = ρf (z) for all

z ∈ Hf ∩ Nα, α ∈ Af∩
◦

Kf . On each branch Hf ∩ Nα, the expression of ϕ in
the charts ζf

α and ζg
ϕ(α) is of the form ζ 7→ λζ with the condition |λ| = 1, and the

condition of preserving the first complementary data implies that λ is the same λα

for the different branches issuing from a given α ∈ Af∩
◦

Kf . We can then define ϕ0

on each Nα by ζ 7→ λαζ. In this way, we obtain a diffeomorphism ϕ0 : f → g.
Let τf be an isomorphism from C \ D to C \ f , extending continuously to

C \ D, and define in a similar way τg. Since ϕ0 preserves the cyclic order at
the branching points, it follows that there exist a homeomorphism h : S1 → S1

such that ϕ0(τf (u)) = τg(h(u)) for all u ∈ S1. We can then extend ϕ0 to a
homeomorphism ψ0 : C→ C defined on C \ f by ψ0(τf (ru)) = τg(rh(u)).

β) Construction of ψ1 in a neighborhood of H1
f . On Hf , ψ1 is given by propo-

sition 6.1.
For each critical point α of f , let V f

α and W f
α be neighborhoods of α and f(α)

homeomorphic to D, such that f induces a covering of degree rf (α) from V f
α \ {α}

to W f
α \ {f(α)}. Set W g

α = ψ0(W f
α ) and let V g

α be a neighborhood of ϕ(α) such
that g induces a covering V g

α \ {ϕ(α)} → W g
α \ {ϕ(f(α))} of degree rg(ϕ(α)) =

rf (α). We can lift ψ0 : W f
α \ {f(α)} '→ W g

α \ {ϕ(f(α))} to a homeomorphism
ψα

1 : V f
α \ {α} → V g

α \ {ϕ(α)}, and thanks to the hypothesis that f preserves
the complementary datas, we can do it, in a unique way, by extending ψ1 already
defined on the branches of H1

f at α.
For each non critical point x ∈ H1

f , we can find neighborhoods V f
x , W f

x , V g
x ,

W g
x of x, f(x), ψ1(x), ψ0(f(x)) such that we have homeomorphisms

V f
x

f // W f
x

ψ0 // W g
x V g

x

goo ,

which allows us to define ψx
1 = g−1◦ψ0◦f : V f

x → V g
x . All those germs can be glued

(it is possible to invoke a lemma by Godement) to obtain a homeomorphism ψV
1

from a neighborhood V f of H1
f to a neighborhood V g of H1

g , such that g◦ψ1 = ψ0◦f .
γ) Extension of ψ1 to C. The maps f and g induce coverings of degree d (it is

the same because it is
∑

(r(α)− 1) + 1):

f : C \H1
f → C \Hf , g : C \H1

g → C \Hg.

Those four sets are homeomorphic to an annulus.
Let x ∈ V f \ H1

f . There exists a unique lift ψ∞1 : C \ H1
f → C \ H1

g of
ψ0 : C \ Hf → C \ Hg such that ψ∞1 (x) = ψV

1 (x). We can assume that V f is
connected and of the form f−1(W f ), where W f is a connected neighborhood of
Hf . Then, ψV

1 and ψ∞1 induce two lifts of ψ0 : W \Hf → W g \Hg, who coincide
at x, so on V f \H1

f . Then, ψV
1 and ψ∞1 can be glued to obtain a homeomorphism

ψ1 : C→ C.

For each α ∈ Af∩
◦

Kf , the expression of ψ0 on Nα in the charts ζf
α and ζg

α is
of the form ζ 7→ λαζ, with |λα| = 1, and the expression of ψ1 will be of the form
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ζ 7→ λ1
αζ with (λ1

α)rα = λf(α). But (except in the trivial case where f would be
monomial and Hf = {α}), there is at least a branch of Hf at α, on which ψ0 and
ψ1 coincide. So, we necessarily have λ1

a = λα. It follows that ψ1 coincide with ψ0

on f .
δ) Homotopy between ψ0 and ψ1. Let us consider again τf and τg which

have been used in (α). Let (ψt)t∈[0,1] be a homotopy between ψ0 and ψ1 among
homeomorphisms f → g which coincide with ψ0 on X = Af ∪

⋃
α

Nf
α . For all

t, there exists a unique homeomorphism ht : S1 → S1 such that ψt ◦ τf = τg ◦ ht,
which coincide with h0 = h on τ−1

f (X). We can extend this homotopy to C \ D
thanks to that following lemma. We pass from D to C \ D by inversion.

Lemma 6.2. Let ϕ0 and ϕ1 be two homeomorphisms D → D and (ht) be a
homotopy between ϕ0|S1 and ϕ1S1 . There exists a homotopy (ϕt) between ϕ0 and
ϕ1 inducing (ht) on the boundary.

Proof. Replacing ϕ1 by ϕ1 ◦ϕ−1
0 and ht by ht ◦h−1

0 , we may suppose that ϕ0 = Id.
Set h̃t(r · u) = r · ht(u) for r ∈ [0, 1]. Replacing ϕ1 by ϕ1 ◦ h̃, we go back to the
case where ht = Id for all t. We can then define ϕt by ϕt(x) = x if |x| ≥ t and
ϕt(x) = tϕ1(x/t) for |x| ≤ t. ¤

This concludes the proof of proposition 6.2.

Remark. ψ0 is not unique, but once ψ0 is chosen, then ψ1 is unique.

1.6. Adjustment at infinity. Choose R and R′ such that R > R′ > 1. Let
ζf
∞ : C \Kf → C \D be an isomorphism such that the expression of f in this chart

is ζ 7→ ζd, and set
Nf
∞ = {z ∈ C \Kf | R ≤ |ζf

∞(z)|}.
Define similarly ζg

∞ and Ng
∞, N ′f

∞ and N ′g
∞.

Proposition 6.3. In proposition 6.2, we can choose ψ0 so that ψ1 = ψ0 on
N∞, and so that ψ1 is homotopic to ψ0 among the homeomorphisms C→ C which
coincide with ψ0 on

Af ∩
⋃

α∈Af∩
◦

Kf ∪{∞}
Nα.

Proof. We can modify ψ0 on N ′f
∞ so that its expression on Nf

∞ becomes ζ 7→ λζ
in the charts ζf

∞, ζg
∞, with |λ| = 1. The expression of ψ1 on Nf

∞ then becomes
ζ 7→ λ1ζ, where λd

1 = λ.
Let us choose, in f , a point x which is a remarkable point of Hf or a point

of one of the ∂Nα. Then, we have ψ0(x) = ψ1(x), and we even have ψt(x) = ψ0(x)
for all t ∈ [0, 1]. Let x′ ∈ Hf be another remarkable point, y ∈ Nf

∞ and η be a
path from x to y, homotopic in C\ψ0(x′) to the path obtained by putting together
ψ0(η) with orientation reversed and ψ1(η). Following the argument of ζ along η̃,
we obtain a θ ∈ R such that λ1 = λ0e

2iπθ.

Lemma 6.3. a) We have ψ1 = ψ0 on Nf
∞ if θ ∈ Z.

b) In order to be able to modify the homotopy from ψ0 to ψ1 so that ψt = ψ0

for all t, it is necessary and sufficient that θ = 0.
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Proof. Part a) is trivial. Part b) follows from the description of the π0 of the
group of homeomorphisms of a closed ring inducing the identity on the boundary.
¤

Let us now vary ψ0 with respect to a parameter s so that λ0(s) = λ0(0)e2iπs.
We then have θ(s) = θ(0) + (1/d− 1)s. For s = d

d−1θ(0), we have θ(s) = 0 and ψ0

satisfies the required properties.

2. Analytic part.

2.1. Preliminaries on quasiconformal mappings. If U is an open subset
of Rn, the Sobolev space H1(U) is the space of functions of L2(U) whose first
derivatives in the sense of distributions are in L2(U). We denote by H1

loc(U) the
space of functions such that ∀x ∈ U , ∃V neighborhood of x, f|V ∈ H1(V ), and
CH1

loc(U) the space C(U) ∩ H1
loc(U). We denote by CH1

loc(U,Rp) the space of
functions f : U → Rp whose coordinates are in CH1

loc(U). If U is an open subset
of C, we define CH1

loc(U,C) by forgetting the complex structure and identifying C
to R2.

Let U and V be two open subsets of C and f : U → V be a map. We say that
f is quasiconformal if f ∈ CH1

loc(U,C) and if there exists an m < 1 such that for
almost every x ∈ U , we have: ∣∣∣∣

∂f

∂z̄
(x)

∣∣∣∣ ≤ m

∣∣∣∣
∂f

∂z
(x)

∣∣∣∣ .

This inequality means that Txf (which is defined for almost every x) is ori-
entation preserving and transforms a circle into an ellipse whose ratio of axes is
bounded by M = (1 + m)/(1−m). The smallest such M is the dilatation ratio of
f .

If f is a quasiconformal homeomorphism from U to V , f−1 is quasiconformal
with the same dilatation ratio, and we have ‖Df‖2 ≤ MJac(f), hence

‖Df‖22 = 2
∫

U

∣∣∣∣
∂f

∂z

∣∣∣∣
2

+
∣∣∣∣
∂f

∂z̄

∣∣∣∣
2

≤ Marea(V ).

Let us conclude with two remarks that will be useful.
1) Let (fn) be a sequence in CH1(U), U ⊂ R open. If fn → f uniformly and

‖Dfn‖2 ≤ k (independently of n), then f ∈ CH1(U) and ‖Df‖2 ≤ k. Indeed,

‖Df‖2 ≤ k ⇐⇒ ∀(u, v) ∈ C∞comp(U) such that ‖u‖22 + ‖v‖22 ≤ 1,
∣∣∣∣
∫

U

f

(
∂u

∂x
+

∂v

∂y

)∣∣∣∣ ≤ k.

2) If f ∈ CH1(U ;C) with U ⊂ C and ∂f/∂z̄ = 0 almost everywhere, f is
holomorphic.

2.2. Construction of Φ0 and Φ1.

Proposition 6.4. Under the hypothesis of proposition 6.1, we can find two
homeomorphisms Φ0 and Φ1 : C→ C such that

1) Φ0 is a diffeomorphism of class C1.

2) Φ0 induces a C-analytic isomorphism from
◦

Nf
α to

◦
Ng

ϕ(α) for α ∈ Af∩
◦

Kf

∪{∞}.
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3) g ◦ Φ1 = Φ0 ◦ f .
4) Φ1 is quasiconformal
5) Φ1 is homotopic to Φ0 among the homeomorphisms C → C coinciding

with Φ0 on
Nf = Af ∪

⋃

α∈Af∩
◦

Kf ∪{∞}
Nf

α .

Regarding proposition 6.3, we lost ψ0(Hf ) = Hg but we gained Φ0 ∈ C1.
Proof. Let ψ0 and ψ1 : C → C be homeomorphisms satisfying the conditions
of proposition 6.2 and 6.3, Φ0 a diffeomorphism of class C1 of C homotopic to ψ0

among the homeomorphisms coinciding with ψ0 on Nf and η0 a homotopy. The
maps f : C \ A1

f → C \ Af and g : C \ A1
g → C \ Ag are coverings. The map

ψ1 : C \ A1
f → C \ A1

g is a lift of the map ψ0 : C \ Af → C \ Ag; we can therefore
lift η0 to a homotopy η1 from ψ1 to a diffeomorphism Φ1 : C \A1

f → C \A1
g, which

extends to a homeomorphism C→ C.
The diffeomorphism Φ0 is quasiconformal since C1 and holomorphic outside a

compact set. It follows from (3) that Φ1 is quasiconformal with the same dilatation
ratio. The homotopy η0 is constant on Nf , so η1 is constant on N1

f = f−1(Nf ).
We have the homotopies Φ0 ' ψ0 ' ψ1 ' Φ1 that are constant on Nf , and so a
homotopy h0 between Φ0 and Φ1 constant on Nf .

2.3. The sequence (Φn). Given Φ0, Φ1 and h0, we construct by induction
a sequence of homeomorphisms Φn : C → C coinciding with Φ0 on Nf , and a
homotopy hn between Φn and Φn+1. The homotopy hn is obtained by lifting hn−1

between Φn−1 and Φn : C\Af → C\Ag to the coverings C\A1
f and C\A1

g starting
from Φn: it determines Φn+1. We therefore have g ◦ Φn+1 = Φn ◦ f for all n, and
the homotopy hn is constant on Nn

f = f−n(Nf ).
In particular, Φn coincides with Φn+1 on Nn

f , and the sequence (Φn) is locally
stationary on the open set

⋃
Nn

f . This open set is contained in C \ Jf , since every

point of C \ Jf is attracted by a cycle of Af∩
◦

Kf or by ∞.

Proposition 6.5. The sequence (Φn) converges uniformly on C.

Proof. The polynomial g is sub-hyperbolic. Let Ω be an open neighborhood of Jg,
µ be an admissible Riemannian metric on Ω and λ > 1 such that f−1(Ω) ⊂ Ω and
‖Txg‖µ ≥ λ for all x ∈ g−1[Ω). Let n0 be such that C \Nn0

g ⊂ Ω. For all n ≥ n0,
set

ρn = sup
x∈C\Nn0

f

dµ(Φn(x), Φn+1(x))

(dµ being the length for µ of the shortest path between Φn(x) and Φn+1(x) in
Ω, in the class of the path given by hn). We have ρn+1 ≤ ρn/λ. It follows that
the sequence (Φn) uniformly converges for the distance defined by µ. Since it is
constant outside a compact contained in Ω and since the distance dµ defines the
same topology as the usual distance, (Φn) converges uniformly on C for the usual
distance.

2.4. Holomorphy of Φ. Denote by Φ the limit of the (Φn). It is a continuous
map. For each n, Φn is holomorphic on Nn

f . It follows that Φ is holomorphic on⋃
Nn

f = C \ Jf . We know that Jf and Jg have Lebesgue measure zero.
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Remark. Let J1 and J2 be two closed set of measure zero, Ψ : C → C be a
homeomorphism such that Ψ(J1) = J2 and Ψ holomorphic on C \ J1. This does
not imply that Ψ is holomorphic.

Counter example. Let u : R→ R be a increasing function which is constant
on each connected of the complement of a Cantor set of measure zero, but is however
not constant.2 Then, ψ : (x + iy) 7→ x + i(y + u(x)) provides a counter example.

Proposition 6.6. The map Φ is holomorphic.

Proof. 3 Φ0 et Φ1 are quasiconformal with dilatation ratio M . It follows that all
the Φn are quasiconformal with dilatation ratio M , since g ◦ Φn+1 = Φn ◦ f , with
f and g holomorphic.

We have
‖DΦn‖L2(C\Nn

f ) ≤ Marea(C \Nn
g ),

for all n. It follows, as mentioned at the end of subsection 2.1, that Φ is of class
CH1 on C \Nf . Since ∂ϕ/∂z̄ = 0 almost everywhere, the map Φ is holomorphic on
C \Nf . It is also holomorphic on C \ Jf , and thus on C.

Corollary 6.1. Φ is affine.

Indeed, Φ is proper with degree 1.

2.5. Conclusion.

Theorem 6.1. Under the hypothesis of proposition 6.1, f and g are conjugate
by an affine map.

Corollary 6.2. Let f : z 7→ z2 + c1 and g : z 7→ s2 + c2 be two polynomials of
degree 2. If there exists a homeomorphism from Hf to Hg preserving the primary
structure, then we have c1 = c2.

Corollary 6.3. Let c1 and c2 be two real numbers such that 0 is periodic with
the same period k for f : z 7→ z2 + c1 and g : z 7→ s2 + c2. Assume that the order-
ing induced by the one of R on {0, f(0), . . . , f◦k−1(0)} and {0, g(0), . . . , g◦k−1(0)}
coincide. Then c1 = c2.

This result was known under the name of conjecture of Métropolis-Stein-Stein.

Remark. We can give variants of the condition on the complementary datas. I
think that a possible variant would be to complete the tree by adjoining to A the
points of external arguments of the form p/(d1) (fixed points), or p/d (maybe one
needs all the

p

d(d− 1)
).

2Such a function is often called a ”devil’s staircase”.
3This is a proof, in this particular case, that a uniform limit of K-quasiconformal mappings

is K-quasiconformal.





CHAPTER 7

External arguments in Julia sets.

1. Reminder and introduction.

If K ⊂ C is a connected compact set which is full and locally connected, the
conformal representation ϕ−1

K : C \ Dr(K)
'→ C \ K which is tangent at ∞ to the

identity, has a continuous extension to C \Dr(K) and so we have a continuous map
γk : T → R/Z → ∂K that is surjective: the Carathéodory loop of K. For x ∈ ∂K,
the elements of γ−1

K (x) are called the external arguments of x.
Let f : C→ C be a monic polynomial of degree d ≥ 2 with every critical point

if preperiodic. Then Kf is a connected compact set, full and locally connected; and
the Carathéodory loop γf : T→ Jf satisfies the functional equation

f(γf (t)) = γf (d · t).
We will now explain how to determine the external arguments of some points

in Jf . We are particularly interested in the quadratic polynomials fc : z 7→ z2 + c,
because we will see that, in the case where 0 is strictly preperiodic for fc, the
external arguments of c in Kc are also (in a certain sense since we do not know that
M is locally connected) the external arguments of c in M . There is also a statement

about the points c such that 0 is periodic (a bit trickier of course since c ∈
◦

Kc and

c ∈ ◦
M : there is a game between the center and the root of the components of

◦
Kc

and
◦

M).

2. Access.

Let K be a connected compact set which is full and locally connected, equipped
with a center for each component of

◦
K. Let H ⊂ K be a finite allowable tree, x

a point in H ∩ ∂K and ν the number of branches of H at x. We call access to x
(relatively to H) the ends at x of C \H, i.e., the elements of

lim
U neighborhood of x

π0(U \H).

In more concrete terms, let ∆ be a disk centered at x, containing no other remark-
able point of H, and let [x, y1]K , . . . , [x, yν ]K be the branches of H at x, stopped at
their first intersection with ∂∆. The accesses to x are the ν connected components
of

∆ \ ([x, y1]K ∪ . . . ∪ [x, yν ]K) .

Every external argument t of x determines an access to x: it is the component
where R(K, t) is located in a neighborhood of x.

Proposition 7.1. Every access to x corresponds to at least one external argu-
ment of x.

55
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Proof. For r > r(K), let us denote by γr the loop t 7→ ϕ−1
K (re2iπt). Let V be

an access to x contained in between two branches [x, yi]K and [x, yi+1]K . We have
C ∩ C \K 6= ∅, since otherwise, [x, yi]K and [x, yi+1]K would be in the closure of

the same component of
◦
K. This property is still true if we replace ∆ by a smaller

disk. It follows that we can find a decreasing sequence rn tending to r(K), and for
all n a tn such that γrn(tn) → x. Since T is compact, extracting a subsequence if
necessary, we can assume that the sequence (tn) has a limit θ. Since (r, t) → γr(t) is
continuous on [r(K), +∞[×T, we have γr(K)(θ) = x and θ is an external argument
of x. Let us show that the access to x defined by θ is V . Let ρ be the radius of
∆. If n is large enough, tn is close enough to θ so that |γr(tn) − γr(t′)| < ρ/2 for
all r ∈ [r(K), r0] and all t′ between tn and θ, and moreover, |γrn(tn) − x| < ρ/2.
This implies that γrn

(θ) is in the same component of ∆ \ ([x, yi]K ∪ [x, yi+1]K as
γrn

(tn), thus in V .

3. Extended tree.

We set β = γf (0). It is a fixed point, repelling since it belongs to Jf and
f is sub-hyperbolic. For i ∈ Z/(d), we set βi = γ(i/d). One can show that
f−1(β) = {βi}i∈Z/(d) (exercise).

We call extended tree the allowable hull Ĥ of Â = A ∪⋃{βi}i∈Z/(d). This tree
is equipped with its primary structure defined by its topology, the cyclic order of
the branches at the branching points, the dynamics on the points of Â (marked
points) together with the ramification degree at the points of Â.

In degree 2, we will see that we can reconstruct Ĥ given H.

Lemma 7.1. If d = 2, the point β has no other external argument than 0.

Proof. We can assume f of the form z 7→ z2 + c. Then, β1 = −β and we have
β1 6= β, since otherwise we would have β = 0, so 0 fixed point, c = 0 and β = 1, and
so 1 = 0. Let t be another external argument of β. Conjugating if necessary, we can
assume that t ∈]0, 1/2[ which we lift to R. Let k be such that 2kt < 1/2 < 2k+1t.
We have: 0 < 2kt < 1/2 < 2k+1t < 1/2 + 2kt < 1. The external rays R(Kf , 0) and
R(Kf , 2k+1t) land at β, whereas the rays R(Kf , 1/2) and R(Kf , 1/2+2kt) land at
β1. Then, R(Kf , 0)∪R(Kf , 2k+1t) and R(Kf , 1/2)∪R(Kf , 1/2+2kt) are disjoint
curves, which is not compatible with their asymptotes.

Corollary 7.1. β is an extremity of Ĥ.

Remark. Lemma 7.1 and its corollary do not extend to d > 2. Fig. 1 shows the
filled-in Julia set of z 7→ z3 + 3

2z. The external rays of argument 0 and 1/2 both
land at the same point.

Let us now assume that d = 2, f is of the form z 7→ z2 + c, and write Ĥ+ ∪ Ĥ−
with Ĥ+ ∩ Ĥ− = {0} and c = f(0) ∈ Ĥ+. Denote by α the other fixed point.

Lemma 7.2. We have β ∈ Ĥ− and α ∈ Ĥ+.

Proof. a) β ∈ Ĥ−. Assume first that 0 is strictly preperiodic, so
◦

Kf= ∅ and c ∈ Jf .
Let θ be an external argument of c. Then, R(Kf , θ/2) and R(Kf , θ/2 + 1/2) both
land at 0, because it is the only point in f−(c). The curves R(Kf , 0) ∪ [β, c]Kf

∪
R(Kf , θ) and R(Kf , θ/2)∪R(Kf , θ/2+1/2) must intersect because of the relative
position of their asymptotes. They can only cut at 0, and so 0 ∈ [β, c]Kf

.
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Figure 1. The filled-in Julia set of z 7→ z3 + 3
2z and the two rays

R(Kf , 0) and R(Kf , 1/2).

If 0 is periodic with c 6= 0, then 0 and c are in
◦

Kf . Denote by U0 and Uc the

connected components of
◦

Kf containing respectively 0 and c. Let y be a point of
∂Uc which does not belong to Ĥ and θ an external argument of y. The landing
point y′ and y′′ of R(Kf , θ/2) and R(Kf , θ/2 + 1/2) are the preimages of y, they
belong to ∂U0 \ Ĥ. The curves

R(Kf , θ) ∪ [y, β]Kf
∪R(Kf , 0) and R(Kf , θ/2) ∪ [y′, y′′]Kf

∪R(Kf , θ/2 + 1/2)

must intersect because of the relative position of their asymptotes. They can only
intersect at 0, and so 0 ∈ [β, y]Kf

and 0 ∈ [β, c]Kf
.

In the case c = 0 where α = 0, β = 1. One must set Ĥ+ = [−1, 0] and
Ĥ− = [0, 1]. This case is then trivial.

b) Let us define π+ : Ĥ → Ĥ+ by π+(x) = x for x ∈ Ĥ+ and 0 for x ∈ Ĥ−.
The map f ◦ π+ : Ĥ+ → Ĥ+ has a fixed point by Lefschetz’s theorem. If c 6= 0, it
is not 0, and so it is a fixed point of f , which is not β. Thus, it is α and α ∈ Ĥ+.

Let us now explain how to reconstruct Ĥ, knowing H. We first reconstruct
H1 = f−1(H) by gluing two copies H1

+ and H1
− of H at their point c, as indicated

in chapter 6, section 1.1. The map f induces an injection [β, 0]Kf
→ [β, c]Kf

;
denote by g the inverse map [β, c]Kf

→ [β, 0]Kf
and set zi = g◦i(c), so that z1 = 0,

zi ∈ [β, 0]Kf
for i ≥ 1. As long as zi ∈ H, the point zi+1 is the preimage of
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y′′

y′

y

zi in H1
−, so we know its combinatorial position. In this way, we can determine

i∗ = sup{i | zi ∈ H}, the combinatorial position of zi in H for i ≤ i∗, and if
i∗ < ∞, the position of zi+1 in H1. We have i∗ = ∞ if and only if β ∈ H, i.e.,
if there exists a fixed point in H+, and in this case, Ĥ = H. Otherwise, we have
a homeomorphism between Ĥ and the allowable hull in H1 of H ∪ {zi∗+1,−zi∗−1}
which coincides with the identity on H, maps β to zi∗+1 and β1 = −β to −zi∗−1.
This homeomorphism is compatible with the cyclic ordering of the branches at the
branching points.

4. Computation of external arguments.

Let f be a monic polynomial of degree d ≥ 2, such that every critical point
is preperiodic, X ⊂ C a finite set such that f(X) ⊂ X, containing all the critical
points and the (βi)i∈Z/(d), and T the allowable hull of X in Kf (for example X = Â,
T = Ĥ). We equip T with its primary structure: topology, dynamics on marked
points (points of X), cyclic order at the branching points and ramification degree
at the marked points.

The dynamics of the branching points is determined by the dynamics of the
marked points of X, we can therefore add them to X. The dynamics on the branches
is also known: if ξ is the germ at x of [x, y]T , with ]x, y[∩X = ∅, the branch f(ξ)
is the germ at f(x) of [f(x), f(y)]T .

For x ∈ X, set xn = f◦n(x) and denote by ν(x) the number of branches of T
at x. We have x ∈ Jf if and only if the ramification degree r(xn) is 1 for all xn in
the cycle where x ends. We will explain how to determine the external arguments
of x in Kf in that case.

If x ∈ Jf , set
ν̃(x) =

∏

0≤i<n

r(xi) · ν(xn),

with n sufficiently large for xn to be periodic. We can define a tree T̃ by adding to
T , at each point xi, ν̃(xi) − ν(xi) buds, with a cyclic order between branches and
buds compatible with the dynamics.

The tree T̃ can be realized as a subset of f−1(T ), and, at each point x ∈ X,
there are ν̃(x) branches of T̃ and ν̃(x) accesses to x relatively to T̃ . The dynamics
on the accesses at points of X is determined by the datas.
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For each i ∈ Z/(d), denote by wi the access to βi corresponding to the external
argument i/d (if d = 2, it is the unique access to βi; if d > 2, it is a supplementary
data that must be known to do the computation). Set u(wi) = i ∈ {0, . . . , d − 1}
and u(ξ) = i if ξ is between wi and wi+1 turning counterclockwise around T̃ .

Theorem 7.1. Let x be a point of X, θ be an external argument in Kf and ξ

the access to x relatively to T̃ corresponding to θ. Denote by ξn the image of ξ by
f◦n−1 (so that ξ1 = ξ). We then have

θ =
∞∑

n=1

u(ξn)
dn

.

In other words, the (ξn) are the digits after the ”decimal” point of the devel-
opment of θ in basis d.
Proof. It is immediate for n = 1. The access f◦n(ξ) is the access to f◦n(x)
corresponding to dnθ, its first digit is the n-th digit of θ.

ξ=ξ1
ξ2

ξ5

ξ6

ξ4=ξ7

a4=a5

a0

a3

a2
x=a1

β′

β

ξ3

a0

a4=a5

a1a2

a3

H

u(ξ1) = 0, u(ξ2) = 0, u(ξ3) = 1, u(ξ4) = 1, u(ξ5) = 0, u(ξ6) = 0, u(ξ7) = 1

θ =
∑ u(ξn)

2n
= .001100 =

1
8

(
1 +

4
7

)
=

11
56

.

Corollary 7.2. Every access to x relatively to T̃ corresponds to an external
argument of x and only one.

Corollary 7.3. Every point x of X has a finite number ν̃(x) of external argu-
ments. Those are rational numbers, with denominator coprime with d if and only
if x is periodic.





CHAPTER 8

External arguments in M of Misurewicz points.

1. Conformal representation of C \M .

1.1. Potential for Julia sets. Let f : C → C be a monic polynomial of
degree d ≥ 2. We have seen (Chapter 3 proposition 3.2) that if Kf is connected,
there exists a unique isomorphism ϕf : C \Kf → C \ D tangent to the identity at
∞ (i.e., such that ϕ(z)/z → 1), and which conjugates f to f0 : z 7→ zd.

We set Gf (z) = log |ϕf (z)|. The function G = Gf : C \ Kf → R+ has the
following properties:

1) G is harmonic.
2) G(z) = log |z|+O(1) as |z| → ∞.
3) G(z) → 0 as d(z, Kf ) → 0.
4) G(f(z)) = d ·G(z).

Properties 1), 2) and 3), or 2) and 4) are sufficient to characterize G. One can
even replace 2) by 2’): G(z)/ log |z| → 1 as |z| → ∞.

In the general case (Kf not necessarily connected), there exists a C-analytic
isomorphism ϕf from a neighborhood V of ∞ to a neighborhood V0 of ∞, tangent
to the identity at ∞, such that f(V ) ⊂ V , f0(V0) ⊂ V0, f0 ◦ ϕf = ϕf ◦ f . For
example, if f = z 7→ zd + ad−1z

d−1 + . . . + a0, one can take V = C \ DR∗ , where
R∗ = 1 + |ad−1|+ . . . + |a0|, and define ϕf by

ϕf (z) = z ·
∞∏

n=1

(
1 +

ad−1

zn
+ . . .

a0

zd
n

)1/dn+1

where zn = f◦n(z), the fractional exponent being determined by observing that∣∣∣∣
ad−1

zn
+ . . .

a0

zd
n

∣∣∣∣ < 1.

We prefer to shrink V so that V0 is of the form C \DR∗0 . Then, f induces a proper
holomorphic map of degree d from V to f(V ); in particular, V = f−1(f(V )).

The germ ϕf at ∞ is uniquely determined. One can define Gf : C \Kf → R+

by Gf (z) = log |ϕf (z)| for z ∈ V , and in the general case, z ∈ C \Kf by Gf (z) =
G(f◦n(z))/dn where n is sufficiently large so that f◦n(z) ∈ V (the result does not
depend on the choice of n). The function Gf still has properties 1), 2), 3) and 4)
stated above. Properties 2) and 4) are sufficient to characterize Gf , because they
imply

Gf (z) = lim
n→∞

1
dn

log |f◦n(z)| .
It is still true that Gf is characterize by 1), 2) and 3), but this is less obvious.

Denote by Pd the set of monic polynomials of degree d (that can be identified
with Cd), and for all f ∈ Pd, extend Gf to C by Gf (z) = 0 is z ∈ Kf .

61
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Proposition 8.1. a) The set K of pairs (f, z) such that z ∈ Kf is closed in
Pd × C.

b) The map (f, z) 7→ Gf (z) is a continuous function Pd × C→ R+.

Proof. For f : z 7→ zd + ad−1z
d−1 + . . . + a0, set

R∗(f) = 1 + |ad−1|+ . . . + |a0|, R∗0(f) = R∗(f)d/(d−1).

Set V1 = {(f, z) | R∗(f) < |z|} and V0 = {(f, z) | R∗0(f) < |z|}; define Φ : V1 →
Pd × C by Φ(f, z) = (f, ϕf (z)), F : Pd × C → Pd × C by (f, z) 7→ (f, f(z)), and
F0 by (f, z) 7→ (f, zd). One can check that Φ induces an isomorphism between an
open subset V of V1 and V0.

We have Pd × C \ K =
⋃

F−n(V1), and so a).
The function (f, z) 7→ Gf (z) is continuous on Pd×C\K, because it is continuous

on V1 where it is given by a series which is locally absolutely convergent, and on
each F−n(V1), it is given by Gf (z) = Gf (f◦n(z))/dn. It remains to show that, for
all ε > 0, Wε = {(f, z) | Gf (z) < ε} is a neighborhood of K. It is enough to show
that for every open set Λ relatively compact in Pd, the set Wε,λ = Wε ∩ Λ × C is
open in Λ× C. Set

R∗0(Λ) = sup
f∈Λ

R∗0(f),

and let N be such that dNε > R∗0(Λ). Then,

Λ× C \Wε,Λ = F−N (Λ× C \WdN ε,Λ) = F−N
(
Φ−1

({(f, z) | dNε ≤ |z|})) .

This is a closed set.

1.2. Critical point of Gf .

Proposition 8.2. The critical points of Gf : C \ Kf → R+ are the points
which are preimages of the critical points of f in C \Kf .

Proof. If ϕf : V → V0 is an isomorphism, Gf = log |ϕf | has no critical point in V .
The formula G(z) = Gf (f(z))/d shows that z is a critical point of Gf if and only
if z is a critical point of f or f(z) is a critical point of Gf .

Let z ∈ C \Kf and set zn = f◦n(z). For n large enough, zn ∈ V , so zn is not
a critical point of Gf . It follows that z is a critical point of Gf if and only if one of
the zn is a critical point of f .

Corollary 8.1. If all the critical points of f are in Kf , for all h > 0, the set
G−1

f (h) is homeomorphic to S1 and the set of points z ∈ C such that Gf (z) ≤ h is
homeomorphic to a closed disk.

This gives another proof that in this case Kf is connected. Figure 1 shows
some level curves G−1

f (h) for f : z 7→ z2 − 1.

Corollary 8.2. Let h0 be the maximum of Gf (α) for α critical point of f .
Then, for all h > h0, the set G−1

f (h) is homeomorphic to S1 and {z ∈ C | Gf (z) ≤
h} is homeomorphic to D. The set Lf = {z | Gf (z) ≤ h0} is a connected compact
set. The map ϕf extends to an isomorphism from C \ Lf to C \ DR with R = eh0 .

Figure 2 shows some level curves G−1
f (h) for a quadratic polynomial with dis-

connected Julia set.
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Figure 1. Some level curves G−1
f (h) for f : z 7→ z2 − 1.

Figure 2. Some level curves G−1
f (h) for a quadratic polynomial

with disconnected Julia set.

For z ∈ C \ Lf , we define the external argument argKf
(z) = argLf

(z) =
arg ϕf (z). If 0 < Gf (z) ≤ h0, and if z is not a critical point of Gf , we can define
the external ray of f through z as the orthogonal trajectory to the level curves
of Gf . This ray, extended on the side of increasing Gf , can go outside Lf , which
allows us to define argKf

(z), or it can end on a critical point of Gf . A critical point
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of Gf is a saddle if it has only one critical point, simple, in its forward orbit. In the
general case, it is a “monkey saddle” with r rays going up and r rays going down, r
being the product of ramification degrees at the critical points in the forward orbit
of z. There is a countable family of R-analytic curves on which we cannot define
the function “external argument” (see Figure 3).

Figure 3. The countable family of R-analytic curves on which we
cannot define the function “external argument”.

1.3. The function Φ. Let us now consider the family of quadratic polynomi-
als fc : z 7→ z2 + c. We will write ϕc for ϕfc , and so on. . .

For c ∈ C \M , we have h0(c) = Gc(0) > 0 and Gc(c) = 2Gc(0) > h0(c). We
can therefore set

Φ(c) = ϕc(c).

Theorem 8.1. We define in this way an isomorphism Φ : C \M → C \ D.

Proof. For c ∈ C \M , we have log |Φ(c)| = Gc(c) > 0, so Φ(c) ∈ C \ D. The map
Φ is holomorphic. Indeed,

L = {(c, z) | z ∈ Lc} = {(c, z) | Gc(z) ≤ Gc(0)}
is closed, and, on C2 \ L, the map (c, z) 7→ ϕc(z) which is a determination of
(ϕc(f◦nc (z)))1/2n

, is holomorphic.
We can write:

Φ(c)
c

=
(
1 +

c

c2

)1/2

·
(

1 +
c

(c2 + c)2

)1/4

· · ·
(

1 +
c

(f◦n(c))2

)1/2n+1

· · ·
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This infinite product converges uniformly for |c| ≥ 4 and all the factors tend to 1
as c → +∞. It follows that Φ(c)/c → 1, as c →∞. We can therefore extend Φ to
a holomorphic map C \M → C \ D, where C = C ∪ {∞} is the Riemann sphere,
by setting Φ(∞) = ∞. This extension of Φ is proper: indeed, if c → c0 ∈ ∂M ,
Gc(c) → Gc0(c0) = 0 and Φ(c) → ∂D.

As a proper holomorphic map, it has a degree. Since Φ−1(∞) = {∞} with
multiplicity 1, this degree is 1 and Φ is an isomorphism C \M → C \ D.

Corollary 8.3. a) The set M is connected.
b) Its capacity is 1.

Corollary 8.4. For all c ∈ C \M , we have:
a) GM (c) = Gc(c).
b) argM (c) = argKc

(c).

Theorem 8.2 below asserts that in some way, formula b) of corollary 8.4 extends
to some points in the boundary of M .

2. External rays for Julia sets.

2.1. Possible behaviors. Let f : C → C be a monic polynomial. As we
follow an external ray R(Kf , θ) of Kf in the direction of decreasing Gf , this ray
may either bifurcate on a critical point of Gf , or extend until Gf → 0, i.e., until it
tends to Kf .

In that case, it can either tend to a point of Kf – we say that it lands at this
point – or it may have an accumulation set in Kf which is not reduced to a point
– we will say that it oscillates.

Figure 4 shows two possible behaviors of external rays for a cubic polynomial
with disconnected Julia set. The rays R(Kf , 0) and R(Kf , 1/2) both land at α,
whereas the rays R(Kf ,−1/12) and R(Kf , 7/12) bifurcate on the critical point
ω. The set U = {z ∈ C | Gf (z) < 1} is a topological disk, whereas the set
{z ∈ C | Gf (z) < 1/3} has two connected components U ′ and U ′′.

If R(Kf , θ) does not bifurcate, we have f(R(Kf , θ)) = R(Kf , d · θ). This ray
lands at f(x) if R(Kf , θ) lands at x, oscillates if R(Kf , θ) oscillates. It may happen
that R(Kf , θ) bifurcates, but that R(Kf , dθ) does not oscillate.

Proposition 8.3. If f is sub-hyperbolic, every external ray of Kf either bifur-
cates or lands.

Proof. Let V be a neighborhood of Jf , µ be an admissible metric on V and λ > 1
such that ‖Txf‖µ ≥ λ for all x ∈ f−1(V ). Let h > 0 be such that {z | G(z) ≤
h} ⊂ V \

◦
Kf ; set Q = {z | h/d ≤ G(z) ≤ h} and denote by M the supremum of the

µ-lengths of external rays in between the levels h and h/d (the fact that there may
be critical points of Gf in Q does not forbid M to be finite). The µ-length of an
external ray below the level h is bounded from above by M/(λ− 1), which proves
the proposition.

2.2. External rays with rational arguments.

Proposition 8.4. Assume θ is rational. Then, if R(Kf , θ) does not bifurcate,
it lands at a point α ∈ Kf . This point is preperiodic (periodic if θ has denominator
coprime with d), repelling or rationally indifferent.
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R(Kf ,7/12)

R(Kf ,1/4)

G−1
f (1/3)

R(Kf ,1/2)

R(Kf ,−1/12)

R(Kf ,0)

G−1
f (1)

α

ω

U ′′

U
U ′

Figure 4. The rays R(Kf , 0) and R(Kf , 1/2) are defined both
land at α, whereas the rays R(Kf ,−1/2) and R(Kf , 7/2) bifurcate
on the critical point ω.

Remark. This is written without the hypotheses that f is hyperbolic or subhy-
perbolic. Here, f is any monic polynomial.

Proof. Let us first assume that θ has denominator coprime with d. If θ = p0/q,
then d is invertible modulo q, so there exists k such that dk ≡ 1 mod q, i.e., q
divides dk − 1. We can then write θ, maybe not in an irreducible way but with a
minimal k, in the form p/(dk − 1).1 We assume that R(Kf , θ) does not bifurcate;
it is therefore invariant by f◦k.

Let h0 be the infimum of the Gf (ω) for ω critical point of f in C \Kf (if there
are none, h0 = ∞) and h < h0. Let U = {z | 0 < G(z) < h} and U ′ = f−k(U) =
{z | 0 < G(z) < h/dk}. Denote by Ũ the universal covering of the connected
component of U intersecting R(Kf , θ) and R̃ a lift of R(Kf , θ) ∩ U in Ũ . There
exists a lift g : Ũ → Ũ of f−k such that g(R̃) ⊂ R̃. Let us choose x0 ∈ R(Kf , θ) and
define xn ∈ R(Kf , θ) by Gf (xn) = Gf (x0)/dkn, so that f◦k(xn+1) = xn. Let L be
the Poincaré length in U of [x0, x1]R(Kf ,θ). Since g is contracting for the Poincaré
metric dŨ on Ũ , we have dU (xn, xn+1) ≤ L for all n. Since xn tends to ∂K ⊂ ∂U ,
the Euclidean distance |xn+1 − xn| tends to 0. If a subsequence (xn)n∈I tends to a
point α ∈ ∂K, the sequence (xn−1) also tends to α, so f◦k(α) = α.

Let α1, . . . , αr be the points such that f◦k(α) = α, W1, . . . , Wr be neighbor-
hoods of α1, . . . , αr such that dU (Wi ∩ U,Wj ∩ U) > L for i 6= j. There exists an
n0 such that xn ∈ ⋃

Wi for n ≥ n0, since otherwise we could extract from (xn)

1For example with d = 2,
1

5
=

3

15
=

3

24 − 1
.
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a sequence tending to α /∈ {α1, . . . , αr}. But since dU (xn, xn+1) ≤ L, the xn for
n ≥ n0 all belong to the same Wi, let us say W1. Then xn → α1, because for all
extracted subsequence converging to a point α we have α = α1. Every y ∈ R(Kf , θ)
such that Gf (y) ≤ Gf (x0) belongs to a segment [xn(y), xn(y)+1] of R(Kf , θ), and we
have dU (y, xn(y)) ≤ L. It follows that |y− xn(y)| → 0, so y → α = α1 as G(y) → 0.
In other words, R(Kf , θ) lands at α, which is a periodic point of f , with period k′

dividing k.
The point α belongs to ∂K, so it is not attracting. As a consequence, it is

repelling or indifferent.

Lemma 8.1. If α is an indifferent periodic point, we have (f◦k)′(α) = 1.

Proof. Assume (f◦k)′(α) = e2iπt. We have t = lim tn, where

tn = arg
(

xn−1 − α

xn − α

)
.

Let t̃n be the lift of tn to R defined by the path from xn to xn−1 following R(Kf , θ).
The sequence (t̃n) tends to a lift t̃ of t. We will show that t̃ = 0.

We define a holomorphic function F : {z | Re(z) < m} → C by the formula
F (log(z−α)) = log(f◦k(z)−α), normalized by the convention that F (ζ)− ζ tends
to 2iπt̃ as Re(z) → 0.

We define a parametrization γ : R → R(Kf , θ) by Gf (γ(s)) = Gf (x0)/ds, so
that xn = γ(n). Let γ̃ be a continuous branch of s 7→ log(γ(s) − α). Denote by
R̃α the image of γ̃ and x̃n = γ̃(n). The sequence Re(x̃n) tends to −∞ and we have
x̃n−1 = F (x̃n) for n large enough.

Assume t̃ > 0. Taking a smaller m if necessary, we may assume that

inf
Re(ζ)<m

Im(F (ζ)− ζ) = µ > 0,

and that F defines an isomorphism between the half-plane {ζ | Re(ζ) < m} and an
open set containing the half-plane P1 = {ζ | Re(ζ) < m1}. Then, Reγ(s) → −∞
and Imγ(s) → −∞ as s → +∞. For all η ∈ R, denote by Nη the connected
component of {ζ | Imζ < η} \ R̃α containing the u + i(η − 1) for u → −∞. If η is
sufficiently small, Nη ⊂ P1 and F−1(Nη) ⊂ Nη−µ.

The image Ωη of Nη by ζ 7→ α + eζ is a neighborhood of α, and the image
of F−p(Nη) is the image Ωη,p of Ωη by the branch of f−pk which fixes α. We
have Nη,p ⊂ Nη−pµ, which is in a half-plane {z | Re(z) < m2} with m2 arbitrarily
negative if p is sufficiently large, so Ωη,p is arbitrarily small. In particular, we can
have Ωη,p b Ωη. Then, Schwarz’s lemma implies that |(f−pk)′(α)| < 1, so α is
repelling, which gives a contradiction. ¤

Let us now complete the proof of proposition 8.4. If θ has a denominator
coprime with d, θ = p/(2k − 1), R(Kf , θ) lands at a point α ∈ Kf , periodic for f

of period k′ dividing k. We have (f◦k)′(α) = 1, so (f◦k
′
)′(α) is a k/k′-th root of 1.

If θ does not have a denominator coprime with d, we can write θ as p/(dlq) with
q coprime with d. Then, if R(Kf , θ) does not bifurcate, f◦l(R(Kf , θ)) = R(Kf , θ1)
where θ1 = dlθ = p/q. The ray R(Kfθ) cannot oscillate, because R(Kfθ1) would
oscillate. Therefore it lands at a point α, so R(Kfθ1) lands at α1 = f◦l(α). The
above study shows that α1 is periodic, repelling or rationally indifferent.
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2.3. A property of stability. Denote by Pd the space of monic polynomials
of degree d. For f ∈ Pd and θ ∈ T = R/Z, we define ψf,θ : R∗+ → R(Kf , θ) by
Gf (ψf,θ(s)) = s if R(Kf , θ) does not bifurcate; if it bifurcates on a critical point
ω of Gf , the funciton ψf,θ is only defined on [Gf (ω),+∞[. If R(Kf , θ) lands at a
point α, we extend ψf,θ to R+ by setting ψf,θ(0) = α.

Proposition 8.5. Let f0 ∈ Pd and θ ∈ Q/Z. Assume R(Kf0 , θ) lands at
a periodic or preperiodic repelling point α0 ∈ Jf0 . Moreover, assume f◦i(α0) is
not a critical point of f0 for any value i ≥ 0. Then, there exists a neighborhood
Λ of f0 in Pd, such that , for all f ∈ Λ, the ray R(Kf , θ) lands at a periodic
or preperiodic repelling point αf . The map (f, s) 7→ ψf,θ from Λ × R+ to C is
continuous, holomorphic with respect to f .

Proof. Assume θ has a denominator coprime with d, so of the form p/(dk − 1).
We can find a neighborhood Λ1 of f0 in Pd, neighborhoods V and V ′ of (f0, α0) in
Pd×C, such that V ′ ⊂ V and an isomorphism (f, z) 7→ (f, ζf (z)) from V to Λ1×D,
and an analytic map ρ : Λ1 → C\D, so that ζf (f◦k(z)) = ρ(f) ·ζf (z) for (f, z) ∈ V ′.
We set αf = ζ−1

f (0); we then have f◦k(αf ) = αf and (f◦k)′(αf ) = ρ(f).
Let s0 ∈ R∗+ be such that (f0, ψf0,θ(s0)) ∈ V ′. By lower semi-continuity of the

domain of solutions of a differential equation with respect to the initial condition
and the parameters, there exists a neighborhood Λ of f in Λ1 such that, for f ∈ Λ,
ψf,θ is defined on [s0, +∞[ with (f, ψf,θ(s0)) ∈ V ′, and ψf,θ(s) depending contin-
uously on (f, s) and holomorphic with respect to f for f ∈ Λ, s ≥ s0. For each
f ∈ Λ, we can extend ψf,θ to R∗+ by setting

ψf,θ

( s

dkn

)
= ζ−1

f

(
ζf (ψf,θ(s))

[ρ(f)]n

)

for s ≥ s0, ψf,θ(s) ∈ V. We obtain in this way a map (f, s) 7→ ψf,θ(s) defined on
Λ × R∗+, continuous and holomorphic with respect to f . For each f , the image of
ψf,θ is R(Kf , θ). Finally, ψf,θ(s) → αf uniformly on every compact subset of Λ as
s → 0. We can therefore extend (f, s) 7→ ψf,θ(s) continuously to Λ× R+.

This proves the proposition in the case where θ has a denominator coprime
with d (which implies α0 periodic). In the general case, there exists l ≥ 0 such
that θ∗ = dlθ has a denominator coprime with d. For all i ≥ 0, the external ray
R(Kf , diθ) lands at f◦i(α0). We prove the required property for θ with a reverse
induction on i, starting with i = l. For i = l, it is the case which has already been
studied. For i < l, the map F : (f, z) 7→ (f, f(z)) has a holomorphic inverse gi

defined in a neighborhood of {f0} × R(f0, d
i+1θ) with

gi

({f0} × R(f0, d
i+1θ)

)
= {f0} ×R(f0, d

iθ)

since F has no critical point on {f0}×R(f0, d
iθ). We can therefore define ψf,diθ(s)

for s ≤ s0 and f sufficiently close to f0 by(
f, ψf,diθ(s)

)
= gi

(
f, ψf,di+1θ(ds)

)
.

3. Harvesting in parameter space.

We consider the family of quadratic polynomials (fc : z 7→ z2 + c)c∈C.

Theorem 8.2. Let c ∈ M be a points such that 0 is strictly preperiodic for fc

(Misurewicz point).
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a) The point c has a finite number of external rays in Kc, which are all
rational with even denominator.

b) For each external argument θ of c in Kc, the external ray R(M, θ) lands
at c.

Proof. Statement (a) is a particular case of corollary 8.4 in Chapter 7.
Let us prove statement (b). The point c is a repelling preperiodic point of fc

and we have ψc,θ(0) = c, keeping the notations of the previous subsection. The
point c does not have any critical point in its forward orbit, since c = fc(0) and 0
is not periodic. For λ close to c and s ∈ R+, set Hs(λ) = ψλ,s(s) − λ. Denote by
ν the order of the zero of H0 at c. We have ν < ∞ since otherwise we would hae
fk+l+1

λ (0) = f l+1
λ (0) for all λ close to c, and so for all λ ∈ C.

For s > 0 close to 0, the equation Hs(λ) = 0 has ν solutions close to c, counting
multiplicities. For such a root λ, we have λ = ψλ,θ(s), and so λ /∈ Kλ, i.e., λ /∈ M ,
and Φ(λ) = ϕλ(λ) = es+2iπθ. Hence, we see that Φ−1(es+2iπθ) → c as s → 1.

Corollary 8.5. The equation f l+1+k
λ (0) − f l+1

λ (0) = 0 has a simple root at
λ = c.

Proof. The multiplicity of c as a root of this equation is equal to the ν introduced
in the proof of the theorem.

For s > 0, the equation Hs(λ) = 0 has only one solution, since it necessarily is
Φ−1(es+2iπθ).

We go from the equation λ = ψλ,θ(s), which gives the intersection of the diago-
nal with the graph of λ 7→ ψλ,θ(s), to the equation ϕλ(λ) = es+2iπλ by transforming
those two curves via the diffeomorphism (λ, z) 7→ (λ, ϕλ(z)). The multiplicity of
the solution of λ = ψλ,θ(s) is equal to the one of Φ(λ) = es+2iπλ, which is 1 since
Φ is an isomorphism. So, we have ν = 1.

Remark. There exist other proofs of this corollary, for example an arithmetical
proof consisting in counting the 2-adic valuations.
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CHAPTER 9

Multiple fixed points and rationally indifferent
periodic points.

1. Multiple fixed points.

If f is a polynomial having a periodic point of period k at α, with (f◦k)′(α) =
e2iπp/q, the polynomial f◦kq has a fixed point at α with derivative 1. Because of
this, we will first study fixed points with derivative 1.

We can assume that the fixed point is 0. The majojrpart of the study can be
performed for maps which are holomorphic in a neighborhood of 0.

1.1. Order of a fixed point. Let f be a holomorphic map in a neighborhood
of 0, wuth f(0) = 0. The order of 0 as a fixed point of f is the order r of vanishing
at 0 of z 7→ f(z) − z. We say that 0 is a multiple fixed point if r ≥ 2. We can
then write f(z) = z + bzr + O(zr+1) with b 6= 0. This can also be written as
f(z) = z(1 + bzr−1 +O(zr)). The z such that bzr−1 ∈ R+ (respectively R−) form
r−1 hal lines, with angle 1/(r−1) turns between each of them. Wee will call them
repelling axes (respectively attracting axes) of 0 for f .

Remark. 1) If ϕ is a holomorphic map in a neighborhood of 0 with ϕ(0) = 0
and ϕ′(0) 6= 0, which conjugates f to g (i.e., g = ϕ ◦ f ◦ ϕ−1), the differential
T0ϕ : z 7→ ϕ′(0) · z sends the repelling (respectively attracting) axes of f to the
ones of g.

2) We can conjugate f , via a holomorphic map tangent to the identity at
the origin, to a map g of the form z 7→ z + bzr + O(z2r−1), or also of the form
z 7→ z + bzr + cz2r−1 +O(zν) with ν arbitrary. For the obstructions to conjugate
z 7→ z + bzr + cz2r−1, see Ecalle’s course.

1.2. A change of variable. In order to study f , we would like to make the
change of variable

z 7→ 1
(r − 1)bzr−1

.

But this map is not injective in a neighborhood of 0, and this leads us to introduce
some conventions.

Let Ω be an open subset of C, Ω̃ be a covering of Ω and π : Ω̃ → Ω be the
projection. For z ∈ Ω̃, weset |Z| = |π(Z)|. Let Z ∈ Ω̃ and u ∈ C be sufficiently
close to 0 so that, for all t ∈ [0, 1], π(Z) + tu ∈ Ω. The path γ : t 7→ π(Z) + tu in
Ω has a unique lift γ̃ in Ω̃ starting at Z; we will then denote by Z + u the point
γ̃(1) ∈ Ω̃. For λ close to 1, we define λZ by λZ = Z + (λ− 1)π(Z).

Let Dρ be a disk contained in the domain of definition of f . The map

z 7→ 1
(r − 1)bzr−1

73
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defines an isomorphism h : z 7→ Z from Dρ \ {0} to a covering Ω̃ of degree r − 1 of

Ω = C\DR, where R =
1

(r − 1)|b|ρr−1
. Denote by π : Ω̃ → Ω the projection and by

F the map h ◦ f ◦ h−1, defined on an open subset Ω̃′ of Ω̃ containing π−1(C \DR′)
for R′ sufficiently large.

Proposition 9.1. The map F is of the form Z 7→ Z − 1 +O(|Z|−1/r−1).

Proof. Let Z ∈ Ω̃′, z = h−1(Z), z1 = f(z) and Z1 = h(z1) = F (Z). We have:

z1 = z + bzr +O(|z|r+1) = z
(
1 + bzr−1 +O(|z|r)) .

Thus

π(Z1) =
1

(r − 1)bzr−1
1

=
π(Z)

(1 + bzr−1 +O(|z|r))r−1

= π(Z)
(

1− 1
π(Z)

+O(|Z|−r/(r−1))
)

Since z and z1 are close, Z and Z1 are on the same leaf and we have:

Z1 = Z

(
1− 1

π(Z)
+O(|Z|−r/(r−1))

)
= Z − 1 +O(|Z|−1/r−1).

Remark. The r−1 repelling axes (respectively attracting axes) correspond to the
lift in Ω̃ of R+ ∩ Ω (respectively R− ∩ Ω).

1.3. Petals. Let R1 and M be such that, for all |Z| ≥ R1, F (Z) is defined
and of the form F (Z) = Z − 1 + η(Z), with

|η(Z)| ≤ M

|Z|1/(r−1)
≤ 1

2
.

Let Γ ⊂ C be a curve of the form {x + iy | x = H(y)}, where H : R → R is a
function with the following properties:

(i) H is converx and even;
(ii) H(0) < −R1;
(iii) y 7→ |H(y) + iy| is incerasing on R+;
(iv) |H ′(y)| < 1/(tyθ) where sin θ = 2M/|Z|1/(r−1), Z = H(y) + iy;
(v) H ′(y) → +∞ when y →∞.

Conditions (i) and (v) imply that Γ has a parabolic branch in the direciton of
R+. Conditions (ii) and (iii) imply that Γ ∩ DR1 = ∅.

Let Γ1, . . . , Γr−1 be the lifts of Γ in Ω̃ and set Fi(Γ) = π(F (Γi)). Condition
(iv) guaranties that each Fi(Γ) is strictly to the left of τ−1/2(Γ), where τ−1/2 is the
translation Z 7→ Z − 1/2.

Let G be the set of points Z = x + iy ∈ C such that x ≤ H(y) (region to the
left of Γ). The preimage of G in Ω̃ is composed of r − 1 copies G1, . . . , Gr−1 of G

and we have F (Gi) ⊂ τ−1/2

◦
Gi.
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Γ

Z−1/2
Z

Fi(Z)

Z−1

θ

τ−1/2(Γ)

R1

Figure 1. A possible curve Γ. The curve Fi(Γ) is to the left of τ−1/2(Γ).

For each i, we set Pi = h−1(Gi)∪{0}. The Pi are compact sets that we cal the

petals of f at 0. They depend on the choice of Γ. We have f(Pi) =
◦
Pi ∪{0}. Each

Pi is bounded by a curve γi = h−1(Γi), image of a path [0, 1] → C, injective on
]0, 1[, which starts at 0 tangentially to a repelling acis, crosses an attracting axis
(called the axis of the petal) and comes back at 0 tangentially to the next repelling
axis.

r = 4, r − 1 = 3

r = 6 r = 2, r − 1 = 1

Figure 2. The petals Pi.

The flower
⋃

Pi is contained in the disk Dρ1 = {0} ∪ h−1(C \ DR1). For ρ′ <
1/|H(0)|r−1, the open set Dρ′ \

⋃
Pi has r − 1 connected components called the

interpetals.

Proposition 9.2. Let Pi be one of the petals of f at 0 and z ∈ Pi \ {0}.
a) f◦n(z) → 0 tangentially to the axis of Pi.
b) f◦n → 0 uniformly on Pi.

Proof. a) Set zn = f◦n(z), Z = h(z), Zn = h(zn) = F ◦n(Z), and let us write
Re(Z) for Re(π(Z)), and so on. . . . We have Re(Zn+1) ≤ Re(Zn − 1/2, thus
Re(Zn) → −∞, and so |Zn| → ∞ and |zn| → 0. We have Zn+1 − Zn → −1,
and so argZn → 1/2, and the angle of zn with the axis of Pi tends to 0.

b) We have F ◦n(Gi) ⊂ τ−n/2(Gi), thus, for all R′′ > 0, there exists an n0 such
that π(F ◦n(Gi)) ∩ DR′′ = ∅ for n ≥ n0. It follows that ∀ρ′′ > 0, (∃n0) (∀n ≥ n0)
f◦n(Pi) ⊂ Dρ′′ .
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2. The case of polynomials.

We assume inthis section that f is a monic polynomial of degree d, having a
fixed point of order r ≥ 2 at 0. Let P1, . . . , Pr−1 be the petals of f at 0.

2.1. Component of
◦

Kf containing a petal. The point 0 belongs to Jf =
∂Kf . Indeed, if f(z) = z + bzr +O(|z|r+1), we have f◦n(z) = z +nbzr +O(|z|r+1),
and the sequence ((f◦n)(r)(0))n∈N is not bounded.

For each i, Pi \ {0} ⊂
◦

Kf . Indeed, Pi ⊂ Kf and f(Pi \ {0} ⊂
◦
Pi⊂

◦
Kf . Since the

set Pi \ {0} is connected, it is contained in a component Ui of
◦

Kf .

Proposition 9.3. For all x ∈ Ui, there exists an n such that f◦n(x) ∈ Pi\{0}.
Proof. Let x0 ∈ Ui and y0 ∈ Pi. Set xn = f◦n(x) and yn = f◦n(y). We have,
for the Poincar’ distances, dUi

(xn, yn) ≤ dUi
(x0, y0), and the Euclidean distances

d(yn, ∂Ui) ≤ |yn| → 0. It follows that |xn − yn| → 0 and |xn| → 0.
If ρ′ is sufficiently small, we have |f(z)| > |z| if z ∈ Dρ′ \

⋃
Pi. hence, the xn

cannot all belong to the interpetals, and ∃n0, ∃j, xn0 ∈ Pj \ {0}. We then have

xn ∈
◦
Pj \{0} for n ≥ n0.

Denote by Vj the set of x ∈ Ui such that (∃n) xn ∈
◦
Pj \{0}. The vj form a

partition of Ui in open sets. SinceUi is connetced, only on is non empty, and since
Pi \ {0} ⊂ Vi, we have Ui = Vi.

Corollary 9.1. The Ui are pairwise distinct.

Proposition 9.4. a) Ui contains at least a critical point of f .
b) f induces a proper holomorphic map fi : Ui → Ui of degree di ≥ 2.
c) Let ϕ : Ui −→' D be an isomorphism and set g = ϕ ◦ fi ◦ ϕ−1. Then, g

is the restriction to D of a rational map g : C→ C having on S1 a triple
fixed point α. For all x ∈ C \ S1, the sequence g◦n(x) tends to α.

Proof.

Lemma 9.1. Let x0 ∈ Ui and set xn = f◦n(x0). Then, dUi(xn, xn+1) → 0.

Proof. xn → 0 tangentially to the axis of Pi, so ∃m > 0, ∃n0, ∀n ≥ n0,
d(xn, ∂Ui) ≥ m|xn| (in fact, we can take m arbitrarily close to sin(π/(r − 1)) if
r ≥ 3, m = 1 if r = 2).

For m′ > |b|, we have |xn+1 − xn| ≤ m′|xn|r for m sufficiently large. As a
consequence,

|xn+1 − xn|
d(xn, ∂Ui)

→ 0.

But,

dUi(xn, xn+1) ≤ dD(xn,d(xn,∂Ui))(xn, xn+1) = dD

(
0,

xn+1 − xn

d(xn, ∂Ui)

)
,

and so dUi(xn, xn+1) → 0. ¤

We can now prove the proposition. b) The map f induces a proper holomorphic
map f−1(Ui) → Ui. But Ui is a connected component of f−1(Ui), so f induces
fi : Ui → Ui holomorphic and proper. Let di be its degree. We have di > 1
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since otherwise fi would be an isometry for the Poincaré distance on Ui, which
contradicts the lemma.

a) follows from b) and the Riemann-Hurwitz formula. More elmetary, if there
were no critical point, fi : Ui → Ui would be a covering, necessarily trivial since Ui

is simply connected, thus of degree 1.
c) The map g : D → D is holomorphic and proper. By Schwarz’s reflection

principle, it extends to a map C → C, which is a rational map cmmuting with
z 7→ 1/z. Let us show that there is a triple fixed point on S1. Let x0 ∈ D
and set xn = g◦n(x0). Avery accumulation point α of the sequence (xn) belongs
to S1 and is a fixed point of g. Indeed, if xnk

→ α, we have |xnk+1 − xnk
| ≤

dD(xnk
, xnk+1) → 0, and g(xnk

) → α, and so α = g(α). Let α1, . . . , αν be the fixed
points of g on S1, W1, . . . , Wν be neighborhoods of respectively α1, . . . , αν such
taht dD(Wi ∩D,Wj ∩D) > dD(x0, x1). For n sufficiently large, all the xn are in the
union of the Wi, but since dD(xn, xn+1) ≤ dD(x0, x1), they are all in the same Wi,
and the sequence has only one accumulation point α ∈ S1. Since D is compact,
xn → α.

Since dD(xn, xn+1) → 0, we have (xn+1−xn)/(xn−α) → 0 and α is a multiple
fixed point. Let y0 ∈ D and set yn = g◦n(y0). We have dD(xn, yn) < dD(x0, y0);
since |xn − α| → 0, we have |yn − xn| → 0 and yn → α.

Let s be the order of α as a fixed point of g; let us show that s = 3. Let
Q1, . . . , Qs−1 be the petals of g at α. At least half of them meet D. But the
Vi = {x ∈ D | g◦n(x) ∈ Qi \ {α}} form a partition of D in open sets, so there is at
most one which is not empty and s− 1 ≤ 2, and so s = 2 or 3.

Set zn = ϕ−1(xn) ∈ Ui. The sequence zn → 0 tangentially to the axis of Pi.
If η : U i → [0, 1] is a harmonic function on Ui, continuous on U i \ {0}, which is
equal 0 on ∂Ui in an interpetal adjacent to Pi and 1 is the other, (∃m > 0), (∀n),
m ≤ η(zn) ≤ 1−m. It follows that xn → α non tangentially to S1, which excludes
the case s = 2. We therefore have s = 3.

Corollary 9.2. If di = 2, there is only one critical point ω ∈ Ui. If we have
chosen ϕ so that ϕ(ω) = 0 and α = 1, then g is given by

g(z) =
3z2 + 1
3 + z2

.

2.2. External arguments of 0.

Proposition 9.5. Assume Kf is connected and locally connected.
a) Every external argument of 0 is of the form p/(d− 1).
b) In each interpetal, arrives at least one ray landing at 0.
c) In between two external rays landing at 0, there is a critical point and a

critical value of f .

Fig. 3 shows the filled-in Julia set of a cubic polynomial. There is a multiple
fixed point with 1 petal. There are two rays (of angle 0 and 1/2) landing at 0. The
critical points are plotted.
Proof.

Lemma 9.2. Let A ⊂ R/Z be a set containing at least one point α of the form
p/(d − 1), p ∈ Z. Assume t 7→ dt induces a bijection from A to A, preserving the
cyclic order. Then, every point of A is of the form p/(d− 1), p ∈ Z.
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Figure 3. The filled-in Julia set of a cubic polynomial having a
multiple fixed point.

Proof. We have (d − 1)α = 0, so dα = α, and t 7→ t − α commutes with t 7→ dt.
We can therefore choose α as origin, i.e., assume that α = 0. Let t ∈ A and let
(ε1, . . . , εk, . . .) be the development of t in base d. If the sequence (εi) is stationnary,
εi = ε for i ≥ k0, we have dkt = ε/(d − 1) ∈ A, dkε/(d − 1) = ε/(d − 1) = dkt,
and so t = ε/(d − 1). Otherwise, ∃i, j such that εi < εi+1 and εj > εj+1. Fr each
element of A, let us choose a representant in [0, 1[. We have 0 < dit < di+1t and
0 < dj+1t < djt, which contradicts the fact that t 7→ dj−it preserves the cyclic
order. ¤

We can now prove the proposition. a) Denote by A the set of ecternal arguments
of 0. Assume A 6= ∅ and et t ∈ A and α and α be the smallest element of A
corresponding to a ray R(Kf , α) which lands in through the same interpetal as
R(Kf , t). The ray R(Kf , α) is fixed by f , so α = dα and α is of the form p/(d−1).
The map f induces a permutation of the rays (R(Kf , t))t∈A preserving the cyclic
order. Part a) then follows form the lemma.

b) Let us choose in each interpetal Pi a center ci for Ui and let H be the
allowable hull of {0, c1, . . . , cr−1}. The interpetals are the access to 0 relatively to
H (cf chapter 7). Part b) then follows from proposition 7.1 in the same chapter.

c) Let R = R(Kf , θ) and R′ = R(Kf , θ′) be two external rays of Kf landing
at 0, and V a connected component of C \ (R ∪R′). According to part a), we may
ssume that θ = 0, θ′ = p/(d−1), p ∈ {1, . . . , d−2}, and that V contains the points
of C \Kf of external arguments t ∈]0, p/(d− 1)[. Set W = f−1(V ). The boundary
∂W is the union of the rays R(Kf , t) for t ∈ {i/d, p/(d − 1) + i/d}i=0,...,d−1. Let
W1 be the connected component of W such that ∂W1 ⊃ R. We have W1 ⊂ V
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and ∂W ⊃ R ∪ R(Kf , t1) where t1 = p/(d − 1) − p/d = p/(d(d − 1)). The ray
R1 = R(Kf , t1) lands at a point c1 6= 0 since t1 /∈ Z(d − 1). The map f induces
a proper holomorphic map f1 : W1 → V , denote by d1 its degree. Let U be
a neighborhood of 0, then f−1(U ∩ W ) ⊃ (U ′ ∩ W ) ∪ (U ′′ ∩ W ), where U ′ is a
neighborhood of 0 and U ′′ is a neighborhood of c1, that we may assume disjoint.
It follows that d1 ≥ 2, so (∃ω ∈ W1), f ′(ω) = 0 and f(ω) ∈ W .

3. Irrationally indifferent periodic points.

3.1. Number of petals. Let f : C→ C be a polynomial of degree d, α be a
periodic point of period k such hat λ = (f◦k)′(α) = e2iπp/q, with p and q coprime.

Proposition 9.6. The multiplicity r of α as a fixed point of f◦qk is of the form
νq + 1, where ν ∈ {1, . . . , d− 1}.
Proof. The map Tαf◦k, which is the multiplication by λ, acts freely on the repelling
axes of α. Hence, their number, which is r−1, is of the form qν. Thee are ν disjoint

orbits in π0(
◦

Kf ), and each one contains at least a critical point of f◦kq, and so a
critical point of f . Since f has at most d− 1 critical points, we have ν ≤ d− 1.

We could also deduce proposition 9.6 from the following lemma, that we give
because we will use it later.

Lemma 9.3. We can find a holomorphic coordinate centered at α such that
the expressions of f◦k in this coordinate is of the form z 7→ λ(z + zr + O(zr+1)),
with r = νq + 1, ν ∈ N∗.

In other words, we can find a C-analytic diffeomorphism ψ between a neigh-
borhood of α and a neighborhood of 0, with ψ(α) = 0, such that ϕ ◦ f◦k ◦ ψ−1 is
of the prescribed form.
Proof. We will show that, if we have a coordinate ζj where the expression gj of
f◦k is ζ 7→ λζ + bjζ

j +O(ζj+1), and if j is not of the form νq + 1, then we can find
a coordinate ζj+1, tnagent to ζj at the order j, such that the expression of gj+1 of
f◦k in ζj+1 is ζ 7→ λζ + bj+1ζ

j+1 +O(ζj+2). Let us take ζj+1 = ζj + cζj
j . The map

gj+1 is given by :

ζj+1 7→ ζj = ζj+1 − cζj
j+1 + . . . +

gj7→ λζj+1 + (bj − λc)ζj
j+1 + . . .

7→ gj+1(ζj+1) = ζj+1 + (bj − λc + cλj)ζj
j+1 +O(ζj+1

j+1 ).

If j is not of the form νq + 1, we have λj − λ 6= 0, and we can choose c so that
bj + c(λj − λ) = 0.

In this way, we can kill each term of gj(ζ)− λζ until we end up with a term of
the form bζνq+1 with b 6= 0. If the process could be always continued, f◦kq would
have a contact of order ∞ with the identity, so f◦kq = Id, which is not possible if
f is a polynomial of degree d > 1. Thus, we can find a coordinate ζ such that the
expression of f◦k is ζ 7→ λ(ζ + bζνq+1 +O(ζνq+1) with b 6= 0, and conjugating with
a scaling map, we can get b = λ.

Let ψ be a diffeomorphism of a neighborhood of α to a neighborhood of 0. A
flower F of f◦kq relatively to ψ is F = ψ−1(F ′), where F ′ is a flower (union of
petals) of ψ ◦ f◦kq ◦ ψ−1.
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Proposition 9.7. Let ζ be a coordinate centered at α satisfying the conditions
of lemma 9.3 and F the flower of f◦kq relatively to ζ defined via a curve Γ as in
subsection 1.3. For a well chosen curve Γ, we have f◦k(F ) ⊂ ◦

F ∪{α}.
Proof. Let us consider again the change of variable h : Dρ −→

'
Ω̃ defined in

subsection 1.2, with b = 1. Denote by σ the deck transformation Ω̃ → Ω̃ conjugate
by h to z 7→ λz. The expression F = h ◦ f◦k ◦ h−1 is of the form

Z 7→ σ

(
Z − 1 +O

(
1

|Z|1/r−1

))
.

If Γ satifies to the condition (i) to (v), we have F (Gi) ⊂ τ−1/2

◦
Gσ(i), and so

f(Pi \ {α}) ⊂
◦

Pσ(i).

Remark. Condition (iv) is stronger than the condition required to define the
flower of f◦kq, because f◦kq corresponds to b = q and not b = 1.



CHAPTER 10

Local connectivity of some other Julia sets.

1. Results.

Theorem 10.1. Let f : C→ C be a polynomial of dergee d > 1. Assume that
for each critical point ω of f , one of the following three possibilities occur:

a) ω is attracted by an attracting cycle;
b) ω ends in finite time on a repelling cycle;
c) ω is attracted by a rationally indifferent cycle.

Then Kf is connected and locally connected.

Corollary 10.1. Let f be a polynomial of degree 2 having a rationally indif-
ferent cycle. Then, Kf is connected and locally connected.

This chapter is a complement to chapter 3 “Local connectivity of some Ju-
lia sets”. We will use results of chpater 9 “Multiple fixed points and rationally
indifferent periodic points”.

By a theorem of Fatou and/or Julia, since every critical point of f belongs to
Kf , the set Kf is connected (chapter 3, proposition 3.1 extended). The case where
only possibilities (a) or (b) occur is covered by proposition 3.4 in chapter 3 + the
characterization of sub-hyperbolic polynomials. When (c) actually occurs, f is not
sub-hyperbolic. In order to show that Kf is locally connected, we will show that the
sequence of loops (γn) defined in proposition 3.3 in chapter 3 converges uniformly.
For this purpose, we will construct a metric on an open subset Ω of C for which
f is strictly (i.e. strictly increases the length of every non trivial rectifiable curve)
but not strongly expanding in general. The argument we will have to use in order
to conclude the proof will therefore be more delicate than the one of proposition
3.4 in chapter 3: we will have to do something like a Markov partition.

In the following, f is a polynomial satisfying the hypothesis of the theorem.

2. Construction of Ω.

Denote by A− the set of attracting periodic points of f , A0 the set of rationally
indifferent periodic points and C the union of forward orbits of the critical points.
Let us write C = C− ∪ C0 ∪ C+, where C− (respectively C0) corresponds to the
critical points attracted by an attracting cycle (respectively rationally indifferent)
and C+ to the critical points ending on a repelling cycle.

Proposition 10.1. We can find a compact set Ω such that

a) ∂Ω ⊃ A0, Ω ∩A− = ∅, C+ ⊂
◦
Ω, (C0 ∪ C−) ∩ Ω = ∅;

b) Jf ⊂
◦
Ω ∪A0, γn ⊂

◦
Ω for n large enough;

c) f−1(Ω) ⊂ ◦
Ω ∪A0;

81
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d)
◦
Ω is connected;

e)
◦
Ω ∩R(Kf , 0) is connected.

Proof. Let L be a closed topological disk containing Kf , bounded by a level curve
of the potential Gf of Kf .

For each α ∈ A−, let us choose a topological disk ∆α so that f(∆α) ⊂ ∆f(α).

This implies that ∆α ⊂
◦

Kf . Let n− be such that

B− = f−n−


 ⋃

α∈A−

∆α


 ⊃ C−.

We still have B− ⊂
◦

Kf .
For each α ∈ A0, let us construct a flower Fα (relatively to a coordinate ζα

centered at α) so that f(Fa \ {α}) ⊂
◦

Ff(α). Let n0 be such that

B0 = f−n0

( ⋃

α∈A0

◦
Fα

)
⊃ C0.

This implies that B0 ⊂
◦

Kf and B0 ⊂
◦

Kf ∪A0. The set Ω = L \ (B− ∪ B0) has the
required properties.

3. Construction of Ũ .

Set U =
◦
Ω. We will construct a ramified covering Ũ of U . Since the periodic

points of C+ are repelling, and so non critical, we can find a function ν : C+ → N∗
such that ν(f(x)) is a multiple of r(x)ν(x), where r(x) is the local degree of f
at x (for example, ν(x) =

∏
r(y), where the product is taken for y in the strict

backward orbit of x).
We set r(x) = 1 for x /∈ C+. Let U∗ be a ramified covering of U , with

ramification degree equal to ν(x) for every point above x, and Ũ the universal
covering of U∗. Then, Ũ is a Galois ramified covering of U . Denote by π the
projection Ũ → U . Let R̃0 be a lift of the open arc U ∩R(Kf , 0) in Ũ .

Proposition 10.2. There exists a holomorphic map g : Ũ → Ũ such that
f ◦ π ◦ g = π and g(R̃0) ⊂ R̃0.

Remark. The condition f ◦ π ◦ g = π says in some way that g is a lift of f−1.
Proof. Let X be the set of pairs (x, y) ∈ Ũ × Ũ such that f(π(y)) = π(x). The
set X is a C-analytic curve with singularities. Let (x0, y0) ∈ X. If π(x0) does
not belong to C, π(y0) neither, X is smooth at (x0, y0) and pr1 : X → Ũ is an
local isomorphism in a neighborhood of (x0, y0). Assume π(x0) ∈ C, denote by
r the ramification degree of f at π(y0); set νx0 = ν(π(x0)) and νy0 = ν(π(y0)),
degy0

(f ◦ π) = rνy0 , which by hypothesis divides νx0 = degx0
(π). We can choose

on Ũ coordinates ξ and η centered respectively at x0 and y0, so that the expression
of π and f ◦ π are ξ 7→ ξνx0 and η 7→ ηrνy0 . In a neighborhood of (x0, y0), the set
X becomes

{(ξ, η)|ξνx0 = ηrνy0 } =
⋃
{(ξ, η)|η = λξq},
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where q = νx0/rνy0 and the union is taken on all the λ such that λrνy0 = 1. in a
neighborhood of (x0, y0), the curve X is a union of rνy0 smooth curves (branches),
which intersect transversally, and for each one, the projection pr1 : X → Ũ induces
a local isomorphism.

Replacing the point (x0, y0) by rνy0 points, one on each branch, and proceeding
in the same way for the other points (x, y) such that π(x) ∈ C, we obtain a space
X̃ which is a covering of Ũ . But Ũ is simply connected, this covering is therefore
trivial. Let x1 and y1 be points in R(Kf , 0) ∩ U such that x1 = f(y1); denote by
x̃1 and ỹ1 their lift in R̃0. There eixsts a unique section σ : Ũ → X̃ such that
σ(x̃1) = (x̃1, ỹ1). The map g = pr2 ◦ πX̃ ◦ σ : Ũ → Ũ , where πX̃ : X̃ → X is the
canonical projection, has the required properties.

4. Construction of a metric.

Denote by µŨ the Poincaré metric on Ũ and µU the admissible Riemannian
metric on U such that the projection π : Ũ → U is a local isometry.

Remark. 1) If A0 = ∅, π(g(Ũ)) is relatively compact in U , and it follows that
g : Ũ → Ũ is strongly contracting for µŨ . As a consequence, f is strongly expanding
for µU on Jf , in other words, f is sub-hyperbolic. The theorem, in that case, follows
from proposition 3.4 in chapter 3.

2) If A0 6= ∅, the map g : Ũ → Ũ is strictly but not strongly contracting. Let
α ∈ A0 and θ be an external argument of α in Kf . The open arc U ∩ R(Kf , θ)
has an infiinte length on the side of α for µU , and the sequence (γn(θ))n∈N is not a
Cauchy sequence for µU . It is for those reasons that we will change the metric µU .

For each point α ∈ A0, we can find a topological disk ∆α and an isomorphism
ζα : ∆α → Dr so that the expression of f : ∆α → ∆f(α) is of the form ζ 7→
λ(ζ + bαζqα+1 + . . .), qα =number of petals of the flower at α, λqα = 1.

If the disk ∆α are chjosen sufficiently small, U ∩∆α is contained in the union
of the interpetals, and the expression of f has a derivative of modulus > 1. Also,
we have: f(U ∩∆α) ⊃ U ∩∆f(α), f(∆α ∩∆β = ∅ for β 6= f(α) and ∆α ∩ C+ = ∅.

Denote by µα the metric |dζα| on ∆α. Choose M ∈ R+ large and define
on U ∪

⋃

α∈A0

δα a Riemannian metric µ (with discontinuous coefficients) by µ =

inf(µU ,Mµα), the infimum being taken at each point z on the metrics defined at
this point.

Consider the compact set Ω′ = f−1(Ω) ⊂ U ∪A0.

Proposition 10.3. If we have chosen M sufficiently large, f is strictly ex-
panding for µ on Ω′.

By “strictly expanding” we mean that for every non trivial rectifiable path
γ : I → Ω′, we have lengthµ(f ◦ γ) > lengthµ(γ).
Proof. For each α ∈ A0, f−1(Ω∩∆α) is a compact set of the form L′α∪L′′α, where
L′α ⊂ Ω′ ∩∆α and L′′α is a compact set contained in U \ C+ = U \ C. Set

mα = inf
z∈L′′α

‖Tzf‖µU ,µα .
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We have mα > 0. We choose M > 1/ inf(mα). Let us show that, for z ∈ Ω′ \ (A0 ∪
C), we have:

(1) ‖Tzf‖µ > 1

We must consider 4 cases:
a) µz = µU,z, µf(z) = µU,f(z): the map f : f−1(U) → U is strictly expanding

for µU since g : Ũ → Ũ is strictly contracting, and we have (1) in that
case.

b) µz = Mµα,z, µf(z) = µU,f(z): we have µz ≤ µU,z and so (1) follows as in
case (a).

c) µz = Mµα,z, µf(z) = Mµf(α),f(z): inequality (1) follows from the fact
that the expression of f in the coordinates ζα, ζf(α) has derivative with
modulus greater than 1.

d) µz = µU,z, µf(z) = Mµf(α),f(z): is z ∈ L′α, we have µz ≤ µα,z and we
conclude as in case (c); if z ∈ L′′α, inequality (1) follows from the condition
M > 1/mα imposed on M .

5. A module of continuity.

Set Ω′∗ = Ω′ ∩U = Ω′ \A0, and let Ω̃′
∗

be the preimage of Ω′∗ in Ũ . Let µ̃ be
the metric on Ω̃′

∗
lifting the metric µ on Ω′∗. denote by Ω̃′ the compactification

of Ω̃′
∗

for µ̃: it is obtained by adding a point at the end of each lift in Ω̃′
∗

of an
interpetal at a point in A0.

The map g : Ũ → Ũ of proposition 10.2 induces a map Ω̃′
∗ → Ω̃′

∗
which

extends to a continuous and strictly contracting map ĝ : Ω̃′ → Ω̃′.

Proposition 10.4. There exists an increasing map h : R+ → R+, satisfying
h(s) < s for s > 0 and s− h(s) → +∞, such that:

(∀x, y ∈ Ω̃′) dµ̃(g(x), g(y)) ≤ h(d(x, y)).

Proof. The group Γ = AutU (Ũ) acts on Ω̃′ by isometries for µ̃. Let e = γ0(0) ∈
R(Kf , 0)∩U (cf. chapter 3, proposition 3.3); denote by ẽ the lift of e in R̃0, γ̃0 the
lift of γ0 with origin ẽ, and set ẽ1 = γ̃0(1). Denote by σ the element of Γ such that
σ(ẽ) = ẽ1. There exists an element σ1 ∈ Γ such that g ◦ σd = σ1 ◦ g. Let F ⊂ Ω̃′

bea compactset such that Γ · F = Ω̃′ and set F1 =
⋃

0≤i≤d−1

σiF . For s ≥ 0, denote

by B(F1, s) = {x ∈ Ω̃′ | dµ̃(x, F1) ≤ s}, it is a compact set. Denote by H(s) the
supremum of dµ̃(g(x), g(y)) for (x, y) ∈ Ω̃, dµ̃(x, y) ≤ s. We have:

h(s) = sup
(x,y)∈F1×B(F1,s)

dµ̃(x,y)≤s

dµ̃(g(x), g(y)) < s.

It is clear that the funciton h is increasing. et us choose s0 > 0; We have h(ks0) ≤
kh(s0) and it follows that s− h(s) → +∞ as s → +∞.

Denote by E the set of loops γ : T→ Ω′ \(C+∪A0) such that γ(0) = R(Kf , 0),
homotopic to γ0. We define G : E → E by mapping each γ to the unique loop
γ′ ∈ E such that γ′(t) ∈ f−1(γ(dt)), γ′(0) ∈ R(Kf , 0). In particular, γn+1 = G(γn).
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By mapping each loop γ ∈ E to the path γ̃ : [0, 1] → Ω̃′ which lifts γ, we identify
E to a subset Ẽ of C(I; Ω̃′, where I = [0, 1]. To the map G corresponds a map
G̃ : Ẽ → Ẽ defined by G̃(γ̃) = γ̃′, with γ−1(t) = g(σiγ(s)) if t = (i+s)/d, s ∈ [0, 1].
We equip Ẽ with the distance d(γ, η) = supt∈I dµ̃(γ(t), η(t)).

Corollary 10.2. The map G̃ has h as module of continuity.

6. The convergence.

Proposition 10.5. The sequence (γ̃n) is a Cauchy sequence in C(I, Ω̃′).

Proof. Set ` = d(γ̃0, γ̃1) and let L ≥ ` be such that L − h− L) ≥ `. Let us show
by induction that for all n, we have d(γ̃0, γ̃n) ≤ L. It is clear for n = 0 or 1. If
d(γ̃0, γ̃n) ≤ L, we have d(γ̃1, γ̃n+1) ≤ h(L), and so d(γ̃0, γ̃n+1) ≤ ` + h(L) ≤ L.

For p ∈ N and q = p + n, we have

d(γ̃p, γ̃q) = d(G◦p(γ̃0), G◦p(γ̃n)) ≤ h◦p(L).

The sequence (h◦p(L))p∈N is strictly decreasing. It has a limit which is a fixed point
of h, thus 0. It follows that (γ̃n) is a Cauchy sequence.

Proof of the theorem. The sequence (γn) is a Cauchy sequence in C(T; Ω′),
equipped with the distance of uifrm convergence for the distance dµ on Ω′. Hence,
it converges uniformly for dµ, and also for the Euclidean distance d0 which defines
the same topology, since Ω′ is compact. The theorem then follows from proposition
3.3 of chapter 3.





CHAPTER 11

A walz.

By Adrien Douady and Pierrette Sentenac

1. Introduction.

Let c0 ∈ M be such that the polynomial fc0 : z 7→ z2 + c0 ha a rationally
indifferent cycle {α1, . . . , αk}, with eigenvalue ρ = e2iπp/q with p and q coprime.
According to the preceding chapter, Kc0 is locally connected, and according to
chapter 9, each αi has a flower with q petals, and through each interpetal, there
are at least one and finitely many external rays of Kc0 landing; those rays are fixed
by f◦kq and so have arguments of the form p/(2kq − 1) (we will see later that the
number of rays is 2 if q = 1 and 1 otherwise).

The point c0, critical value, is attracted under iteration of f◦kq by one of the
points of the cycle {α1, . . . , αk}. We may assume that it is α1. The connected

component U1 of
◦

Kf which contains c0 contains a petal P1 for α1.
Our goal is to prove the following theorem, which will be proved in the next

chapter.

Theorem 11.1. Let θ be the argument of an external ray of Kc0 which lands
to α1 in an interpetal adjacent to P1. Then, the external ray R(M, θ) lands at c0.

Remark. This theorem is analog to theorem 8.2 in chapter 8. However, this
theorem is obtained by passing to the limit on corollary 8.4 of theorem 8.1 in chapter
8. On the contrary, theorem 11.1 above is based on a discontinuous behavior of
R(Kc, θ) at c = c0.

In this chapter, we will prove theorem 11.2, one particular case of which (corol-
lary 11.1) is a consequence of theorem 11.1. In the next chapter, we will use
corollary 11.1 in order to prove theorem 11.1.

Assume q 6= 1. Then, α1 is a simple periodic point of fc0 . For each c close
enough to c0, we can find a α(c) such that fk

c (α(c)) = α(c), with c 7→ α(c) analytic
and α(c0) = α1.

Let ∆ be a sufficiently small disk centered at α(c0) (we will be more precise
later). Let n0 be sufficiently large and r∗ > 1 be sufficiently close to 1 so that
x(c0) = fn0kq

c0
(c0) and y(c0) = ϕ−1

c0
(r∗e2iπθ) belongs to ∆ (where ϕc0 : C \Kc0

'−→
C \ D is the conformal representation).

For c sufficiently close to c0, set x(c) = fn0kq
c (c) and y(c) = ϕ−1

c (r∗e2iπθ). The
intermediate statement is the following.

Corollary 11.1. For any neighborhood W of c0 there exists an interger N0 ≥ 0
such that for all N ≥ N0, there exists a c ∈ W such that fNkq(x(c)) = y(c).

87
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Proof of the implication: theorem 11.1 ⇒ corollary 11.1. Let rN be such
that r2(n0+N)kq

n = r∗ and c = ϕ−1
M (re2iπθ). We have ϕc(c) = ϕM (c) = rNe2iπθ,

and since 2kqθ = θ, ϕc(x(c)) = r2n0kq

N e2iπθ, ϕc(f◦Nkq(x(c))) = r∗e2iπθ, and so
f◦Nkq(x(c)) = y(c). When N →∞, rN → 1, thus theorem 11.1 yields c → c0, and
(∀W ), (∃N0), (∀N ≥ N0), c ∈ W .

2. Results.

Let us now state the theorem whose proof will be the subject of this chapter.
Let Λ and V be neighborhoods of 0 in C, and (λ, z) 7→ gλ(z) a C-analytic

map from Λ × V to C. Assume gλ(0) = 0 for all λ ∈ Λ, g′0(0) = ρ0 = e2iπp/q,
p/q ∈ Q, and that λ 7→ ρ(λ) = g′λ(0) is not constant. Assume g◦q0 is of the form
z 7→ z + b0z

q+1 + O(zq+2) with b0 6= 0. Let L+ and L− be conscutive attracting
and repelling axes of g◦q at 0 (i.e., the ange between them is ±1/2q turns). Denote
by S+ and S− the open sectors with bisectors L+ and L− and angle at the vertex
equal to 1/8q turns.

L+

S+

Q+

∆

Q− L−

S−

Figure 1. The axes L±, the sectors S± and the compact sets Q±.

Theorem 11.2. In this situation,

(∃∆, disk centered at 0) (∀Q+ ⊂ ∆ ∩ S+) (∀Q− ⊂ ∆ ∩ S−)

(∀W neighborhood of 0 in Λ) (∃N0 ∈ N) (∀s+ : W → Q+ continuous)

(∀s− : W → Q− continuous) (∀N ≥ N0) (∃λ ∈ W )

g◦Nq
λ (s−(λ)) = s+(λ).

Proof of corollary 11.1 knowing theorem 11.2. If q 6= 1, α1 is a simple fixed
point of f◦kc0

. Let us set c(λ) = c0 + λ. By the implicit function theorem, we can
find an analytic function α 7→ α(λ) defined in a neighborhood of 0 and such that
α(0) = α1, f◦kc(λ)(α(λ)) = α(λ).
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If q = 1, i.e., ρ = 1, the point α1 is a double fixed point of f◦kc0
, because there

is only one petal. If we set c(λ) = c0 + λ2, we can still find a map λ 7→ α(λ)
which is analytic in a neighborhood of 0 and such that α(0) = α1 and f◦kc(λ)(α(λ) =
α(λ). This follows from Morses’ theorem or from Weierstrass preparation theorem.
In both cases, we define gλ by α(λ) + gλ(z) = f◦kc(λ)(α(λ) + z). We set s−(λ) =
x(c(λ)− α(λ)), s+(λ) = y(c(λ)− α(λ)). If we have chosen ∆ sufficiently small, we
can take n0 sufficiently large, and r0 sufficiently close to 1 so that s−(0) ∈ S− and
s+(0) ∈ S+, because fnkq

c0
and ϕ−1

c0
(re2iπθ) tend to α1 tangentially to respectively

L− and L+.
Let Q− and Q+ be compact neighborhoods of S−(0) and s+(0) in S− and S+,

we still have s−(λ) ∈ Q− and s+(λ) ∈ Q+ when λ varies in a neighborhood Λ of 0.
We can therefore apply theorem 11.2 and we get corollary 11.1.

The proof above gives to corollary 11.1 the following additional information
which will be useful in the following chapter.

Additional information 1 to corollary 11.1. We can choose N0 indepen-
dent of r∗ as long as r∗ varies in a compact J ⊂]0,+∞[ such that

ϕ−1
c0

(J · e2iπθ) ⊂ ∆ \ {0}.

Also, we will see that, in the situation of theorem 11.2, if λ 7→ ρ(λ)−e2iπp/q has
a zero of order ν at 0, there is at least ν distinct values of λ such that g◦Nq

λ (s−(λ)) =
s+(λ) in the conditions of the theorem.

We will use this fact in the next chapter in order to see that, in the situation
of theorem 11.1, we necessarily have ν = 1.

3. A change of variable.

We will now work under the hypothesis of theorem 11.2

Proposition 11.1. We can find a C-analytic diffeomorphism (λ, z) 7→ (λ, ζλ(z))
of a neighborhood Λ′ × V ′ of (0, 0) in Λ × V onto an open subset of Λ′ × C, such
that ζλ(0) = 0, and for λ ∈ Λ′, the expression of gλ in the coordinate ζλ is of the
form ζ 7→ ρ(λ)ζ + β(λ)ζq+1 +O(ζq+2), with β(0) 6= 0.

Proof. (cf chapter 9, lemma 9.3). For j ∈ {2, . . . , q}, we have a C-analytic
diffeomorphism (λ, z) 7→ (λ, ζλ,j(z)) such that the expression of gλ is ζ 7→ ρ(λ)ζ +
βj(λ)ζj +O(ζj+1); setting

ζλ,j+1 = ζλ,j +
βj(λ)

ρ(λ)− ρ(λ)j
ζj
λ,j

(the denominator does not vanish in a neighborhood of 0), we obtain a new coor-
dinate where the expression of gλ is of the form:

ζ 7→ ρ(λ) + βj+1(λ)ζj+1 +O(ζj+2).

The diffeomorphism (λ, z) 7→ (λ, ζλ,q+1) has the required properties; we have
βq+1(0) 6= 0 since otherwise, the flower would have at least 2q petals.

Corollary 11.2. The expression of g◦qλ in the coordinate ζλ is of the form
ζ 7→ ρ(λ)qζ + b(λ)ζq+1 +O(ζq+2) with b(0) 6= 0.



90 11. A WALZ.

In fact, b = (ρq + ρ2q + . . . + ρq2
)β, b(0) = qβ(0).

We will now make the change of variable defined by the map

(λ, z) 7→
(

λ,
ρ(λ)q(q+1)

qb(λ)ζq

)
,

using the conventions of chapter 9, subsection 1.2.
If ∆ is a disk centered at 0, this map defines an isomorphism h : Λ×∆\{0} → Ω̃,

where Ω̃ is a covering of degree q of an open set Ω of Λ × C of the form Ω =
{(λ, z) | R(λ) < |z|}. We will write h : (λ, z) 7→ (λ, Z).

Proposition 11.2. The expression Gλ of g◦qλ in the coordinate Z is of the form
Z 7→ (1 + Uλ)Z + 1 + η∗(λ,Z), where η(λ, Z) is in O(1/|Z|1/q) when |Z| → ∞,
uniformly with respect to λ ∈ Λ.

Additional information. λ → Uλ is an analytic map given by 1 + Uλ =
1/ρ(λ)q2

. We have U0 = 0 and the multiplicity ν of 0 as a zero of λ 7→ Uλ is equal
to its multiplicity as a zero of λ 7→ ρ(λ)− e2iπp/q.

Proof of the proposition. Set ζ1 = g̃◦qλ (ζ), where g̃λ is the expression of gλ in
the coordinate ζλ, et let Z and Z1 correpond to ζ and ζ1. Wehave

ζ1 = ρ(λ)qζ + b(λ)ζq+1 + . . . = ρ(λ)qζ(1 + b(λ)ρ(λ)−qζq + . . .);

and so

Z1 = ρ(λ)−q2
Z(1− qb(λ)ρ(λ)−qζq + . . .)

= ρ(λ)−q2
Z

(
1− ρ(λ)q2

Z
+ . . .

)

= ρ(λ)−q2
Z − 1 + . . . .

4. Walz of compact sets.

Let K and K ′ be two compact subsets of R2 = C, T be a set homeomorphic
to S1 with orientation (I;E;, equiped with a homotopy class of homeomorphisms
S1 → T ), (ϕt)t∈T and (ϕ′t)t∈T two families of embeddings of K and K ′ in R2. We
set K(t) = ϕt(K) and K ′(t) = ϕ′t(K

′).

Definition 11.1. We say that K(t) and K ′(t) walz d turns when t ranges in
T if

a) ∀t ∈ T , K(t) ∩K ′(t) = ∅;
b) for any map t 7→ z(t) ∈ K(t) and t 7→ z′(t) ∈ K ′(t), the map t 7→

arg(z′(t)− z(t)) from T to T = R/Z has degree d.

Remark. 1) If K and K ′ are simply connected and if condition (a) is satisfied, it is
sufficient to check (b) for a pair of continuous maps t 7→ (z(t), z′(t)). In particular,
there always exists a d such that K(t) and K ′(t) walz d turns.

2) Assume T = ∂Σ, where Σ is a topological disk in R2, and extend t 7→ z(t)
and t 7→ z′(t) to continuous mappings Σ → R2. If d 6= 0, there exists at least a

t ∈
◦
Σ such that z′(t) = z(t). Indeed, otherwise, the map t 7→ arg(z′(t)−z(t)) would

extend to a continuous mapping Σ → T.
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Identifying R2 and C, if the extensions t 7→ z(t) and t 7→ z′(t) are holomorphic

in
◦
Σ, the number d is the number of zeroes of t 7→ z′(t) − z(t) in

◦
Σ, counted with

multiplicities.
3) Let Ω and Ω′ be two simply connected open subsets of R2 and Φ : Ω → Ω′

be a homeomorphism preserving the orientation.
Assume K(t) ⊂ Ω for all t, and that K(t) and K ′(t) walz d turns as t ranges in

T . Then, Φ(K(t)) and Φ(K ′(t)) also walz d turns. Indeed, we can assume that T =
∂Σ, where Σ is a topological disk in R2; if t 7→ z(t) ∈ K(t) and t 7→ z′(t) ∈ K ′(t)
are continuous, we can extend them to continuous mappings Σ → Ω. The number
d is the intersection number in Σ× Ω of the graphs of t 7→ z(t) and t 7→ z′t). It is
preserved by Id× Φ : Σ× Ω → Σ× Ω′.

Identifying R2 and C, we will say that K(t) is to the left (respectively to the
right, above or below) of K ′(t) if, for z ∈ K(t) and z′ ∈ K ′(t), we have Re(z′−z) > 0
(repectively Re(z′ − z) < 0, Im(z′ − z) < 0 or im(z′ − z) > 0).

Proposition 11.3. Assume T = ∂Σ, where Σ = [−1, 1]2, and assume that for
all

t ∈ {−1} × [−1, 1], K(t) is to the left of K ′(t),
t ∈ [−1, 1]× {−1}, K(t) is above K ′(t),
t ∈ {1} × [−1, 1], K(t) is to the right of K ′(t),
t ∈ [−1, 1]× {1}, K(t) is below K ′(t),

Then, K(t) and K ′(t) walz 1 turn.

Proof. The map t 7→ t/|t| and t 7→ (z′(t)− z(t))/|z′(t)− z(t)| from T to S1 never
take opposite values. Therefore, they are homotopic.

In order to prove theorem 11.2, we set N = N ′ + N ′′, where N ′ = bN/2c and
N ′′ = N ′ or N ′ + 1; then, we construct in Λ topological disks σ1, . . . , σν , where ν
is the order of 0 as a zero of λ 7→ ρ(λ)− e2iπp/q, such that, when λ ranges in ∂σi,
g◦N

′q
λ (Q−) and g◦−N ′′q

λ (Q+) walz 1 turn.
in oreder to check this property, thanks to the third remark, we can work in

the coordinate Z.
In order to make the comprehension easier, we will first do the computations

without the term η in proposition 11.2, i.e., replacing Gλ by HU : Z 7→ (1+U)Z−1.

5. Study of the family (HU ).

We set HU (Z) = (1 + U)Z − 1. The map HU is a scaling map with center
A = 1/U which maps 0 to −1.

Let us fix a ∈]0, 1/2[; denote by Pa the square [−a, a]2, i.e., Pa = {z | a ≥
|Re(z)|, a ≥ |Im(z)|} and ΣN = {U | N log(1 + U) + 2iπ ∈ Pa}. The boudary of
ΣN is of the form γ1 ∪ γ2 ∪ γ3 ∪ γ4 (see Fig. 2 below).

For N ≥ 8, we have ΣN ⊂ D8/N \ D4/N and |arg(iU)| < 1/12turn= 30◦ if
U ∈ ΣN .

Proposition 11.4. Let Q+ and Q− be two compact subsets of C, and denote
by δ the diamter of Q+ ∪Q− ∪ {0}. Let N > sup(8, 12δ/a), N ′ and N ′′ such that
N ′ + N ′′ = N . Then, Q− (U) = H◦N ′

U (Q−) and Q + (U) = H◦−N ′′
U (Q+) walz one

turn when U ranges in ∂ΣN .



92 11. A WALZ.

−1+e−a/N−1

(2π−a)/N
2π/N

(2π+a)/N

γ1

γ2

ΣN γ3

γ4

−1+ea/N0

Figure 2. The set ΣN .

Proof. For A ⊂ ΣN , z− ∈ Q− and z+ ∈ Q+, we have
∣∣∣∣log

z− −A

z+ −A

∣∣∣∣ =

∣∣∣∣∣
∫ z+

z−

dz

z −A

∣∣∣∣∣ ≤
δ

A− δ
≤ δ

N/8− δ
< a.

Denote by τ−A the translation Z 7→ Z − A, and Φ the map Z 7→ log Z on C \
e2iπ(−N ′/N+1/4)R+. We set ΦA = Φτ−A

. The fact that Q−(U) and Q+(U) walz
d turns is equivalent to the fact that τ−A(Q−(U)) and τ−A(Q+(U)) walz d truns
according to the definition and the third remark of section 4. It is also equivalent
to ΦA(Q−(U)) and ΦA(Q+(U)) walz d turns. But for U in γ1, ΦA(Q−(U)) is to
the left of ΦA(Q+(U)), it is below for U ∈ γ2, to the right in γ3 and above in γ4.
According to proposition 11.3, ΦA(Q−(U)) and ΦA(Q+(U)) walz 1 turn.

6. Perturbation.

In this section, we choose a neighborhood Λ of 0 in C, an open subset Ω in C
of the form C \ (DR ∪ −iR+), an a ∈]0, 1/2] and a family (Gλ)λ∈Λ of holomorphic
maps Ω → C, such that Gλ(Z) = (1 + Uλ)Z − 1 + η(λ,Z) with |η(λ,Z)| < a/100
for (λ, Z) ∈ Λ× Ω.

We assume that λ 7→ Uλ is a holomorphic map from Λ to C, with U0 = 0, and
that Gλ is injective on every half-plane avoiding −iR+.

We denote by S+ and S− the sectors with angle at the vertex 1/6 turn, centered
on respectively R+ and R−. Let Q+ ⊂ S+ ∩ (C \ D2R) and Q− ⊂ S− ∩ (C \ D2R)
be compact sets. Denote by ∆ the diameter of Q+ ∪Q− ∪ {0}. For λ ∈ Λ, we set
Aλ = 1/Uλ and Hλ(Z) = (1 + Uλ)Z − 1. We define ΣN as in the previous section.
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Proposition 11.5. Let N ≥ sup(8, 24δ/a), N ′ = bN/2c and N ′′ = N − N ′.
Let σ ⊂ Λ be a compact set such that λ 7→ Uλ induces a homeomorphism from σ to
ΣN . Then,

a) For all λ ∈ σ, Q−(λ) = G◦N
′

λ (Q−) and Q+(λ) = G◦−N ′′
l (Q+) are defined;

b) When λ ranges in ∂σ, the compact sets Q−(λ) and Q+(λ) walz 1 turn.

Proof. In order to facilitate the presentation of the proof of this proposition, we
extend Gλ by setting Gλ(Z) = Hλ(Z) for z ∈ C\Ω. This introduces discontinuities,
but they will not bother us.

Let us fix λ ∈ σ, set A = Aλ, U = Uλ, G = Gλ, H = Hλ. Let Z+
0 ∈ Q−+ and

Z−0 ∈ Q−, set Z−i = G◦i(Z−0 ) and choose Z+
i ∈ G−i(Z+

0 ).

Lemma 11.1. For j ≤ N ′′, we have |Z+
j −A| > |A|/2 and |Z−j −A| > |A|/2.

Proof. Let us write Zj for Z+
j or Z−j . We have |Z−0−A| ≥ |A|−δ and δ ≤ Na/24;

we also have N/8 < |A| because U ∈ ΣN ⊂ D8/N . As a consequence,

|Z0 −A| > (1− a/3)|A|e−a/2|A|.
We have

|Zj+1 −A| > e−a/N |Zj −A| − a

100
.

If |Zj −A| > |A|/2, we have a/100 < 0.16a/N |Zi −A|, and so

|Zj+1 −A| > (e−A/N − .16a/N)[Zi −A| > e−(1.02)a/N |Zj −A|.
We therefore have

Zj −A|
|A| ≥ e−(1/2+1.02j/N)a

as long as this quantity is greater than 1/2. But N ′′/N < .5625 for N ≥ 8, and for
a = 1/2, we obtain 1.71 . . . < 2. We therefore have |Zj−A|/|A| > 1

2 for all j < N ′′.
¤

Lemma 11.2. For j ≤ N ′′, we have

a)

∣∣∣∣∣log
Z−j −A

Z−0 −A
− j log U

∣∣∣∣∣ ≤ j
a

3N
;

b)

∣∣∣∣∣log
Z+

j −A

Z+
0 −A

+ j log U

∣∣∣∣∣ ≤ j
a

3N
;

c)
∣∣∣∣log

Z−N ′ −A

Z+
N ′′ −A

−N log U

∣∣∣∣ ≤
3
4
a.

Proof. a) and b). Let us write Zj for Z+
j or Z−j . We have Zj+1 − A = Uε(Zj −

A) + ηj , where ε = ±1 and |ηj | < a/100. Hence,

log(Zj+1 −A) = log(Zj −A) +± log U + log
(

1 +
ηj

Uε(Zj −A)

)
.

We have ∣∣∣∣
η

Uε(Zj −A)

∣∣∣∣ ≤
a/100
N/12

= .32
a

N
.

But | log(1 + .32t)| ≤ t/3 for |t| ≤ 1/16. As a consequence,

| log(Zj+1 −A)− log(Zj −A)− ε log U | ≤ a

3N
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which gives a) and b).
Inequality c) follows from a) with j = N ′, b) with j = N ′′ and

∣∣∣∣log
Z+

0 −A

Z−0 −A

∣∣∣∣ ≤
δ

A− δ
<

Na/24
N/8−Na/24

<
a/24

1/8− 1/48
=

2
5
a,

by observing that 1/3 + 2/5 < 3/4. ¤

Let us now come back to the proof of the proposition.
a) Let `0 be the half-angle under which we see DR from the point A (the

angles are counted in turns). Set `+ = argA + 1/2 + `0, `− = argA + 1/2 − `0,
E+ = {Z | arg(Z−A) ∈ [`+, `++3/4]} and E− = {Z | arg(Z−A) ∈ [`−, `−−3/4]}.
We have E− ⊂ Ω and G◦j(Q−) ⊂ E− for j ≤ N ′, thus G◦N

′
is defined and

continuous on Q−. We have E+ ⊂ G(Ω) and G−1 has a holomorphic branch
defined on E+. It follows from the second lemma taht G−j(Q+) ⊂ E+ for j ≤ N ′′,
so G−N ′′

has a continuous branch defined on Q+.
b) The complex number L(λ) = log(Z−N ′(λ) − Aλ)/(Z+

N ′′(λ) − Aλ) stays at a
distance less than 3a/4 of −N log Uλ, or changing of branch, of −N log Uλ + 2iπ,
which makes one turn around 0 as λ ranges in ∂σ, staying at a distance greater or
equal to a from 0. It follows that L(λ) makes one turn around 0.

7. Proof of theorem 11.2.

Let us work under the hypothesis of theorem 11.2, with g◦qλ of the form ζ 7→
ρ(λ)qζ + b(λ)ζq+1 + O(ζq+2), which we may assume to be true given corollary
11.2. We assume that g◦qλ is defined on a disk ∆ for all λ ∈ Λ. We have argL− =
argL+±1/(2q); we assume that argL− = argL+ +1/(2q) (the other case is deduced
from this one by conjugating via z 7→ z). Let

Θ = {z ∈ ∆ \ {0} | argz ∈ (argL+ − 1/(4q), agrL+ + 3/(4q)}.
The change of variable z 7→ Z induces an isomorphism from Θ to an open set Ω as
in section 6, and g◦qλ becomes a ffunction Gλ : Ω → C which satisfies the condition
of this section, shrinking ∆ is necessary, with Uλ = 1/ρ(λ)2q.

If λ 7→ ρ(λ)−e2iπp/q has a zero of multiplicity ν at 0, it is the same for λ 7→ Uλ,
and if N is sufficiently large, we can find ν disjoint compact sets σ1, . . . , σν such
that λ 7→ Uλ induces for each i ∈ {1, . . . , ν} a homeomorphism from σi to ΣN .

To the compact sets Q− and Q+ of the statement of the theorem correspond
compact sets Q− and Q+ in the coordinate Z. Let us fix i ∈ {1, . . . , ν}. If N is
sufficiently large, when λ ranges in ∂σi, G◦N

′
λ (Q−) and G◦−N ′′

λ (Q+) walz 1 turn
by proposition 11.5; thus, g◦N

′q
λ (Q−) and g◦−N ′′q

λ (Q+) walz 1 turn by remark 3 in
section 4, and there exists a λ ∈ σi such that:

g◦N
′q

λ (s−(λ)) = g◦−N ′′q
λ (s+(λ)).

8. Additional informations.

The proof of the previous section give the following additional informations.

Additional information 1 to theorem 11.2. Let ν be the multiplicity of 0 as a
solution of ρ(λ) = e2iπp/q. In the conditions of theorem 11.2, there exists at least ν

distinct values λ such that g◦Nq
λ (s−(λ)) = s+(λ).
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Additional information 2. The values λN,1, . . . , λN,ν tend to 0 as N → ∞,
uniformly with respect to s+ and s−.

Additional information 3. We have |argUλN,i
−ε/4| < 1/12 if argL− = argL+ +

ε/(2q), ε = ±1.
(arguments are counted in turns).
This follows form UλN,i

∈ ΣN . In fact, we easily see that |argUλN,i
− ε/4| → 0

as N →∞.
In the introduction, we have given a first additional information to corollary

11.1. We now give a second which follows from the additional information 1 of
theorem 11.2. If q 6= 1, α1 is a simple periodic point of period k, for c close to c0,
there is a periodic point α(c) for fc of period k, which depends analytically on c, we
denote by ρ(c) its eigenvalue and ν the order of c0 as a solution of ρ(c) = e2iπp/q.
If q = 1, the point α1 is double as a periodic point of period k, for c close to d0,
there are 2 points α(c) and β(c) periodic of period k close to α1, and we define ν
by (α(c)− β(c))2 ∼ a(c− c0)ν , a 6= 0.

Additional information 2 to corollary 11.1. In the conditions of corollary 11.1,
there are at least ν distinct values of c in W such that f◦Nkq

c (x(c)) = y(c).
Proof. In the case q 6= 1, this follows immediately from the additional information
1 of theorem 11.2.

In the case q = 1, we make the change of parameter cλ = c0 +λ2, which enables
us to choose an analytic determination for λ 7→ α(λ). The map λ 7→ ρ(λ) − 1 has
a zero of order ν at 0. For N sufficiently large, we find at least ν values of λ such
that f◦Nkq

c(λ) (x(λ)) = y(λ) by considering that argL− = argL+ + 1/2, and ν other
values by considering that argL− = argL+ − 1/2, and so 2ν values in total. Those
2ν values of λ correspond to ν distinct values of c.





CHAPTER 12

Landing at the right place.

1. Introduction.

Let c0 ∈ M be such that the polynomials fc0 : z 7→ z2 + c0 has an rationally
indifferent cycle {α1, . . . , αk} with eigenvalue ρ = e2iπp/q. We assume that the

connected component U1 of
◦

Kc0 which contains c0 is atracted by α1 and we denote
by P1 the petal of α1 contained in U1. Let θ be the argument of an external ray of
Kc0 which lands at α1 through an interpetal adjacent to P1. We necessarily have
2kqθ = θ (chapter 9, proposition 9.5 a)).

For c ∈ C, denote by Gc the potential function C\Kc → R+ (extended to C by
0 on Kc) and denote by GM the potential function of M , defined by GN (c) = Gc(c).

Let us choose ∆, n0, r∗ and define x(c) as in chapter 11, section 2. Set I∗ =
[s∗/2kq, s∗], where s∗ = log r∗. For s ∈ I∗ and c such that s > Gc(0), define y(c, s)
by argKc

(y(c, s)) = θ; Gc(y(c, s)) = s. Let W be a disk centered at c0 such that,
for all c ∈ W , we have x(c) ∈ ∆, Gc(0) < s∗/2kq and (∀s ∈ I∗), y(c, s) ∈ ∆. Define
ν as for the additional information 2 of corollary 11.1 in chapter 11, section 8.

In the preceding chapter, we have defined an N0 ∈ N and constructed, for all
N ≥ N0 and all s ∈ I∗, ν distinct values of c in W such that

(2) f◦Nkq
c (x(c)) = y(c, s).

More precisely, the condition |argU − ε/4| < 1/12 (cf chapter 11, additional infor-
mation 3 to theorem 11.2) defines ν sectors S1, . . . , Sν in W . In each one, we find
a value of c satisfying (2).

Once we have chosen such a sector S, denote by ct the value of c found in
S satisfying (2) for N and s such that t = tN,s = s/2(n0+N)kq. This enables us
to define ct for 0 < t ≤ t∗ = s∗/2(n0+N0)kq. Observe that if t = tN,s∗/2kq =
tN+1,s∗ , condition (2) for (N, s∗/2kq) implies (2) for (N = 1, s∗). By the additional
information 2 to theorem 11.2, ct → c0 as t → 0.

For all polnomial f : C→ C and for x and y ∈ C, we will write x ∼f y if (∃N),
f◦n(x) = f◦n(y). We will specify x ∼f,n y if f◦n(x) = f◦n(y).

For c ∈ C \M , let us define omega(c) ∈ C \Kc by:{
Gc(ω(c)) = Gc(c)
argKc

(ω(c)) = θ.

For c = ct, we have c ∼fc ω(c). Indeed, the points f
◦(n0+N)kq
c (c) and f

◦(n0+N)kq
c (ω(c))

have the same potential 2(n0+N)kqGc(c) and the same external argument θ with re-
spect to Kc, therefore are equal.

In this chapter, we will show the following theorem.

Theorem 12.1. For c = ct, with t ∈]0, t∗] sufficiently close to 0, we have
ω(c) = c.

97
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Let us give consequences immediately.

Corollary 12.1. For c = ct with t > 0 sufficiently close to 0, we have c ∈ C\M ,
argM (c) = θ and GM (c) = t.

Corollary 12.2. We have ν = 1.

Otherwise, there woulb be several points in C \M with the same potential and
the same external argument with respect to M .

Corollary 12.3. The external ray R(M, θ) lands at c0.

This is theorem 11.1 annouced in the previous chapter.
Let us give the sketch of the proof of theorem 12.1. As in chapter 11 for the

proof of corollary 11.1, we set c(λ) = c0 + λ if q 6= 1 and c(λ) = c0 + λ2 if q = 1,
which enables us to define α(λ) depending analytically on λ when λ ranges in a
disk Λ centered at 0. We assume that λ ∈ Λ =⇒ c(λ) ∈ W . To the sector S ⊂ W

corresponds a sector S̃ ⊂ Λ.
We will construct for each c ∈ S a point ω̃(c) such that ω̃(c) ∼fc

c. Then, we
will show that on theone hand, ω(ct) = ω̃(ct) for t > 0 sufficiently close to 0, on
the other hand, ω̃(c) = c for c ∈ S sufficiently close to c0.

Remark. 1) For the proof, we will use not only theorem 11.2, its corollary and
their additional informations, but also the inequalities proved in chapter 11 sections
6–7, which have been used in the construction of ct.

2) We will possibly have to increase n0, to decrease r∗ (and so s∗), which will
have the effect to shrikening W , increasing N0 and decreasing t∗.

2. Definition of ω(c, γ).

Let W and n0 be as in the previous section. For c ∈ W , we set xn(c) =
f
◦(n0+n)kq
c (c) = f◦nkq

c (x(c)), and we denote by C(c) the set of points f◦i(c) for
0 ≤ i < n0kq. Let γ : I = [0, 1] → C be a path from x1(c) to x0(c) such that
γ(I) ∩ C(c) = ∅. Then, there exists a unique path γ̃ : [0, n0 + 1] → C extending γ
and such that γ̃(t + 1) ∈ f−kq

c (γ̃(t)) for t ∈ [0, n0]. Indeed, we can define γ̃‖[j,j+1]

by induction on j: the condition γ(I) ∩ C(c) guaranties that γ̃([j − 1, j]) does not
contain critical values of f◦kq

c for j ≤ n0. We then set ω(c, γ) = γ̃(n0 +1). We have
ω(c, γ) ∼fc,n0kq c. Indeed, f◦n0kq

c (ω(c, γ)) = x(c) = f◦n0kq
c (c). If γ is homotopic to

γ′ among the paths from x1(c) to x0(c) avoiding C(c), we have ω(c, γ′) = ω(c, γ).

3. The Fatou-Ecalle cylinder.

We will now work under the conditions of section 7 of chapter 11: the change of
variable z 7→ Z defines an isomorphism from a sector Θλ of ∆ to Ω = C\(DR∪−iR+)
and, to gλ deduced from f◦kq

c(λ) by the change of variable z 7→ ζ corresponds for the
variable Z, a map Gλ : Ω → C of the form Gλ = Hλ + ηλ, where Hλ(Z) =
(1 + Uλ)Z − 1 and (∀Z ∈ Ω) |ηλ(Z)| ≤ a/100. We denote by Aλ the fixed point of
Hλ, let Aλ = 1/Uλ. We assume that R > 1 and we denote by Λ a disk such that,
for λ ∈ Λ, we have c(λ) ∈ W and |Aλ| > 4R. The map Gλ has a fixed point A′λ
such that |A′λ −Aλ| ≤ |Aλ|/100. Sometimes, we will write A for Aλ, and so on . . .

Lemma 12.1. For Z ∈ Ω, we have:∣∣∣∣log
G(Z)−A′

(1 + U)(Z −A′)

∣∣∣∣ ≤
1

10|A| .
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Proof. a) Case where |Z −A| ≥ |A|/2. We have

log
H(Z)−A′

(1 + U)(Z −A′)
= log

H(z)−A′

Z −A′
− log

H(Z)−A

Z −A

=
∫ A′

A

dt

t−H(Z)
− dt

t− Z
=

∫ A′

A

(Z −A)U
(t−H(Z))(t− Z)

dt

So,
∣∣∣∣log

H(Z)−A′

(1 + U)(Z −A′)

∣∣∣∣ ≤ |A−A′| · |U | ·
∣∣∣∣
Z −A

t− Z

∣∣∣∣
1

|t−H(Z)|
≤ |A|

100
· 1
|A| · 1.03 · 1

.24|A| ≤
1

20|A| .

On the other hand,

log
∣∣∣∣
G(Z)−A′

H(Z)−A′

∣∣∣∣ ≤
|η(Z)|

|H(Z)−A′| − |η(Z)| ≤
.01

.24|A| ≤
1

20|A| .

The inequality follows in that case.
b) Case where |Z − A| ≤ |A|/2. On the disk D = DA,|A|/2, we have |η′| ≤

2/(100|A|), because each point of this disk is the center of a disk of radius |A|/4
contained in Ω on which η is bounded by a/100 ≤ 1/200. For Z ∈ D, we have:

|G(Z)−A′ − (1 + U)(Z −A′)| =
∣∣∣∣∣
∫ Z

A′
η′(t)dt

∣∣∣∣∣ ≤
1

50|A| |Z −A′|,

and so, we also have the inequality in this case.

We now assume that λ satisfies |argAλ − 1/4| ≤ 1/12, which implies arg(1 +
Uλ) ≤ −1/(2Aλ). We define an open set Ω′λ ⊂ Ω in the following way: if V is the
largest open sector avoiding DR with vertex at A′λ, the open set Ω′λ is the set of
points Z ∈ V such that [A′λ, Z] ∩ −iR+ = ∅.

Ω′λ

DR

A′λ

Figure 1. The set Ω′λ.
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Denote by Eλ the quotient of Ω′λ by the equivalence relation identifying Z to
Gλ(Z) if the segment [Z, Gλ(Z)] is contained in Ω′λ.

Proposition 12.1. Definition. The space Eλ is a Riemann surface isomor-
phic to C/Z, that we will call the Fatou-Ecalle cylinder of Gλ.

Proof. By the change of variable Z 7→ log(Z−A′λ) (we choose a branch defined on
Ω′λ), the open set Ω′λ becomes a strip Ω̃′λ bounded by cruves which make an angle
with the horizontals bounded by 1/12 turns (in fact, one of those two curves is a
horizontal).

Ω̃′λ

Figure 2. The strip Ω̃′λ.

The map Gλ is conjugate to a map G̃λ : Ω̃′λ → C such hat G̃λ(x+iy) = x1+iy1

with y1− y < .45|U | and |x1− x| < |y1− y| < 1/2. As the strip Ω̃′λ has everywhere
a width greater than π, Eλ = Ω′λ/Gλ ' Ω̃′λ/G̃λ is isomorphic to a cylinder.

Remark. Let Θ′λ be the subset of Θλ which corresponds to Ω′λ by z 7→ Z. The
quotient Θ′λ/f◦kq

c , where c = c(λ), can be identified to Eλ = Ω′λ/Gλ, we will say
that it is the Fatou-Ecalle cylinder relatively to the point α(λ). The one which
interests us here is the one containing the axis of P1 and the end of R(c0, θ).

4. Defintion of ω̃(c).

Let λ ∈ S̃ and c = c(λ) ∈ S. Denote by Eλ = Θ′λ/f◦kq
c be the Fatou-Ecalle

cylinder of f◦kq, χ : Θ′λ → Eλ the canonical map and ξ = χ(x0(λ)). A path γ from
x1(λ) to x0(λ) in Θ′λ gives a loop χ ◦ γ in Eλ, based at ξ. Abusively, we will say
that it is an injective loop if it defines an injective map T = [0, 1]/0 ∼ 1 → Eλ.

Proposition 12.2. Definition
a) There exists a path γ from x1(λ) to x0(λ) in Θ′λ giving an injective loop

in Eλ.
b) Two such loops γ and γ′ are homotopic among the loops avoiding C(c)

and we have ω(c, γ) = ω(c, γ′).
We denote be ω̃(c) the point ω(c, γ) for γ an arbitrary loop from x1(λ) to x0(λ)
giving an injective loop in Eλ.

Proof. If we have chosen n0 large enough and ∆ small enough, we have C(c)∩Θλ ⊂
{f◦mkq(c)}m<n0 , thus χ(z) = ξ for all z ∈ C(c) ∩Θ′λ.

Let us work in the coordinate log(Z −A′λ) so that Θ′ becomes Ω̃′.
a) The affine loop answers the problem.
b) The loops η = χ(γ) and η′ = χ(γ′) are homotopic among the injectie

loops based at ξ, because Eλ is a cylinder. The open set Ω̃′ can be embedded
in the universal covering Ẽ of E; denote by π the projection Ẽ → E. Lifting, we
obtain a homotopy between γ and γ′ among the paths from x1 to x0 in Ẽ avoiding
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π−1(ξ) \ x1, x0}, and in particular, the image C̃ of C ∩ Θ′ by the identification
Θ′ '−→ Ω̃′ −→ Ẽ. But we can retract Ẽ \ C̃ on a compact subset of Ω̃′ \ C̃ containing
the images of γ and γ′. Hence, we obtain a homotopy in between γ and γ′ in Ω̃′ \ C̃,
i.e., in Θ′ \ C. This establishes the first assertion of b). The second follows (cf
section 2).

5. Case of ct.

For all t ∈]0, t∗], let us consider the point ct defined in section 1.

Proposition 12.3. For all t > 0, we have ω(ct) = ω̃(ct).

Proof. Let us set Cj(c) = {f◦m(c)}0≤m<(n0+j)kq. If γ is a path from xj(c) to
xj−1(c) avoiding Cj−1, there exists a unique path γ̃ : [0, n0+j] → C extending γ and
such that γ̃(t+1) ∈ f−kq(γ̃(t)) for t ∈ [0, n0+j−1]. We then set ω̃(c, γ) = γ(n0+j)
and we have ω(c, γ) ∼fc

c.

Lemma 12.2. Let c = c(λ) ∈ S. Let n be such that xj(c) ∈ Θ′λ for 0 ≤ j ≤ n,
and let γ be a path from xn(c) to xn−1(c) in Θ′λ giving an injective path in Eλ. We
have

a) γ(I) ∩ Cn−1(c) = ∅;
b) ω(c, γ) = ω̃(c).

Proof. a) We have Cn−1 ∩Θ′ = C ∩Θ′ ∪ {x0, . . . , xn−2}, and a) follows.
b) For j = 1, . . . , n, denote by γ′j the path from xk to xj−1 which becomes

affine in the coordinate log(Z − A′). The path γ′j gives an injective path in E, as
f◦kq(γ′j−1) if j ≥ 2. The same proof as part (b) in proposition 12.2 shows that:

ω(c, γ) = ω(c, γ′n) = ω(c, f◦kq(γn−1)) = . . . = ω(c, γ′1) = ω̃(c).

¤

Let c = c(λ), c ∈ S and s ∈ I∗ (cf section 1). Define the path γc,R,s by
argKc

γc,R,s(f) = θ and Gc(γc,R,s(t)) = 2−tkqs. This path parametrizes R(Kc, θ)
from y(c, s) to a point y1(c, s) = y(c, s/2kq)inf−kq(y(c, s)).

If we have chosen r∗ sufficiently close to 1 and W , so S and Λ sufficiently small,
the image of γc,R,s is contained in Θ′λ for all s ∈ I∗ and all λ ∈ Λ.

Lemma 12.3. If γc,R,s is a path in Θ′λ, it defines an injective loop in Eλ.

Proof. Otherwise, we would find a pair (t, t′) ∈ I2, different from (1, 0), and a i ≥ 1
such that γc,R,c(t′) = f◦ikq

c (γc,R,s(t)), and so Gc(γc,R,c(t′)) = 2ikqGc(γc,R,c(t)),
which contradicts the definition of γc,R,c. ¤

We now come back to the proof of the proposition. For c = ct, t = tN,s, we
have ω(c) = ω(c, γc,R,c) by definition. We have ω(c, γc,R,c) = ω̃(c) thanks to lemma
12.2 and 12.3, and so, ω(c) = ω̃(c).

6. Definition of ω̃(c0).

Denote by Ω′0 the largest open set contained in Ω′λ for all λ ∈ S̃. The open set
Ω′0 is bounded by 4 half lines, and has 2 connected components Ω′0

+ and Ω′0
−.

Once a sector Θ has been chosen, to f◦kq
c0

corresponds a map G0 : Ω → C of the
form Z 7→ Z − 1η, ‖η‖ ≤ a/100. The quotients E+

0 = Ω′0
+
/G0 and E−

0 = Ω′0
−

/G0



102 12. LANDING AT THE RIGHT PLACE.

Ω′0
+Ω′0

−
DR

Figure 3. The set Ω′0.

are isomorphic to those cylinders. Those are the two Fatou-Ecalle cylinders of G0.
Changing the choice of sector Θ, we obtain in this way 2q cylinders attached to the
point α1. The one that interests us is the cylinder E−

0 corresponding to the sector
Θ containing the axis of the petal P1 in a neighborhood of α1. We assume that this
choice was made for Θ. Denote by Θ′0

− the preimage by z 7→ Z of Ω′0
− in Θ. If we

have chosen n0 sufficiently large, we have xn(c0) ∈ Θ′0
− for all n ≥ 0, and there is

a path from x1(c0) to x0(c0) in Θ′0
− giving an injective loop in E−

0 . This enables
us to define ω̃(c0) (we see as in proposition 12.2 that the resuult does not depend
on the choice of γ). Of course, we have ω̃(c0) ∼fc0 ,n0kq c0.

Proposition 12.4. The point ω̃(c) tends to ω̃(c0) as c → c0 in S.

Proof. Let γ0 be a path from x1(c0) to x0(c0) giving an injective loop – for example
the affine path in the coordinate Z. For λ close to 0, we have a path γλ close to
γ0 from x′1(c(λ)) to x0(c(λ)) giving an injective loop –for example again the affine
loop in the coordinate Z, or in the coordinate log(Z − A′). Lifting n0 times, we
obtain ω̃(c) close to ω̃(c0).

7. Identification of ω̃(c0).

Proposition 12.5. We have ω̃(c0) = c0.

Proof. Let U1 be the connected component of
◦

Kc0 containing the petal P1. We
have Θ′0

− ⊂ P1, or at least f◦nkq
c0

(Θ′0
−) ⊂ P1 for n sufficiently large, so Θ′0

− ⊂ U1.
On the other hand, for all z ∈ U1, the sequence f◦nkq

c0
(z) → α1 tangentially to

the axis of P1 (chpater 9, propositions 9.3 and 9.2); thus (∃n) f◦nkq
c0

(z) ∈ Θ′0.
As a consequence, E−

c0
= Θ′0/f◦kq

c0
is also U1/f◦kq

c0
. This gives a definition of E−

c0

independent of all choices, depending in fact only on the dynamics on U1.
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The map f◦kq : U1 → U1 is holomorphic and proper of degree 2. It has
acritical point u, the unique point of f

−(kq−1)
c0 (0) ∩ U1, and its critical value is c0.

Let ϕ : U1 → D be the isomorphism such that ϕ(u) = 0 and ϕ(c0) ∈]0, 1[; we have

ϕ ◦ f◦kq ◦ ϕ−1 = h : z 7→ 3z2 + 1
z2 + 3

(chapter 9, corollary 9.2).
Denote by E−

h the Fatou-Ecalle cylinder of h at the point 1, relatively to a
sector centered on the axis directed by R−. Similarly, we have E−

h = D/h, and
passing to the quotient, ϕ gives an isomorphism Φ : E−

c0
→ E−

h . Let us set xn(h) =
hn0+n(1/3) = ϕ(xn(c0)). We can define ω̃(h) in the following way: we take a
path γ from x1(h) to x0(h) which gives an injective loop in E−(h), we extend
it to [0, n0 + 1] to a loop γ̃ such that γ̃(t + 1) ∈ h−1(γ(t)) for t ∈ [0, n0], and
we set ω(h) = γ̃(n0 + 1). We clearly have ω̃(h) ∼h,n0 1/3 and ϕ(ω̃(c0)) = ω̃(h).
Proposition 12.5 is a consequence of the following lemma.

Lemma 12.4. We have ω̃(h) = 1/3.

Proof. We have h◦n(1/3) ∈]0, 1[ for all n > 0; we can take for γ the affine path
from x1(h) to x0(h). Then, γ̃ is an injective path whose image is contained in ]0, 1[
and γ̃(n0 + 1) = 1/3. ¤

This completes the proof of proposition 12.5.

8. Proof of theorem 12.1.

Proposition 12.5 has the following corollary.

Corollary 12.4. For c ∈ S sufficiently close to c0, we have ω̃(c) = c.

Proof. There are 2n0kq distinct points vi(c0), i = 1, . . . , 2n0kq such that vi(c0) ∼fc0 ,n0kq

c0. Indeed, f◦n0kq
c0

(c0) is not a critical value of f◦n0kq
c0

, because its critical values are
the points f◦mc0

(c0) for 0 ≤ m ≤ n0kq − 1, and because c0 is not preperiodic. We
can assume v1(c0) = c0. let vi, i = 1, . . . , 2n0kq be pairwise disjoint neighborhoods
of the vi(c0). For c sufficienlty close to c0, there is in each Vi, a unique vi(c) such
that vi(c) ∼fc,n0kq c, and v1(c) = c. For c sufficiently close to c0, we have ω̃(c) ∈ V1

(cf proposition 12.4), so ω̃(c) = v1(c) = c.

Theorem 12.1 follows from this corollary and proposition 12.3.





CHAPTER 13

Landing of external rays of M with rational
argument.

1. Results.

Theorem 13.1. Let θ ∈ Q/Z. Then, the external ray R(M, θ) lands at a point
c ∈ M qhich is either the root of a hyperbolic component, or a Misurewicz point.

Remark. The root of the hyperbolic components of
◦

M are the c such that fc :
z 7→ z2 + c has a rationally indifferent cycle. The Misurewicz points are the c such
that 0 is strictly preperiodic for fc.

Additional information 1. If θ has odd denominator, c is the root of a
hyperbolic component.

The point c belongs to a component U1 of
◦

Kc which is attracted by a point α1.
There are 2 external rays of Kc landing at α1 through an interpetal adjacent to U1

(except if θ = 0, i.e., v = 1/4, a unique ray), and θ is the argument of one of those.

Additional information 2. If θ has even denominator, c is a Misurewicz
point, and θ is one of the external arguments of c in Kc.

In this chapter, we will show theorem 13.1. The additional information 1 will
be proved in the next chpater. We will show that, if c is a Misurewicz point, then
θ is an external argument of c in Kc, which is part of the additional information
2. The additional information 2 will be proved in chapter 17. Theorem 13.1 and
its additional informations are a converse statement to theorem 11.1 in chpater 11
and to theorem 8.2 in chapter 8.

2. Accumulation points of R(M, θ).

Lemma 13.1. Let θ ∈ Q/Z and let c0 be an accumulation point of R(M, θ).
Then either fc0 has a rationally indifferent cycle, or c0 is a Misurewicz point.

Proof. Let us write θ as p/(2l(2k − 1)), with l and k minimum, and set θ′ = 2lθ.
By chapter 8, proposition 8.4, the ray R(Kc0 , θ) lands at a preperiodic point α0,
R(Kc0 , θ

′) lands at α′0 = f◦lc0
(α0) which is periodic of period k′ dividing k, repelling

or rationally indifferent. If α′0 is periodic and rationally indifferent, we have won.
In the following, we assume it is repelling. We can therefore apply proposition 8.5
in chapter 8. In virtue of this proposition, we can find a neighborhood W of c0

in M , an analytic map c 7→ α′(c) from W to C such that f◦k
′

c (α′(c)) = α′(c) and
α′(c0) = α′0, and a continuous map (c, s) 7→ ψc,θ′(s) from W × R+ to C such that
ψc,θ′(0) = α′(c) and ψc,θ′(s) = ϕ−1

c (es+2iπθ′).

105
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Let cn be a sequence of points in R(M, θ) tending to c0, and set sn = GM (cn)
(potential). We have sn → 0 and ψcn,θ′(2lsn) = f◦lcn

(cn), and so f◦lc0
(c0) =

ψc0,θ′(0) = α′0. As α′0 is periodic and belongs to ∂Kc0 , the point c0 is a Misurewicz
point.

Additional information 1. If c0 is a Misurewicz point, θ is an external
argumet of c0 in Kc0 .

Proof. Let us keep the notations of the previous proof. Let us first show that
f◦ic0

(α0) 6= 0 for all i ≥ 0 (cf. chapter 8 proposition 8.5). If we had f◦ic0
(α0) = 0, we

would have ψc0,2i+1θ(0) = f◦i+1
c0

(α0) = c0. However, ψcn,2i+1θ(2i+1s) = f◦i+1
cn

(cn)
tends to f i+1

c0
(c0). But c0 has no critical point of fc0 in its forward orbit, and we

can apply proposition 8.5 of chapter 8, which gives ψcn,2i+1θ(2i+1sn) → c0, and so
f◦i+1

c0
(c0) = c0. As 0 is the only point in f−1

c0
[c0), we deduce that f◦i+1

c0
(0) = 0,

which contradicts the fact that c0 is a Misurewicz point.
We can now apply proposition 8.5 of chapter 8 to α0 = ψc0,θ(0). We have

ψcn,θ(sn) = cn, and so by passing to the limit, ψc0,θ(0) = c0 and c0 = α0.

3. Proof of theorem 13.1.

The set of accumulation points in R(M, θ) is a connected compact set. By the
previous lemma, it is contained in the union of Misurewicz points wichi is countable
andthe set of c such that fc has a rationally indifferent cycle, which is also countable.

But every countable connected compact set is reduced to a point. Thus, there
is a unique acculmulation point c, and since everything occurs in a compact set,
R(M, θ) lands at c.

We have proved theorem 13.1 and its additional information 2.



CHAPTER 14

Hyperbolic components.

1. Hyperbolic components.

Let us denote Xk the set of pairs (c, z) such that f◦kc (z) = z, π the projection
(c, z) 7→ c from Xk to C, and ρk or simply ρ the function (c, z) 7→ (f◦kc )′(z) on Xk.
The set Xk is an algebraic curve over C and π : Xk → C is proper of degree 2k.
In virtue of the implicit function theorem, at each point of Xk where ρk 6= 1, the
curve Xk is smooth and π is a local isomorphism.

Denote by Ak the set of pairs (c, z) ∈ Xk such that |ρ(c, z)| < 1. As ρ : Xk → C
is analytic, it is open (even if Xk has singular points). It follows that Ak = ρ−1

k (D),
∂Ak = ρ−1

k (S1) and the set of pairs (c, z) such that z is a rationally indifferent
periodic point of fc is dense in ∂Ak. The set ∂Ak is an R-algebraic set, of dimension
1 over R, and its only singularities, outside the singular points of Xk, are of the form

(intersection of ν smooth branches), at the critical points of ρk.
Set M ′

k = π(Ak). It is an open subset of C, and the set of c ∈ ∂M ′
k such that

fc has a rationally indifferent cycle of period dividing k is dense in ∂M ′
k. But those

points belong to ∂M (we even know that they are the landing point of an external
ray of M). It follows that ∂M ′

k ⊂ ∂M , and every connected component of M ′
k is a

connected component of
◦

M .
The set M ′ =

⋃
k M ′

k is the set of points c such that fc has an attracting

cycle. Each component of M ′ is a component of
◦

M . The connected components of
◦

M obtained in this way are the hyperbolic components. The question of knowing
whether there exist non-hyperblic components (ghost components) is open. For
c ∈ M ′, there is only one attracting cycle, and the period of this cycle remains
constant on each connected component of M ′.

If W is a connected component of M ′, W is simply connected, because it is

a connected component of
◦

M , ∂W is the union of arcs of algebraic curves, so is
locally connected, so W is homeomorphic to D. Let k be the period of W , and
let W ′ be a conected component of Ak above W , we define ρW : W → D by
ρW (c) = ρk(c, z) for (c, z) ∈ W ′ (independant on the choice of W ′. The map π

induces a homeomorphism from W
′
to W , so ρW extends to a continuous map (still

denote ρW ) from W ro D with ρ′W ∂W ) ⊂ S1. The holomorphic map ρW : W → D is
proper. Every point c ∈ W (respectively c ∈ ∂W ) such that ρW (c) = 0 (repsectively

107
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ρW (c) = 1) is called a center (respectively root) of W . We willsee that ρW : W → D
is a homeomorphism. It will follow that W has 1 center and 1 root.

2. Deformation of a rationally indifferent cycle, case of q 6= 1.

Let c0 ∈ M be such that fc0 has a periodic point α(c0) od period k, with
eigenvalue ρ0 = e2iπp/q with p and q coprime and q 6= 1, so ρ0 6= 1. Set K = kq. The
algebraic curve Xk is the graph of a holomorphic map c 7→ α(c) in a neighborhood
of (c0, α(c0)). The holomorphic map c 7→ ρk(c, α(c)) has a non vanishing derivative
at c0: this follows from corollary 12.2 in chapter 12.

Proposition 14.1. in a neighborhood of c0 the open set M ′
k is bounded by a

subarc of an R-analytic curve.

Proof. fc0 has no other indifferent cycle than the one of α(c0). Indeed, in chapter
10 we have constructed a closeb set B attracted by this cycle and on C\B a metric
for which fc0 is strictly expanding. It follows that Xk induces a trivial covering of
degree 2k of a neighborhood of W of c0. Among the 2k leaves, k contain a point
of the cycle of α(c0), and F : (c, z) 7→ (c, fc(z)) exchanges those leaves; on the
others we have |ρ| > 1 if we have chosen W sufficiently small. We therefore have
M ′

k ∩W = π(Ak ∩W ′) where W ′ is the leaf containing α(c0).

Proposition 14.2. In a neighborhood of (c0, α(c0)), we have XK = Xk ∪X ′
K ,

where
a) Xk ∩X ′

K = {c0};
b) X ′

K is smooth at (c0, α0) with a vertical tangent;
c) πK : X ′

K → C has local degree q at (c0, α0);
d) ρK : X ′

K → C also has local degree q at (c0, α0);
e) in a neighborhood of c0, M ′

K = M ′
k ∪M ′′

K where M ′′
K is the set of points

c such that fc has an attracting cycle of period exactly K; those two open
sets are bounded each by an arc of a R-analytic curve;

f) those two arcs only meet at c0.

Proof. Let ζ be a coordinate satisfying the conditions of proposition 11.1 in chapter
11: the expression gc of f◦kc in this coordinate is of the form

gc : ζ 7→ ρ(c, α(c))ζ + β(c)ζq+1 + . . . ,

and f◦kq
c becomes g◦qc : ζ 7→ (1 + u(c))ζ − b(c)ζq+1 + . . ., with u(c0) = 0 and

b(c0) 6= 0. The equation of XK is

g◦qc (ζ)− ζ = ζ(u(c)− b(c)ζq + . . .) = 0.

This set is the union of Xk with equation ζ = 0 and of X ′
K with equation u(c) =

b(c)ζq + . . .. Since c 7→ u(c) has a simple zero at c0 (corollary 12.2 in chapter 12),
X ′

K is smooth.
Since b(c0) 6= 0, we have part (c). For (c, z) ∈ X ′

K , we have ρK(c, z) =
(g◦qc )′(ζ) = 1 + u(c) − (q + 1)b(c)ζq + . . . and so part (d) follows. The funciton
ρK takes the same values at the q points of X ′

K above a point c close to c0. It fol-
lows that ρK : X ′

k → C factors as ρ′′ ◦π where ρ′′ is holomorphic on a neighborhood
W of c0. For c ∈ W , we hae c ∈ M ′

K if and only if |ρk(c, α(c))| < 1 or |ρ′′(c)| < 1,
2K − (q + 1)k other leaves providing repelling periodic points, at least if wa have
chosen W sufficiently small. Since π and ρ have the same local degree, ρ′′ has a
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non vanishing derivative at c0. This gives (e). Part (f) follows from corollary 12.3
in chapter 12, which gives two external rays of M landing at c0, one in the sector
where Im(u) > 0, the other in the sector where Imu < 0.

Remark. 1) We will see in chapter 15 that we have the following picture.

R(M, θ)

R(M, θ′)

M ′′
K

M ′
k

c0

Figure 1. The sets M ′
k and M ′′

K .

2) We can also deduce (e) from proposition 9.6 in chapter 9.

3. Case of q = 1.

Let c0 ∈ M be such that fc0 has a periodic point α0 of period k, with eigenvalue
ρ0 = 1. Then, α0 is a double fixed point of f◦kc0

(proposition 9.6, chapter 9).

Proposition 14.3. a) Xk is smooth at (c0, α0) with a vertical tangent;
b) π : Xk → C has degre 2 at this point;
c) ρk : Xk → C has a non-vanishing derivative at this point;
d) in a neighborhood of c0, the open set M ′

k is bounded by a R-analytic arc
having a cusp at c0.

Proof. Part (a) follows from corollary 12.2 in chapter 12. Part (b) follows from the
fact that the multiplicity of α0 as a fixed point of f◦kc0

is 2. Part (c) comes with (a).
In Xk, the open set Ak is bounded by a smooth R-analytic curve in a neighborhood
of (c0, α0). Since c0 ∈ ∂M ′

k because it is the landing point of an external ray of M ,
and since π : Ak → M ′

k is injective in a neighborhood of (c0, α0), we deduce (d).

4. Hubbard tree at a root.

Let c0 ∈ M be such that fc0 has a periodic point α(c0) of period k, with
eigenvalue ρ0 = e2iπp/q with p and q coprime; we set K = kq.

We will define a tree associated to c0 as in chapter 4.
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Let us first choose a system of centers for the components of
◦

Kc0 ; if U0, . . . , UK−1

is the periodic cycle of components of
◦

Kc0 , indexed by {0, 1, . . . , K−1} with 0 ∈ U0,
we will take f◦ic0

(0) as the center of Ui (0 ≤ i < K); for the other components V ,
we take a system of center so that the center of fc0(V ) is the image by fc0 of the
center of V . We set UK = U0.

Definition 14.1. With those conventions, the Hubbard tree Hc0 is the allowable
hull of the f◦ic0

(0), (0 ≤ i < K).

Remark. If we do not want to use Sullivan’s non wandering domain theorem,
the system of centers chosen above is a priori not unique. However, the combina-
torial structure (isotopy class of the embedding of a tree in C) is defined without
ambiguity.

Proposition 14.4. If K 6= 1, Hc0 contains the rationally indifferent cycle and
is stable for fc0 .

Proof. The image by fc0 of the allowable arc Γ between f◦ic0
(0) to f◦jc0

(0) (with
0 ≤ i < K and 0 ≤ j < K) is, when 0 /∈ Γ, the allowable arc from f◦i+1

c0
(0) to

f◦j+1
c0

(0) and, when 0 ∈ Γ the union of the allowable arc from f◦i+1
c0

(0) to c0 and the
allowable arc from f◦j+1

c0
(0) to c0. If Γ′ is the allowable arc between 0 and f◦kc0

(0),
and G = H ∪ Γ′, we therefore have fc0(H) ⊂ G. Then, we can apply again the
argument of proposition 4.4 in chapter 4 to see that (if K 6= 1) ν(1)‘ . . . ≤ ν(K−1)
(ν(i) is the number of branches of H at f◦ic0

(0), 0 ≤ i < K) (however, at the
moment, we do not have ν(K − 1) ≤ ν(K)); a tree with more than one vertex has
at least two extremities, ν(1) = 1, so H ∩ ∂U1 contains only one point α1. G does
not intersect ∂Ui (0 ≤ i < K) so fc0(H) ⊂ G implies fc0(H ∩ ∂Ui) ⊂ H ∩ ∂Ui+1

(0 ≤ i < K), and so f◦Kc0
(α1) = α1. Thus, α1 is a point in the rationally indifferent

cycle of fc0 , which is contained in H. In particular, the arc from 0 to α0, point of
the rationally indifferent cycle contained in ∂U0, is in H. But we know (cf corollary
9.2 in chapter 9) that the dynamics of f◦kc0

on U0 is analytically conjugate to the
one of z 7→ (3z2 + 1)/(z2 + 3) on D, so f◦Kc0

(0) is on the arc between 0 and α0, and
so Γ′ ⊂ H and fc0(H) ⊂ H.

We can therefore apply the results of chapters 4 and 7 to c0.

5. Roots of hyperbolic components; multiplicity.

Let c0 ∈ M be such that fc0 has an indifferent cycle of period k, with eigenvalue
e2iπp/q with p and q coprime, and set K = kq.

Proposition 14.5. a) There exists a unique hyperbolic component W

of
◦

M such that c0 is the root of W . It is a component of period K.
b) If c0 6= 1/4, the point c0 has at least 2 external arguments in M , of the

form p/(2K − 1).

Proof. Part (a) follows from propositions 14.2 and 14.3.

(b) Case q 6= 1. Let U1 be the connected component of
◦

Kc0 containing c0, α1

the point of the indifferent cycle of fc0 attracting U1. There are q petals, and so
q interpetals at α1, and 2 of those interpetals are adjacent to U1. landing through
each of them there is at least one external ray of Kc0 with argument of the form
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p/(2K−1), and the external rays of M with the same argument land at c0 (corollary
12.2 in chapter 12).

(b) Case q = 1. There is only one petal at α1 and so, only one interpetal.
However, there are at least 2 external rays of Kc0 landing at α1: indeed, α1 is on
Hc0 without being an extremity, so there are at least 2 accesses to α1 outside Hc0 ,
and so, by corollary 7.2 two external rays of Kc0 landing at α1.

Those external rays have arguments of the form p/(2K − 1) (proposition 9.5).
The external rays of M with the same arguments land at c0.

Let W be a hyperbolic component of
◦

M of period k. For c ∈ W , denote by
α(c) the attracting periodic point of fc attracting 0.

Proposition 14.6. The following numbers are equal:
a) the degree µ of the proper holomorphic map ρW : W → D;
b) the number of zeros in W of c 7→ α(c), counting multiplicities;
c) the number of zeros in W of c 7→ f◦kc (0), counting multiplicities;
d) the number of roots of W in W .

Proof.

Lemma 14.1. Let c0 ∈ W be such that f◦kc0
(0) = 0. The maps c 7→ f◦kc (0),

c 7→ α(c) and c 7→ ρW (c) = ρk(c, α(c)) have the same order of vanishing at c0.

Proof. For c ∈ W , we have ρW (c) = 2kα(c) · fc(α(c)) . . . f◦k−1
c (α(c)), and in the

cycle, {α(c), fc(α(c)), . . . , f◦k−1
c (α(c))}, only α(c) is in the connected component of

◦
Kc that contains 0. Thus, the map c 7→ α(c)) and c 7→ ρW (c) have the same order
of vanishing. On the other hand, for c close to c0, we have

∣∣f◦kc (0)− α(c)
∣∣ <

1
2
|0− α(c)| = 1

2
|α(c)|,

so c 7→ f◦kc (0) and c 7→ α(c) vanish at c0 with the same multiplicity. ¤

We now come back to the proof of the proposition. The zeros of the functions
c 7→ ρW (c), c 7→ α(c) and c 7→ f◦kc (0) are the same, and according to the lemma,
they have the same multiplicity. The number of zeros of c 7→ ρW (c), counting
multiplicities, is the degree µ of ρW . The boundary ∂W is homeomorphic to S1

and ρW : ∂W → S1 is of degree µ. Since it is increasing because ρW is holomorphic
on W , the number of points in ρ−1

W (1) is also µ.

We will call µ the multiplicity of W . We will prove in chapter 19 that µ = 1.

6. Counting.

We will now show the additional information 1 of theorem 13.1 in chapter 13.
Let k ∈ N∗. Denote

m1(k) the number of values of c such that f◦kc (0) = 0, counting multiplic-
ities;

m2(k) the number of hyperbolic components of
◦

M of period dividing k;
m3(k) the number of roots of hyperbolic components of period dividing
k;
m4(k) the number of t ∈ T such that 2kt = t, i.e., of the form p/(2k − 1).
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By proposition 14.6 we have m1(k) = m2(k) = m3(k) and by proposition 14.5
we have m3(k) ≥ 2m4(k)−1. But fc(0) = c, f◦2c (0) = c2 + c, f◦3c (0) = (c2 + c)2 + c,
and so on. . . f◦kc (0) = Pk(c) where Pk is a polynomial of degree 2k−1. On the other
hand m4(k) = 2k − 1. So, we have the equality m3(k) = 2m4(k) − 1. On the
one hand, it follows that each root c0 of a hyperbolic component (except 1/4) has
in M exaclty 2 rational external arguments with odd denominator, on the other
hand, we obtain in this way every element in T = R/Z which is rational with odd
denominator. This proves the additional information 1 of theorem 13.1.



CHAPTER 15

The order of contact of hyperbolic components of
M .

By Tan Lei

Let c0 be the intersection of 2 hyperbolic components W and W ′ of
◦

M , one of
which is of period k, the other of period kq; then fc0 has a rationally indifferent
cycle with eigenvalue e2iπp/q of period k.

1. Summary of already known results which are useful for the proof.

Let {α1, . . . , αk} be the rationally indifferent cycle of fc0 , where α1 is the point
attracting c0. Let P1 be the petal of α1 which contains c0 and R(Kc0 , θ) be an
external ray which lands at α1 through an interpetal adjacent to P1. According to
theorem 11.1 of chapter 11, the external ray R(M, θ) lands at c0.

c0
c0

R(Kc0 , 1
7 )

R(M, 1
7 )

R(M, 2
7 )

R(Kc0 , 2
7 )

α1

Figure 1. The external rays landing at α1 and at c0.

As q 6= 1, for all c in a neighborhood of c0, we can find α(c) such that
fc
◦k(α(c)) = α(c) with c 7→ α(c) analytic and α(c0) = α1.

Set c(λ) = c0 + λ,
ρ(λ) = (f◦kc(λ))

′(α(c(λ))),

ρ(0) = e2iπp/q and

τ(λ) =
1

ρ(λ)q2 − 1,

τ(0) = 0. Then, τ(λ) has a simple zero at 0 (with multiplicity 1) (cf chapter 12),
so λ 7→ τ(λ) is a local homeomorphism in a neighborhood of 0.

113
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If ∆ is a sufficiently small disk centered at α(c0), we take n0 sufficiently large
and r∗ > 1 sufficiently close to 1 such that

x(c0) = f◦n0kq
c0

(c0)

and
y(c0) = ϕ−1

c0
(r∗e2iπθ)

belong to ∆. For c sufiiciently close to c0, set x(c) = f◦n0kq
c (c) and y(c) =

ϕ−1
c (r∗e2iπθ). Fix a ∈]0, 1/2] and denote by

Pa = {z | a ≥ |Re(Z), a ≥ |Im(z)}.
If we take

ΣN = {U | N log(1 + U) + 2iπ ∈ Pa},
we have

ΣN ⊂ D8/N \ D4/N

when N ≥ 8.

2. Proof of the proposition.

Step 1. According to chapter 11, for any neighborhood Wc0 of c0, there exists N0 ≥
0 such that for all N ≥ N0, there exists cN ∈ W such that f◦Nkq

cN
(α(cN )) = y(cN ),

i.e., ∀W neighborhood of 0, ∃N0 ≥ 0, ∀N ≥ N0, there exists λN ∈ W such that
f◦Nkq

c(λN )(x(c(λN ))) = y(c(λN )) and λN is in the piece σN of W where τ : σN → ΣN

induces a homeomorphism (we can take W sufficiently small so that λ 7→ τ(λ) is a
homeomorphism on W ).

In a neighborhood of 0, we can write τ(λ) = aλ + O(λ2) with a 6= 0 since
τ(λ) has a simple zero at 0. Thus, there exists a neighborhood W of 0 such that
τ(λ) − aλ| = O(λ2) < ε|λ|, λ ∈ W , with 0 < ε < |a|. For this W , there exists
N1 ≥ 0 such that ∀N ≥ N1, σN = τ−1(ΣN ) ⊂ W .

For all λ ∈ σN ⊂ W , we have

(|a| − ε)|λ| = |a| · |λ| − ε|λ| ≤ |τ(λ)| ≤ |a| · |λ|+ ε|λ| = (|a|+ ε)|λ|.
Since 4/N ≤ |τ(λ)| ≤ 8/N , we have:

4
(|a|+ ε)N

≤ |λ| ≤ 8
(|a|+ ε)N

, ∀λ ∈ σN .

Step 2.
Let U be a simply connected open subset of C. For all x, y ∈ U , a ∈ U , we

have the inequality:
|y − x| ≤ |x− a|(e4dU (x,y) − 1)

where dU (x, y) stands for the Poincaré distance on U . If ϕ : U → V is an isomor-
phism between two simply connected open sets, then dU (x, y) = dV (ϕ(x), ϕ(y)).

If ϕ : U → V is an analytic map, then ϕ is 1-Lipschitz, i.e., dV (ϕ(x), ϕ(y)) ≤
dU (x, y) for all x, y ∈ U .

The open set C \M is not simply connected, but if we remove the external ray
R(M, θ′), where

θ′ =
{

θ + 1/2, if θ < 1/2
θ − 1/2, if θ > 1/2,
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C \ (M ∪ R(M, θ′)) = U is open and simply connected. Since R(M, θ′) lands and
avoids R(M, θ), U contains R(M, θ). If we take V = C \ (D ∪ R(D, θ′)), then
ϕM : U → V is an isomorphism.

For N2 = max{N1, N0} and U2 = {z | Re(z) > 0, 2πθ− π < Im(z) < 2πθ + π},
∀N ≥ N2, setting cN = c(λN ), we have

dU (cN , cN+1) = dV (ϕM (cN ), ϕM (cN+1))
= dU2(log ϕM (cN ), log ϕM (cN+1))
= dU2(zN , zN+1).

We can write r∗ = es0 with s0 > 0. We have

f◦Nkq
cN

(x(cN )) = ϕ−1
cN

(
es0+2iπθ

)
,

so
ϕcN

(f◦(N+n0)kq
cN

(cN )) = es0+2iπθ,

thus
[ϕcN

(cN )]2
(N+n0)kq

= es0+2iπθ

and

ϕM (cN ) = ϕcN (cN ) = e

s0

(N + n0)kq
+ 2iπθ′

with 2(N+n0)kqθ′ = θ.
In Kc0 , α(c0) = α1 has q petals and is fixed by f◦kc0

, so 2kqθ = θ, and we have
seen in chapter 12 that in fact, θ′ = θ. It follows that

ϕM (cN ) = esN+2iπθ where sN =
s0

(N + n0)kq
,

hence cN is in the external ray R(M, θ) and cN → c0 as N → +∞. We deduce
that dU (cN , cN+1) = dU2(sN + 2iπθ, sN+1 + 2iπθ).

2iπθ+iπ

2iπθ−iπ

2iπθ

U2

UNzN+1 zN zN2

Figure 2. The open set UN .

For each N ≥ N2, we take

ϕN (z) = 2iπθ +
1

2(N−N2)kq
(z − 2iπθ),
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it is an isomorphism which maps zN2 to zN and which maps U2 to UN with UN of
the form

UN = {z | Re(z) > 0, |Im(z)− 2πθ| < ε(N), ε(N) =
π

2(N−N2)
,

ε(N) < ε(N − 1) < . . . < ε(N2) = π. The injection Un → UN+1 is an analytic map
and thus it is 1-Lipschitz. We have

dU2(zN , zN+1) ≤ dUN
(zN , zN+1) = dU2(zN , zN+1) ≤ A.

Finally,

dU (cN , cN+1) = dC\(M∪R(M,θ′))(cN , cN+1) = dU2(zN , zN+1) ≤ A.

For bN ∈ ∂W ∪ ∂W ′,

|cN − cN+1| ≤ |cN − bN |
(
e4dU (cN ,cN+1) + 1

)
≤ B1|cN − bN |,

where B1 is a constant.
Step 3. Assume the contact between W and W ′ at the point c0 is of order greater or
equal to 4. Then, for N3 large enough and N ≥ N3, there exists bN ∈ ∂W∪∂W ′ such
that |cN−bN | ≤ B2|cN−c0|4; so, when N ≥ N3, we have |cN−cN+1| ≤ B|cN−c0|4,
where B = B1B2.

For k ≥ N3, we have

|ck − c0| ≤
∞∑

N=k

|ck − ck+1| ≤ B

∞∑

N=k

|cN − c0|4.

Since cN − c0 = λN ∈ σN , according to step 1, there exist two positive constants
a1 and a2 such that a1/N ≤ |λN | ≤ a2/N , so for all k ≥ N3,

a1

N
≤ |λK | = |ck − c0| ≤ B

∞∑

N=k

|λN |4 = Ba4
2

∞∑

Nk

1
N4

.

This means that for all k ≥ N ,

0 <
a1

Ba4
2

≤
∞∑

N=k

k

N4
<

∞∑

N=k

N

N4
=

∞∑

N=k

1
N3

.

We have a contradiction because
∑

1/N3 converges.



CHAPTER 16

Identification of cylinders: study of the limiting
case.

By Pierre Lavaurs

1. Notations and position of the problem.

The setting is the same as in chapter 12: fc0 : z 7→ z2 + c0 has a rationally
indifferent cycle with eigenvalue e2iπp/q and period k, α1 is a point in the indifferent
cycle.

In chapter 12, we have constructed, for c close to c0, q Fatou-Ecalle cylinders
(2q for c = c0) under the restriction that c tends to c0 in some given sector.

For technical reasons, we will modify slightly the definition of the cylinders
(without changing the cylinders themselves) and the region where c close to c0

ranges.
Instead of defining Ω′λ as in chpater 12, we define it by removing from C only

DR, the segment between A′λ and iR (if ImA′λ > 0; the segment between A′λ and
−iR otherwise) and the half-line Re(Z) = 0, Im(Z) ≤ −R (if ImA′λ > 0; Im(Z) > R
otherwise). By extending the segment from iR (or −iR) to A′λ up to infinity, we get
a partition of Ω′λ into Ω′λ

+ and Ω′λ
−. Finally, for c = c0, we cut with the half-lines

Re(Z) = 0, Im(Z) ≤ −R and Im(Z) ≥ R.

Ω′λ
− Ω′λ

+ Ω′0
− Ω′0

−

c=c0c6=c0

A′λ

Figure 1. The sets Ω′λ
+ and Ω′λ

−.

The inequalities of chapter 12 show that the points added to Ω′λ (Ω′0
+, Ω′0

−) are
equivalent to points of the “old” open sets: this change in the quotiented regions
does not modify the quotient cylinders.

117



118 16. IDENTIFICATION OF CYLINDERS: STUDY OF THE LIMITING CASE.

In chapter 12, we allowed λ to tend to 0 with |argA′l ± 1/4| ≤ 1/12, which is
the same, since 1/A′λ is holomorphic in λ, to restrict to chosen sectors centered on
the 2 half-lines in the λ plane corresponding in the c plane to the half-line which

are tangent to the hyperbolic components of
◦

M which are tangent at c0 (to the half
line for q = 1). Here, instead of allowing λ to tend to 0 in a sector, we will allow it
to tend in between two circles tangent at 0 to the aove half-lines:

λ plane
c plane

c0
0

(q = 1)

Figure 2. The region where λ is allowed to tend to 0.

This restriction is sufficient for applications, because it allows c to take any
value outside M sufficiently close to c0. It has the following advantage: since 1/Aλ

and 1/A′λ are analytic with respect to λ, it forces Aλ and A′λ to stay in between two
lines Re(Z) = −K and Re(Z) = +K. As a consequence, {(λ,Z) | Z ∈ Ω′λ

−} and
{(λ,Z) | Z ∈ Ω′λ

+} are open subsets of V ×C (V is the region where λ varies): if a
point is in Ω′0

− (respectively Ω′0
+, it is in Ω′λ

− (respectively in Ω′λ
+ for λ sufficiently

close to 0.
In order to fix the notations, we assume that we have chosen to stay, in the λ

plane, around a half-line corresponding to ImAλ > 0 (and so alos ImA′λ > 0).
Let us look at what this gives in the z plane.
For c = c0, the 2q cylinders are the quotient of 2q sectors with equal angle in

a disk centered at α1.

(q = 3)

c = c0

α1

Figure 3. The situation for c = c0.

For c close to c0, ∂DR corresponds to a circle “close” to the previous one; α1

splits into a α(c) fixed by f◦kc and a cycle β1(c), . . . , βq(c) for f◦kc , α and βi being
continuous functions of c (which varies in the region, that we will denote by Θ, to
which we have restricted c). The point α corresponds to ∞ in the Z plane, β1 (for
example) to A′λ. We have only q cylinders. However, if we also represent (dashed
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on the figure below) the curves bounding in the z plane the sets Ω′λ
+ and Ω′λ

−, we
see that we may also consider that we have, as for c = c0, 2q cylinders which are
pairwise canonically identified.

(q = 3)α

β1

β2

β3

c 6= c0

Figure 4. The situation for c 6= c0.

We will study the cylinder around β1(c), which becomes 2 when c becomes c0.
The regions corresponding to Ω′λ (Ω′λ

+, Ω′λ
−) in the z plane will be denoted

by U(c) (U+(c), U−(c)). The set U+ = {(c, z) | z ∈ U+(c)} (respectively U−) is
an open subset of Θ × C. The cylinder U(c)/f◦kq

c will be denoted by E(c) as in
chapter 12.

For c = c0, we have one E+(c0) and one E−(c0); the region providing E−(c0)

is completely contained in a component of
◦

Kc0 , the one providing E+(c0) contains
an interpetal.

The outgoing curve will be the curve ∂U ∩ ∂U+. The incoming curve will be
the curve ∂U ∩ ∂U−. They both join α and β1.

The outgoing fundamental domain W0 in U+ will be bounded by the outgoing
curve and its preimage by f◦kq

c in U+. Similarly, the incoming fundamental domain
Y1 in U− will be bounded by the incoming curve and its image by f◦kq

c .
The following figure sketches the dynamics of f◦kq

c in U .

β1

outgoing curve

action of f◦kq
c on a point

incoming curve

Figure 5. The dynamics of f◦kq
c in U .

W0 and Y1 are fundamental domains for the cylinders (identified for c 6= c0)
of fc in a neighborhood of α1 (by convention, we consider that neither W0 nor Y1
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contain the points α and β1 and contain the incoming curve for Y1 and the outgoing
curve for W0).

(q = 1)W0Y1

Y2

α

β1

W−1

Figure 6. The sets Yi and Wi.

For i ≥ 0, the region Yi+1 will be defined as (f◦kq
c )◦i(Y1). For i < 0 not too

small, we will define Wi inductively. Assume Wi+1 is defined as a subset of U
bounded by curves mapped one onto the other by f◦kq

c ; in that case Wi+1 does not
contain critical values of f◦kq

c : we can define the branch of (f◦kq
c )−1 on Wi+1 which

maps one of the two bounding curves onto the other; the image of this branch will
be Wi under the condition that it is contained in U .

The inequalities of chapter 12 show that Wi is defined for |i| ≤ .8|A|/π, so on
a subset of Z which tends to Z− as c → c0.

Y1 Y2
W 0 (q= 1)W


−
1


Let us choose a marked point P+ in U+(c0) and a point P− in U−(c0): for c

close to c0, they are both in U(c); therefore they provide a point P̃−(c) and a point
P̃+(c) in E(c) (in E−(c0) and E+(c0) for c = c0).

All the cylinders E+ and E− can have their extremities labelled in a natural
way; one corresponds to a neighborhood of∞ in the Z plane, the other to A′λ; on the
fundamental domain W0 or Y1, this corresponds on the one hand to a neighborhood
of α, on the other hand to a neighborhood of β1. When c becomes c0, α and β1

are identified, but in the fundamental domain corresponding to W0 or Y1 in the Z
plane, the end taht was corresponding to a neighborhood of β1 is represented by
Im(Z) > 0, the other by Im(Z) < 0. Therefore, we can talk, even for c = c0 of the
end at β1 and the end at α of the cylinder.
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The marked point and the marking of the ends of the cylinder provide an
identification of E+ with C∗, sending P̃+ to 1 and the end at β1 to the end at 0.
Similarly, we will identify E− to C∗.

It may be convenient to modelize the cylinders by C/Z instead of C∗. In this
model, P̃ is identified with 0, the end at β1 to the end Im(Z) < 0. C/Z and C∗
are indentified by z 7→ exp(−2iπZ), it is easy to transfer the results that we will
obtain for the model C∗ to the model C/Z.

For c 6= c0, E+ and E− are in fact the same cylinder that has been identified
via two different isomorphisms ϕ+ and ϕ− to C∗; ϕ+ ◦ (ϕ−)−1 then provide an
isomorphism from C∗ to C∗ which respectes the position of 0 and so, of the form
z 7→ G(c) · z, for a G(c) ∈ C∗.

G(c) contains in a concise way the information on the dynamics of f◦kq
c between

the incoming curve and the outgoing curve: starting with a point in Y1, iterating
a large amot of time, we end in W0. It may therefore be difficult to control the
stability of several phenomenon suting such a large amont of iterations. But, if we
look at E−(c) = Y1/f◦kq

c and E+(c) = W0/f◦kq
c , the knowledge of G(c) provide a

direct passage from one to the other.
Since there is no natural identification between E−(c0) and E+(c0), we may

therefore expect that G(c) does not have any limit as c tends to c0. We will give a
Taylor expansion. The purpose of this chapter is to prove the following theorem.

Theorem 16.1. When c tends to c0, with the restriction that it belongs to Θ,
λ being the coordinate defined in chapter 11 (i.e., c = c0 + λ if q 6= 1, c = c0 + λ2

if q = 1), we have :

G(c) = exp
(

g0 +
k

λ
+ o(1)

)
.

Additional information. ρ1(λ) being the eigenvalue of the cycle f◦kq
c con-

taining β1(c), k = 4π2/ρ′1(0); thus, k/λ is contained in a strip around the postive
imaginary axis.

Remark. We stated here the theorem with the model of C∗. If we prefer to
work with C/Z, multiplication by G is replaced by the translation identified with
an element G of C/Z, and the Taylor expansion becomes: G(c) = G0 + k/λ +
o(1) (modZ), where here, k = 2iπ/ρ′1(0) is such that k/λ belongs to a strip around
the negative imaginary axis.

Example. c0 = 1/4, the fixed points of fc for c close to c0 are (1±√1− 4c)/2. Let
us take λ close to the postivie real axis. In order to have Im(A′λ) > 0, we must choose
α = (1+iλ)/2 and β = (1−iλ)/2; so ρ′1(0) = −i and G(c) = exp(g0+4π2i/λ+o(1))
or, in the model C/Z, G(c) = G0 − 2π/λ + o(1).

2. Continuity of the projection on E.

The choice ot a basepoint enabled us to identify all the E− (respectively E+)
to C∗. We then have the following proposition.

Proposition 16.1. The map π+ : U+ → C∗ (respectively π− : U− → C∗)
which maps (c, z) to the projection of z on E+(c) (respectively E−(c)) identified
with C∗ is continuous.
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Remark. What this proposition asserts (and it is in those terms that we will recall
it when we use it) is that a limiting picture in the plane provides a limiting picture
in the cylinders.
Proof.

Lemma 16.1. Let CR be a ring contained in between the circles |s| = 1/R and
|z| = R, with R > e2π, and let h be a univalent map from CR to C∗ so that the
image of CR surronds 0, on the ssame side of CR with h(1) = 1.

Then, for u ∈ CR, we have an inequality |h(u) − u| ≤ f(u,R) where, when
u varies in a compact set K of C∗ and R tends to infinity (so K ⊂ CR for R
sufficiently large), f(u,R) tends to 0 uniformly on K.

Proof. Let first f : D → C be a univalent map with f(0) = 0 and f(a) = a (for
a ∈]0, 1[). Then, for |z| ≤ r, we have a branch of log(f(z)/z) which satisfies∣∣∣∣log

f(z)
z

∣∣∣∣ ≤ 2| log(1− r)(1− a)|.

Indeed, for g : D → C univalent with g(0) = 0 and ′(0) = 1, we have for all z ∈ D
(cf. [Go], page 117, inequality (19)):

(3)
∣∣∣∣log

g(z)
z

+ log(1− |z|2)
∣∣∣∣ ≤ log

1 + |z|
1− |z| ,

where log(g(z)/z) is the continuous branch defined on D and which maps 0 to 0.
Let us take g(z) = f(z)/f ′(0). Applying (3) at z = a, we find | log f ′(0)| ≤

2| log(1 − a)| for a well chosen branch of log f ′(0); applying (3) at z, we then find
a branch of log(f(z)/z) such that∣∣∣∣log

f(z)
z

− log f ′(0)
∣∣∣∣ ≤ 2| log(1− |z|) ≤ 2| log(1− r)|;

and so ∣∣∣∣log
f(z)

z

∣∣∣∣ ≤ 2| log(1− r)(1− a)|.
We will show that for

exp(
√

log2 R− π2)−1 ≤ |u| ≤ exp(
√

log2 R− π2),

there is a branch of log h(u) such that, log u being the principal branch,

∣∣∣∣
log h(u)

log u

∣∣∣∣ ≤
(

1− 2π

log R

)−2

1−

√
log2 |u|+ π2

log R



−2

,

which provides an inequality of the required form. We can undoubtely refine con-
siderably this inequality: the following proof indeed uses wery few information with
respect to what the situation could bring. However, this inequality will be sufficient
for our purposes.

h provides by passing to the logarithms a univalent map g of the strip − log R ≤
ImZ ≤ log R in C; we can assume h(0) = 0: given the assumption on the relative
position of 0 and h(CR), we have g(2iπ) = 2iπ. Let us consider the map f : z 7→
g(zi log R)/ log R univalent from D to C. We have f(0) = 0 and f(2π/ log R) =
2π/ log R. The bounds in between u varies have been chosen so that the principal
branch of log u has a sufficiently small modulus so that | log u|/ log R is bounded
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from above by r =
√

log2 |u|+ π2/ log R ≤ 1, and so log u/ log R ∈ D. It follows
that there exists a branch of

log
f(log u/ log R)
log u/(i log R)

= log
g(log u)
log u

= log
log h(u)

log u

for a branch of log u which is such that

log
log h(u)

log u
≤ 2

∣∣∣∣∣∣
log

(
1− 2π

log R

) 
1−

√
log2 |u|+ π2

log R




∣∣∣∣∣∣
;

and so

log h(u)
log u

≤
(

1− 2π

log R

)−2

1−

√
log2 |u|+ π2

log R



−2

.

¤

We now come back to the proof of the propostion. We will show the continuity
of π− at a point (c1, z1) of U− (for π+ it is sufficient to replace Yi by Wi in the proof
below; to lighten the notations, the minus sign for π− and E(c)− will be omitted
in this proof).

We take i such that z1 ∈ Yi(c1).
If z1 is not on the bondary of Yi(c1), for (c, z) sufficiently close to (c1, z1),

z ∈ Yi(c).
If it is on the boundary of Yi, this is not a real problem: by increasing slightly

R in the proof given in chapter 12, the cylinders are not changed, but Yi is silghtly

shifted, which bring us back in the case z1 ∈
◦
Yi(c1) that we will assume from now

on.
For r > 0, we will define Y

(r)
i (c): on the curve bounding Yi(c) which is mapped

to the other by f◦kq
c , we tka the points at distance r from α and β1 and we truncate

Yi(c) by the segments joining those points to their images.

Y
(r)

i

r

r

Figure 7. The set Y
(r)
i .

Then, Y
(r)
i (c)/f◦kq

c is a cylinder E(r)(c) of finite modulus. On each Yi(c),
P̃+(c) provides a marked point, which is therefore in Y

(r)
i (c) for r sufficiently small

(it depends continuously on c since it is the image by f◦kqi
c of a given point in

the z-plane). Thus, there is a unique way to identify conformally E(r)(c) with a
ring CR1R2 of the form R1 < |z| < R2 in C∗, sending the marked point to 1 and
respecting the relative position to 0 of E(r)(c) embedded in E(c) identified with
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C∗. We will denote by ι(r)(c) the isomorphism between E(r)(c), considered as a
subset of C∗ and CR1R2 .

It is clear that R2/R1, the modulus of E(r)(c), tends to ∞ as r tends to 0; it
is less clear that R2 tends to ∞ and R1 tends to 0.

This is a consequence of Teichmüller extremal problem (cf [A], pages 35–37):
for r sufficiently small, E(r)(c) contains an annulus CR symmetric with respect to
the unit circle, of modulus 2M arbitrarily large.

ι
(r)
c maps the unit circle to a curve containing 1: the annulus bounded by this

curve and the circle |z| = R2 therefore has a modulus larger than M . Teichmüller
extremal problem guaranties (with the notations of [A]) that M ≤ 1

2π log ψ(R2) ≤
1
2π log[16(R2 +1)] (cf [A], page 47); so R2 tens to infinity as r tends to 0. Similarly,
R1 tends to 0 with r.

We therefore know that if r is sufficiently small, CR1R2 contains the ring CR

for a fixed R. Applying the same argument to [ι(r)c ]−1(CR) for R sufficiently large,
[ι(r)c ]−1(CR) contains CR′ for a fixed R′.

C∗ ' Ec

CR1R2

CR′

1

CR

ι
(r)
c

E
(r)
c

1

We can map Y
(r)
i (c) to Y

(r)
i (c1) by a C1 morphism Φ(r)

(c,c1)
which commutes

with the dynamics of f◦kc on the curves which bound Y
(r)
i (c) and Y

(r)
i (c1), weds



3. THE GERM F . 125

the marked point on the marked point and tend to the identity for the C1 norm as
c tends to c1.

Φ(r)
(c,c1)

induces a map Φ̃(r)
(c,c1)

from E
(r)
c to E

(r)
c1 which leaves 1 fixed and is

quasiconformal with a dilatation ratio which tends to 1.
ι
(r)
c1 ◦ Φ̃(r)

(c,c1)
◦ ι

(r)
c then is a map between to “true” rings, which fixes 1 and is

quasiconformal with a dilatation ratio which tends to 1. It therefore tends to the
identity uniformly on every compact set.

As a consequence, if π(r)(c, z) stands for ι
(r)
c ◦ π(c, z) for z ∈ Y

(r)
i (c), π(r)(c, z)

tends to π(r)(c1, z)1) as (c, z) tends to (c1, z1).
Then, let ε > 0 be fixed. We choose a R′ sufficiently large so that π(c1, z1) ∈

CR′ . We then take R1 sufficiently large so that, if CR1 ⊂ ι
(r)
c (E(r)(c)), we have

CR′ ⊂ ι
(r)−1
c (CR1). Then, we choose R2 sufficiently large so that ι

(r)
c1 (E(r)(c1)) (and

thus, also ι
(r)
c (E(r)(c)) for c sufficiently close to c1) contains CR2 .

Since π(c1, z1) ∈ CR′ ⊂ ι
(r)−1
c (CR1), π(r)(c1, z1) ∈ CR1 . Let us apply the

lemma to ι
(r)−1
c1 on CR2 : we obtain

|π(c1, z1)− π(r)(c1, z1)| < ε/3.

For (c, z) wufficiently close to (c1, z1), we then have: |π(r)(c1, z1)−π(r)(c, z)| < ε/3
and π(r)(c, z) is still in CR1 .

Applying the lemma to ι
(r)−1
c , we have |π(c, z) − π(r)(c, z)| < ε/3. And so,

|π(c, z)− π(c1, z1)| < ε.

Corollary 16.1. G is continuous (on Θ \ {c0}).
Proof. Let c1 be a point where we want to check the continuity of G. Then, there
exists an n such that f◦nc1

(P−) ∈ W−1 ⊂ U+(c1). For c sufficiently close to c1 so
that f◦nc (P−) ∈ U+(c), we then have G(c) = π+(c, f◦nc (P−)).

3. The germ F .

By construction of the cylinders, a neighborhood of β1 in W0 is mapped by
f◦kq

c onto a neighborhood of β1 in Y1; this phenomenon remains true for c = c0 (β1

becomes α1, and the neighborhood restricts to a “horn” of the region W0).
Passing to the quotient, we obtain a map F (c) holomorphic and bijective from

a neighborhood of the end at 0 of E+ = Y0/f◦kq
c identified with C∗ and the end at

0 of E = Y1/f◦kq
c also identified with C∗.

Considered as a map from a neighborhood of 0 in C∗ to a neighborhood of
0 in C∗, F (c) extends continuously by [F (c)](0) = 0: extended in this way, it is
holomorphic and does not have a critical point at 0.

We will denote L(c) the map from C∗ ' E+ → C∗ ' E− which maps z to
[F (c)]′(0) · z. It is the morphism of cylinders tangent to F (c).

In order to compute a Taylor expansion of G(c), we will study L(c) ◦G(c) (we
identifie abusuvely the complex number G(c) and the map z 7→ G(c) · z). The
advantage is that we have a automorphism of a cylinder, which we can study by
looking at its behaviour at an end, forgetting the information contained at the
marked point.

F (c) is also defined for c0: we may expect to have L(c) → L(c0) when c → c0,
which will enabe us to pass from the Taylor expansion of L(c) ◦ G(c) to a Taylor
expansion of G(c).
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4. Limiting behavior of L(c).

Proposition 16.2. When c → c0, L(c) → L(c0).

Proof. Observe that we can find a fixed r such that, in the z-plane, the intersection
of the disk centered at β1 with radius r and the “end” of W0 close to β1 (i.e., the
one which to corresponds to ImZ > 0 in the Z-plane) is mapped by f◦kq

c in Y1; “a
limiting position in the plane corresponding to a limiting position in the cylinder”,
there is a fixed neighborhood of 0 in C∗ where F (c) is defined.

Let us take a closed curve γ with index 1 around 0 inside this neighborhood.
We can develop it in U+(c0) as an arc (not closed) Γc0 ; by the proposition in section
2, we can develop it for c close to c0 as an arc Γc close to Γc0 (in the sense of uniform
convergence).

L(c) can then be computed with the help of Cauchy’s formula on γ by:

1
2iπ

∫

γ

[F (c)](u)
u2

du =
1

2iπ

∫

Γc

π−c (f◦kqN
c (z))

[π+
c (z)]2

dπ+
c

dz
dz

where πc stands for the map z 7→ π(c, z) and N is chosen sufficiently large so that
f◦kqN

c (Γc) ⊂ U−(c). In this integral, the path as the function depend continuously
on c, which gives the required result.

5. Study of L(c) ◦G(c) (c 6= c0).

L(c)◦G(c) is the tangent map to F (c)◦G(c) in a neighborhood of 0 in E(c) ' C∗.
It is determined by the purely local knowledge of the dynamics ot f◦kq

c around β1.
We will see that it can be computed very easily.
As announced in section 1, ρ1(λ) stands for the eigenvalue of the cycle f◦kq

c

containing β1(c); when |ρ1(λ)| 6= 1, f◦kq
c is linearizable in a neighborhood of β1. We

will set ρ1 = ρ1(λ) = re2iπθ. As we are in the case ImA′λ > 0, we have Imρ1 < 0.
Let us consider g : C∗ → C∗ which maps z to ρ1z and p : C→ C∗ the universal

covering which maps u to exp u. g induces a map g̃ : C → C; we will suppose
that it sends 0 to the principal determination log ρ1 of the logartihm of ρ1, so
g̃ : u 7→ u + log ρ1. τ̃ will stand for the map u 7→ u + 2iπ from C to C (change of
leaf). We have τ̃ ◦ g̃ = g̃ ◦ τ̃ .

We can identify the cylinder C/g̃ to C∗ by sending the “end at Reu < 0 to 0
(ρ1 is not real); τ̃ , which commutes with g̃, then indces an isomorphism K(ρ1) :
C∗ → C∗.

Lemma 16.2. If |ρ1(c)| 6= 1, L(c) ◦G(c) = K(ρ1).

Proof. Let us take a neighborhood of β1, sufficiently small so that f◦kq
c is lin-

earizable on it; we can conjugate analytically f◦kq
c on this neighborhood to g in

a neighborhood of 0. The slit Γ which separates Y1 from W0 becomes a curve Γ
which has a tangent at 0.

U \ Γ/f◦kq
c can be identified with C/g̃.

Let us examine what F (c) ◦G(c) (defined in the neighborhood of β1) becomes
in this model. We start with a point y in the fundamental domain for g bounded by
Γ and g(Γ); we consider the successive iterates of y by g until we come back in this
domain after iterating n times. In terms of the universal covering, we strat from
log y (principal determination) and we apply g̃ n times: we end on log(g◦n(y))−2iπ
(log still being the principal branch) which is therefore g̃-equivalent to log y, the
map deduced from F (c)◦G(c) by identifying U \Γ/f◦kq

c to C/g̃ maps the projection
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of log y to the one of log(g◦n(y)), which is g̃-equivalent to τ̃(log y): it is therefore
the restriction of K to a neighborhood of 0, and so L(c) ◦G(c) = K(ρ1).

We can now prove the theorem stated in section 1. We only have to com-
pute K(ρ1). C/g̃ can be identified with C∗ via u 7→ exp(−2iπu/ log ρ1) (since
Im(log ρ1) < 0, the minus sign enables to send the end Reu < 0 to the end at 0).
K(ρ1) sends the projection of 0 to the one of 2iπ, so 1 to exp(4π2/ log ρ1), and so
L(c) ◦G(c) = exp(4π2/ log ρ1). ρ1(λ) is of degree 1 at 0; for q = 1, ρ1(λ) = ρ(−λ)
is of degree 1 by corollary 12.2 of theorem 12.1 in chapter 12; for q > 1, this follows
from the analysis of the shape of the hyperbolic components of M tangent at c0

(and in fact, in an inderect way of this corollary 12.2). We can therefore write
log ρ1(λ) = ρ1(0) · λ + o(λ) with ρ1(0) 6= 0; and so

L(c) ◦G(c) = exp
[

4π2

ρ′1(0) · λ + K ′
0 + o(1)

]
.

Since L(c) has a limit,

G(c) = exp
[

4π2

ρ′1(0) · λ + C0 + o(1)
]

.

A priori, this expansion is only valid when |ρ1(λ)| 6= 1, but since G(c) is continuous,
it is valid everywhere.





CHAPTER 17

A property of continuity.

By Pierre Lavaurs

1. Bifurcation of external rays with rational arguments.

For a θ ∈ R/Z, we will denote by R(M, θ) the external ray of M with argu-
ment θ, and by R(Kc, θ) the external ray of Kc (filled-in Julia set of z 7→ z2 + c)
parametrized by the potential. Tis last ray can bifurcate: in that case, it is not
defined on all R∗+. We will suppose that the rays are oriented in the sense of de-
creasing potentials: progressing on a ray will mean moving from ∞ towards M or
Kc. Finally, note that even when R(M, θ) or R(Kc, θ) lands, we do not consider
the landing point as belonging to the ray.

In the all chapter, we will assume that θ ∈ Q/Z.

Proposition 17.1. The set of points c ∈ C for which R(Kc, θ) bifurcates is⋃

n≥1

R(M, 2nθ) (and since θ ∈ Q/Z is preperiodic for the multiplication by 2, the

union of finitely many external rays of M).

Proof. If c ∈ R(M, 2nθ) for some n ≥ 1, the external argument of c for Kc is 2nθ.
As aconsequence, the ray RKc(2

n−1θ) meets 0, and bifurcates, and so, RKc(θ) also
bifurcates since it is a (n− 1)-th preimage of this ray.

Conversely, if c is not on a ray R(M, 2nθ), n ≥ 1, let 2lθ, . . . , 2l+d−1θ be the
cycle under multiplication by 2 on which θ ends. The rays R(Kc, 2jθ) (l ≤ j ≤
l+d−1) are defined in a neighborhood of infinity, so on an interval [t,∞[ and do not
encounter c on this interval. Then, taking for each j the preimage by z 7→ z2 + c of
R(Kc, 2j+1θ) restricted to [t, 2t] with terminal extremity R(Kc, 2jθ)(t), we extend
all the rays R(Kc, 2jθ, l ≤ j ≤ l + d − 1, to [t/2,∞[, still avoiding c. Iterating
the process, we see that the rays R(Kc, 2jθ) can be defined on R∗+ for all integer
l ≤ j ≤ l + d − 1. The same is true for the rays RKc(2

iθ), 0 ≤ i ≤ l − 1, that we
can construct similarly by induction on l− i since the do not contain c for i ≥ 1.

Thus, for c ∈ C \
⋃

n≤1

RM (2nθ) (which contains M), the ray R(Kc, θ) exists.

By proposition 8.4 in chapter 8, it lands at a point that we will denote by γc(θ).
If Kc is locally connected, γc(θ) is the value at c of the Carthéodory lopp γc

defined on R/Z; otherwise, γc(θ) has only a meaning on Q/Z.

2. Statements and first results.

The goal of this chapter is to prove the following theorem.

129
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Theorem 17.1. For θ ∈ Q/Z, γc(θ) depends continuously on c in C\
⋃

n≤1

RM (2nθ).

Proposition 8.5 in chapter 8 provides a proof in most cases: indeed, it states
that γc(θ) in a neighborhood of c0 ∈ C, and continuous as a function of c as soon as
γc0(θ) is preperiodic and repelling and is not on the backward orbit of the critical
point (if we denote by fc : z 7→ z2 + c, with the notations of this proposition,
γc(θ) = ψfc,θ(0)).

Therefore, there are two remaining cases:
• the one of a Misiurewicz point c0 when γc0(0) is on the backward orbit of

0;
• the one of the root c0 of a hyperbolic component, when γc0(θ) is on the

backward orbit of the rationally indifferent cycle (which also contains this
cycle).

Remark. Using the conclusions of chapters 8 and 12, we can easily see that we
already know the continuity of c 7→ γc(θ) on C \

⋃

n≤1

RM (2nθ).

3. Case of a Mizurewicz point.

Let c0 be a Misiurewicz point and θ ∈ Q/Z.
Thus, we assume that there exists n ∈ N such that f◦nc0

(γc0(θ)) = γc0(2
nθ) = 0.

Then, R(Kc, 2n+1θ) lands at c0, and so RM (2n+1θ) also by theorem 8.2 in
chapter 8.

By the additional information 1 to lemma 13.1 of chapter 13, none of the rays
R(M, 2pθ) for p 6= n + 1 lands at c0. Since those are in finite number, there exists
a neighborhood Λ of c0 which meets none of those rays.

We then have the following statement, which is analog to proposition 8.5 in
chapter 8.

Proposition 17.2. The map (c, s) 7→ ψfc,θ(s) from [Λ \ RM (2n+1θ)]× R∗+ to
C is continuous.

Proof. By proposition 8.5 in chapter 8, (c, s) 7→ ψfc,2n+1θ(s) is continuous on
[Λ \ RM (2n+1θ)] × R∗+; we will now prove by a decreasing induction on i that
(c, s) 7→ ψfc,2iθ(s) is continuous on [Λ \ RM (2n+1θ)]× R∗+

Lemma 17.1. Let f : E → F be a covering map with F locally ocnnected, A be
a topological space and g : A× [0, 1] → F (respectively A×]0, 1] → F ) be continuous.
Let h : A × [0, 1] → E (respectively A×]0, 1] → E) be a lift of g (i.e., f ◦ h = g)
which is

• continuous with respect to t ∈ [0, 1] (respectively t ∈]0, 1])
• continuous at points (a, 1), a ∈ A.

Then, h is continuous on A× [0, 1] (respectively A×]0, 1]).

Proof. It is enough to show that for a ∈ A,

Ta = {t | h is continuous at the point (a, t)}
is open and closed in [0, 1] (respectively ]0, 1]).
• It is open: let (a, t) be a point at which h is continuous; choose a connected
neighborhood V of g(a, t) sufficiently small so that f−1 is trivial above V , and let
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f ′ be the unique continuous branch of f−1 defined on V and which takes the value
h(a, t) at g(a, t). Then, by continuity of h at (a, t), for (b, s) sufficiently close to
(a, t), h(b, s) = f ′[g(b, s)], so h is continuous at (a, s) for s sufficiently close to t.
• It is closed: let t ∈ T , V as above and U a neighborhood of (a, t) of the form W×I
with I interval, such that g(U) ⊂ V . By continuity of h in the second variable,
for s in I, h(a, s) = f ′[g(a, s)]; let us choose such an s in T ; by continuity of h at
the point (a, s), for b sufficiently close to a, h(b, s) = f ′[g(b, s)], so, by continuity in
the second variable, and since g({b}× I) ⊂ V , h(b, u) = f ′[g(b, u)] for b sufficinetly
close to a and u in I, which gives the continuity of h at (a, b). ¤

Let us now apply this lemma: we will choose for A the set Λ \ R(M, 2n+1θ),
we will replace [0, 1] (or ]0, 1]) by [0,∞] (or ]0,∞]) in order to work with the
parametrization by potentials, E and F will both be C∗ to which we add a point
at infinity in each direction of half-line, and f is the map z 7→ z2 extended in the
obvious way at infinity.

The map (c, s) 7→ ψfc,2iθ(s) extends to s = ∞ by mapping (c,∞) to the point
at infinity in F in the direction 2iθ.

Going from i = n + 1 to i = n

We can consider g : A×]0,∞] → F

(c, s) 7→ ψfc,2n+1θ(s)− c

since A ∩ R(M, 2n+1θ) = ∅ this map never takes the values zero and so, takes its
values in F .

g satifies the hypothesis of the lemma.

h : A×]0,∞] → E

(c, s) 7→ ψfc,2nθ(s)
is then a lift of g which satisfies the hypothesis of the lemma: it is therefore con-
tinuous on A×]0,∞].

Moreover, if we extend g to [0,∞], which is possible (it no longer takes its values
in F but in F ∪{0}), we know it is continuous. Then, for all ε > 0, for c sufficiently
close to c0 and s sufficiently small,

∣∣ψfc,2n+1θ(s)− c
∣∣ < ε2 so, |ψfc,2nθ(s)| < ε.

Going from i + 1 to i for i < n.

For i < n, the step from the proposition for i+1 to the proposition for i is then
easier: indeed, we can directly apply the le;;a on [0,∞] for g : (c, s) 7→ ψfc,2i+1θ(s)−c
which takes its values in F , since Λ has been chosen sufficiently small in order to
avoid the rays R(M, 2pθ) different from R(M, 2n+1θ).

4. Case of points with a rationally indifferent cycle.

We will work in the same setting and with the same notations as in chapter 16.
θ is a rational number with odd denominator such that RKc(θ) lands on α1 in

Kc0 .
In order to simplify the presentation, the proof will be explained in the case

q = 1. We will show at the end how to modify it for an arbitrary q.
We will restrict to let c tend to c0 in a region Θ delimited by two curves tangent

with order 2 at c0, we will assume that Θ entirely contains the region contained in
between the two hyperbolic components of M which are tangent at c0 (for q = 1,



132 17. A PROPERTY OF CONTINUITY.

the region the region contained outside the hyperbolic component whose boundary
has a cusp at c0).

We will show the following three propositions, for c in Θ \
⋃

n≥1

R(M, 2nθ).

Proposition 17.3. The landing point of R(Kc, θ) is α or β.

Proposition 17.4. For n fixed and c sufficiently close to c0, R(Kc, θ) does
not go through f◦nc (0).

Proposition 17.5. Fr θ1 ∈ Q/Z such that there exists d ∈ N such that 2dθ1 =
θ, the landing point of R(Kc, θ1) is continuous as a function of c (and in particular,
it is defined for c sufficiently close to c0).

Proposition 17.5 implies theo 17.1; indeed, for a θc such that 2dθ = θ, it asserts
that γc(θc) tends to γc(θ1) as c tends to c0 in Θ \

⋃

n≥1

R(M, 2nθ).

Now, if c tends to c0 in M , the landing point ofRKc
(θ1) is a continuous function

of c, since it is a repelling preperiodic point. Since c tends to c0 in M∩Θ, it tends to
γc0(θ1), it also tends to γc0(θ1) as c tends to c0 in

◦
M , and so, we get the continuity

at c0.
Proposition 17.3 is a first step to proposition 17.5, proposition 17.4 is the key

to the additional information 2 of chapter 13.

4.1. Bounding the distortion of the ray in U . For c = c0, the ray
R(Kc0 , θ) lands at α1 with a tangent perpendicular to the diameter bouding U+.
Increasing R in the construction of chapter 12 if necessary, we can therefore assume
that this ray is transverse to the outgoing curve. (which is the curve by which the
ray enters U+ with our convention of orienting with decresing potentials !); we will
take s(c0) as the smallest parameter where RKc0

(θ) intersects the outgoing curve;
for c close to c0, R(Kc, θ) intersects the outgoing curve at a point corresponding to
a parameter s(c) close to s(c0), since the restriction of this ray to [s(c0)/2,∞[ is a
continuous function of c.

On [s(c0)/2k, s(c0)], the ray R(Kc0 , θ) evolve on a finite number of regions Wi

(i ≤ 0), which we will denote M1.
The restriction of R(Kc, θ) to [s(c)/2k, s(c)] being continuous as a function of

c, and since a limiting position in the plane provides a limiting position on the
cylinder (cf. chapter 16 proposition 16.1), for c sufficiently close to c0, this curve is
still on M1 + 1 domains Wi at most.

This arc of ray defines on the cylinder an injective loop; we can therefore rebuild
the ray step by step as long as we stay in U : in this way, in between s(c) and
s(c)/2k, R(Kc, θ) goes along a loop in W−M1 , . . . ,W0; on [s(c)/(2k)2, s(c)/2k], it
will go along a loop in W−M1−1, . . . ,W−1; if i0 is the largest integer such that W−i0

is defined, we will therefore be able to go back to a loop on W−i0 , . . . ,W−i0+M1 .
As i0 ≥ 0.8|A|/π, for c sufficiently close to c0, there is at least an arc of

R(Kc, θ) defined on an interval of the form [t/2k, t] evolving in Wj1 and Wj2 for
j1 = b−.3|A|/πc and j2 = b−.7|A|/πc (b·c stands for the integer part).

According to the inequality of chapter 12, a Wj for j2 ≤ j ≤ j1 is completely
covered by finitely many Yi’s. Therefore, the arc RKc(θ) evolves in between t and
t/2k in a finite number M(c) of domains Yi. Moreover, t can be chosen so that
RKc(θ)(t) is on one of the ∂Yi and so that in between t and t/2k R(Kc, θ) evolves
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in Yi’s, with i′ ≤ i: it is enough to choose t the least possible so that RKc(θ)(t)
is in Yi among the t ≥ s(c)/(2k)i0−M1 . Lifting the arc sufiiciently many times, we
find a w such that R(Kc, θ) evolves in between w and w/2k on Y1 ∪ . . .∪YM(c) and
has its extremities on ∂YM(c) (w depends on c).

A priori, M(c) depends on c. But we have the following lemma.

Lemma 17.2. We can bound M(c) by a bound M which does not depend on
c.

Proof. Putting a fixed base point on W0 and one on Y1, we know (cf chapter 16)
that the morphism between marked cylinders identified with C/Z defined by the
identification of W0/f◦kc and Y1/f◦kC has when c tends to c0 (in the region to which
we retricted ourselves) an asymptotic expansion of the form G(c) = G0 + k/λ +
o(1) (modZ); G(c) evolves in a strip around R−.

We can then unroll Y1/f◦kc and W0/f◦kc on C, sending the marked points to
Z. The restriction of R(Kc, θ) to [s/2k, s] and to [w/2k, w] each unroll as an arc
of curve (compact), γs and γw where by convention we lift W−M1 ∪ . . . ∪W0 and
Y1 ∪ . . . ∪ YM(c) are lifted by lifting the marked points in W0 or Y1 to 0.

The restriction of R(Kc, θ) to [s/2k, s] has a limiting position in the plane as
c tends to c0, so also on the cylinder; thus, γ1 has a limiting position in C, and
therefore stays, for c sufficiently close to c0, in a rectangle around 0.

γw is obtained after γs by a translation by −G′, where G′ is a lift of G(c).
But the above expansion shows that the imaginary part of G, so also of G′,

is bounded as c tends to c0: γw therefore staysat a finite height, so in a strip B
bounded by two horizontals.

As c tends to c0, the boundary of Y1 has a limiting position in the plane, so
the curve that it defines on the cylinder also has a limiting position, uniformly on
every compact; the lift of Y1 in C restricted to the strip B therefore has a limiting
position; since γw intersects this lift, it stays at a bounded distance from zero, so
in a rectangle of C.

Passing to the limit, a finite number of lifts of domains Yi (i ≥ 1) intersect this
bounded rectangle, so M(c) is bounded ¤

Multiplying W by a power of 2k for some c if necessary, we will assume that
R(Kc, θ)(w) and R(Kc, θ)(w/2k) are on ∂YM , and so, that in between those two
potentials, RKc(θ) evolves in Y1 ∪ . . .∪YM . This arc is obtained by unrolling, with
extremities on ∂YM , the loop defined on the cylinder by the first entry of the ray,
in between s and s/2k.

We will denote by ω(c) the critical point of f◦kc varying continuously with c and

equal for c0 to the critical point of f◦kc0
located in the component of

◦
Kc0 adjacent

to α1: there exists i0 such that f◦i0c (ω) = 0, with 0 ≤ i0 < k.
Moreover, there exists a n0 such that f◦n0

c (ω) is in Yi for c sufficiently close to c0;
we can finally assume that, looking at c even closer to c0, that for j < k(n0 +1) and
j 6= kn0, f◦kc (ω) /∈ U . We will denote by ω̃ the point on the cylinder corresponding
to (f◦kc )(ω).

Proposition 17.6. c belongs to R(M, 2i0θ) if and only if the injective loop
defined on the cylinder by the ”first entry” of R(Kc, θ) in U goes through ω̃.

Proof.
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• On the one hand, if the loop defined on the cylinder by the ”first entry” of
R(Kc, θ) goes through ω̃, according to what we just said, on [w/2n, w], the loop
goes through a point of U projecting to ω̃ on the cylinder, and located in a Yi

(1 ≤ i ≤ M) so through a (f◦kc )◦n0+i(ω) (0 ≤ i ≤ M − 1): the argument of chapter
12 then shows that R(Kc, θ) also goes through f◦kc (ω); it follows that RKc

(2i0θ)
goes through c, so c belongs to RM (2i0θ).

• On the other hand, if c belongs to RM (2i0θ), R(Kc, θ) goes through f◦2k
c (ω) =

f◦k−i0
c (c) so also through all the f◦ki

c (ω) (i ≥ 2) and the loop defined on the cylinder
by the ”first entry” of R(Kc, θ) goes through ω̃.

Let us now analyze what happens when we are not on RM (2i0θ): the loop
on the cylinder is then, since injective, homotopic on the cyloiner minus ω̃ to a
parallel located on one side or the other of ω̃; coming back to the unrollments on
Y1∪ . . .∪YM , we see that this expresses that the arc of loop R(Kc, θ)|[w/2k, w] can
be brought in

(Y1 ∪ . . . ∪ YM ) \ {
(f◦kc )◦n0+i(ω), (0 ≤ i ≤ M − 1)

}

on α or β, with the constraint that the extremities stay on ∂YM , so that one remains
the image of the other by f◦kc during the whole homotopy.

Given the setting (Θ \
⋃

n≥1

RM (2iθ)) in which we stated propositions 17.3 to

17.5, we are outside R(M, 2i0θ), so in the case analized above.

4.2. Return in U .

Proposition 17.7. There exists an N ≥ 1 (independent of c) such that on
[w/(2k)N+1, w/(2k)N ], R(Kc, θ) is in U+(c).

Remark. This proposition asserts that the ray, which after the interval [w/2k, w]
will soon cross the incoming curve and exit from the region U , is well behaved
outside U and comes back in U+ after a bounded time.
Proof.
α) First control on the position of the ray.

For n ≥ 0 fixed and all i such that 1 ≤ i ≤ M , (f◦kc )−n(Yi) has a finite number
of connected components, at most 2kn. They will be called ”zones” in the following.

In between w/(2k)n and w/(2k)n+1, R(Kc, θ) evolves in the 2knM (at most)
zones defined in this way.

Lemma 17.3. Actually, it evolves at most on M · 2M such zones, for c suffi-
ciently close to c0.

Remark. The proximity condition depends on n but it will not be a problem in
the following.
Proof. As above we take n0 such that (f◦kc )◦n0(ω) ∈ Y1, and we assume c is
sufficiently close to c0 so that no (f◦kc )◦i(ω′) for 0 ≤ i ≤ n and ω′ critical point of
f◦kc except the (f◦kc )◦j(ω) (n0 ≤ j ≤ n0 + M − 1) is in Y1 ∪ . . . ∪ YM .

In between w and w/2k, R(Kc, θ) evolves in M zones.
In between w/2k and w/(2k)2, it a priori evolves in at most 2k · M zones:

the connected components of preimages of Y1 ∪ . . . ∪ YM by F ◦kc ; but (if n0 ≥ 1)
Y1∪. . .∪YM does not contain critical values of f◦kc : the 2k preimages of Y1∪. . .∪YM
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are therefore pairwise distinct, and since the arc of ray corresponding to the t ∈
[w/(2k)2, w/2k] is connected, it can only evolve in one of the determinations of
(f◦kc )−1(Y1 ∪ . . . ∪ YM ), so on M zones at most.

So, each time we take a preimage, we will stay on the same number of zones,
except when we take the preimage of a region containing a critical values of f◦kc .
Thanks to the condition imposed on hte position of the points in the critical orbit
with respect to Y1 ∪ . . .∪ YM , this occurs M times exactly; those times, the region
of which we take the preimage contains exactly one critical value which is f◦kc (ω).
Its preimages are grouped in 2k−1 connected components, usually composed of M
zones, except the one of ω which is composed with 2M − 1 zones. In any case, this
step at most doubles the number of zones on which the ray evolves.

Finally, for the n-th preimages, we have the required upper bound M · 2M . ¤

The ray, which does not go through ω̃ when we look at the cylinder, can be
brought back, as mentioned above, to α or β (in a sense made precise at the end
of 4.1). We will see that the knowledge of the position of the ray with respect to
ω̃ on the cylinder is enough to determine 2M branches (at most) of (f◦kc )−n (some
being 2-valued) to apply to each Yi (1 ≤ i ≤ M) to obtain the M · 2M (at most)
zones defined above.

Indeed, let V be the simply connected region that is covered by the ray when
we deform it to α (or β) on Y1 ∪ . . .∪ YM without corssing the points of (f◦kc )◦j(ω)
(n0 ≤ j ≤ n0 + M − 1). (f◦kc )−n(V ) then has 2kn connected components, with
disjoint closures; only one contains α (respectively β) in its closure. This one is
contained in the region where the ray in between w/(2k)n and w/(2k)n+1 evolves,
because the homotopy that brings the ray toward α (respectively β) can be lifted to
a homotopy that brings the ray toward α (respectively β) in (f◦kc )−i(Y1∪ . . .∪YM )
(0 ≤ i ≤ n). The 2M branches (at most) of (f◦kc )−n to be considered are therefore
the ones that send Y1∪. . .∪YM on the connected component of (f◦kc )−n(Y1∪. . .∪YM )
which contains α (respectively β) in its closure.

β) Remark on the dynamics of z 7→ (3z2 + 1)/(z2 + 3).
We will use the conjugacy between the dynamics of f◦kc0

on the connected com-

ponent of
◦
Kc0 adjacent to α1 and F : z 7→ 3z2 + 1

z2 + 3
on D.

We will denote by Û−, Ŷi (for i ≥ 0) the images of U−(c0), Yi(c0) by this
conjugacy; Û+ will be the image of the intersection of U+(c0) with the component

of
◦
Kc0 adjacent to α1.
We will have to define a curve γ in D: γ will be defined on R∗ and will satisfy:

(a) Imγ ≥ 0
(b) on [1, 2[, γ(t) = t/3− 1/3
(c) γ(2t) = F [γ(t)].

This curve γ is well defined and unique: indeed, (c) enables us to define it on
[1, +∞[ where it then covers the segment [0, 1[ of the real axis; in between 1/2 and
1, condition (c) gives two choices for each value of γ(t), but (a) determines this
value: so, on this interval, γ ranges in the segment joining i/

√
3 to 0; in a similar

way, (c) and (a) allows us to determine without ambiguity γ on each [1/2n+1, 1/2n[.
The curve obtained in such a way is continuous: indeed, it is continuous on each
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interval [2p, 2p+1[, p ∈ Z and by construction, since lim
t→2−

γ(t) = γ(2), we have

continuity at points of the form 2p.

Lemma 17.4. As t tends to 0, γ(t) tends to 1 with a vertical tangent.

Proof. It will be convenient to make the change of variable w = (1 + z)/(1 − z).

The map F : z 7→ 3z2 + 1
z2 + 3

from D to D becomes F1 : w 7→ w + 1/w from the

half-plane Rew > 0 into itself. The curve γ(t) becomes a curve η(t) which satisfies:
(a) Im(η) > 0, (b) on [1, 2[, η(t) = t, (c) η(2t) = F1[η(t)]. It is more convenient
to consider η′, parametrized by the change of variable η′(u) = η(2u): we must
show that when u → −∞, η′(u) tends to infinity in the asymptotic direction y′y.
Given the expression of F1, a point of Imz > 0 has as preimage in Imz > 0 a point
located further to the left and above; so, for u ≤ 1, Reη′(u) ≤ 2: the asymptotic
direction will be obtained as soon as Im[η′(u)] will tend to ∞; also, we see that if
ϕn(u) = Im[η′(u− n)], the sequence ϕn(u) is increasing for each u ∈ [0, 1]. But for
each fixed u ∈ [0, 1], the sequence η′(u− n) has a limit (possibly infinity), since its
real part decreases and its imaginary part increases. This limit must therefore be
a fixed point of F1, so infinity: so, the sequence ϕn tends to infinity, uniformly by
Dini’s theorem, which guaranties that η′(u) →∞ as u → −∞. ¤

The curve γ therefore bounds a region A in D. We will denote by B0 the upper
left quadrant of D

Bi+1 = [F−1(Bi)] ∩ (Imz > 0).

B0

A

B1 B2
B3

Lemma 17.5. The sets Bi tend to 1 as i →∞ (in the sense that ∀ε > 0, ∃i0
such that ∀i ≥ i0, ∀z ∈ Bi, |1− z| < ε).
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Proof. If this were not the case, the Bi’s would have another accumulation point
than 1 in D. This point a would not be on ∂D: indeed, the monotonicity of the
action of F on ∂D guaranties that every point in ∂D eventually lands on ∂B1;
however, every forward image of a must be an accumulation point of the sequence
Bi.

a is therefore in D, and its orbit is ”trapped” in (Imz > 0) \ (B0 ∪A).
But lemma 17.4 then forbid the F ◦n(a) to tend towards 0 tangentially to the

ray, thus leading to a contradiction, given proposition 9.2.

γ) Choice of N .
We will now apply those considerations on the dynamics of F to obtain infor-

mations on F−n(Ŷ1 ∪ . . . ∪ ŶM ).
Let us look at the shape of Ŷ1: it is bounded by two curves Γ1 and F (Γ1)

having tangents at 1, which make angles ±π/4 with the real axis.

Γ1

F (Γ1)

Increasing R if necessary, we can assume that they belong to the union of the
closure of A and the rgion conjugate to A (it is better not to try to note this with
usual notations !), transverse to the real axis only at one pont.

Motivated by the study done in α), we will only be interested in the branches
of F−n that send Ŷ1 ∪ . . . ∪ ŶM in a region containing 1 in its closure.

Those connected components of F−n(Ŷ1 ∪ . . . ∪ ŶM ) are then in the regions
bounded by the boundary of the disk and the two determinations of F−n(F ◦M (Γ1))
which start at 1 (cf. shaded zone in the picture below).

Lemma 17.6. There exists N0 such thatr for N ≥ N0, the two connected
components of F−n(Ŷ1 ∪ . . . ∪ ŶM ) which contain 1 in their closures are in Û+.

Proof. It is clearly enough to prove it for the connected component of F−n(Ŷ1 ∪
. . . ∪ ŶM ) located above the real axis.

This one is in the region bounded by the boundary of D and a curve, determi-
nation of F−N [F ◦M (Γ1)].

The curve Γ′1 which bounds Û+ is composed of an arc in A, which coincides
with Γ1 in a neighborhood of 1, then leaves it to go to ∂D, bounding in such a way
a region (the upper half of Û+) in D.
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Γ1

F (Γ1)Ŷ1...

F−n0+1(Γ1)

a determination of F−n0 (Γ1)

a determination of F−n0 (Γ1)

0

a determination of F−n(F◦M (Γ1))

a determination of F−n(F◦M (Γ1))

It is enough to show that for N large enough, F−N+M (Γ1) (where we take the
determination with positive imaginary part starting at 1) is in this region.

We will distinghuish F−N+M (Γ1 ∩A) and F−N+M (Γ1 ∩A) (here A stands for
the conjugate of A).

F restricted to A is bijective: we can therefore conjugate this restriction of F to
A to a bijective transformation g of the Poincaré half-plane; F|A has an indifferent
fixed point on ∂A: we can therefore choose for g the parabolic transformation
g(Z) = Z + 1.

The curve Γ1 ∩ A is then represented in this model as a curve γ1 joining a
point on the real axis to ∞, with asymptotic direction y′y (corresponding to the
tangent to Γ1 making an angle of π/4 with the real axis), and Γ′1∩A is represented
as a curve γ′1 coinciding with γ1 in a neighborhood of infinity, landing on the
real axis at a point Choice offurther to the left than the landing point of γ1; the
determination of F−1 one must apply to γ1 in order to find γ−N+M (corresponding
to F−N+M (γ1 ∩ A)) is Z 7→ Z − 1: it is clear that for N large enough, we are to
the left of γ′1, and so, F−N+M (γ1 ∩A) is in Û+.

γ1

γ′1

γ−N0+M γ−1 γ0
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For F−N+M (Γ1 ∩ A), we will use lemma 17.5: by assumption made at the
beginning of part γ) of the proof on the position of Γ1, F−N+M (Γ1 ∩A) evolves in
BN−n0−M (for N ≥ n0 +M), so is close to 1 for N large enough, and is also in Û+.

δ) Such an N is convenient.
we will choose N ≥ N0 (with the additional requirement that 0.3(N −M) ≥

2K, whose necessity will appear in the following computations), and check that it
answers the statement of proposition 17.7.

The branches of (f◦kc )−N who, applied to Y1, . . . , YM , provide regions in which
R(Kc, θ) can evolve in between w/(2k)N and w/(2k)N+1 are in finite number inde-
pendent of c; they define in such a way a certain number of ”zones”, images of Y
under iteration of branches of (f◦kc )−1. For c = c0, we have proven in γ) that those
zones are all in U+.

Most of those regions (all except 2M) do not contain α1 in their closure (for
c = c0): they are therefore relatively compact in U+(c0) and stay in U+(c) for c
close to c0 in Θ.

For the other 2M , we must study more carefully the behaviour of f◦kc in a
neighborhood of α or β.

We will cut Y1 in three pieces: two of them are bounded by small arcs of circles
around α or β; the third is the remaining part of Y1.

1

2

β

α3

This third piece won’t be a problem. For c = c0, it does not contain α1 in its
closure.

Let us look at the piece close to α: in the Z-plane, it corresponds to a sector
close to −∞ on the side ImZ < 0. It is bounded by a curve which stays at distance
R′ of zero. Decreasing the size of the three small circles that subdivide Y1 in three
pieces, we may assume that R′ is as large as necessary, and in particular R′ > R.

N being chosen, for R′ sufficiently large, the determination of (f◦kc )−1 to be
iterated i times (N −M + 1 ≤ i ≤ N) and to be applied to Y1 to providew the M

considered zones close to α, can be written Z =
(

1 +
1

Aλ

)−1

Z ′+1 up to an error

term, whose modulus is bounded from above by a/100 (it is enugh to choose R′

sufficiently large in order to make sure to stay outside DR during N iterations of
this (f◦kc )−1). For R′ chosen sufficiently large and c sufficiently close to c0, the real
part is then at least increased by .9 each time we apply (f◦kc )−1 and we are sure
that after i iterations (N −M +1 ≤ i ≤ N) in ReZ > 0, ImZ < 0: the small sector
around α in Y1 is mapped in U+(c) by (f◦kc )−N+M−1, . . . , (f◦kc )−N for c sufficiently
close to c0.
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The computation is more delicate close to β. Here, we use the fact that A′λ, and
so also the cut between A′λ and iR, stays in between two vertical lines ImZ = −K
and ImZ = K.

For |Z −A| ≤ A/2, the inequalities of chapter 12 show that (f◦kc )−1 looks like
the scaling map of center A′ and ratio (1 + 1/A)−1 up to an error bounded by

2a

100|A| |Z − A′λ|; its i-th iteration (N −M + 1 ≤ i ≤ N) therefore shifts like this

scaling map up to an error bounded by
2ai

100|A| |Z − A′λ|; this guaranties that we

actually rotated and that we are to the right of the cut between A′ and iR.

4.3. Construction of a trap. For c sufficiently close to c0, we have a s(c)
such thatRKc

(θ) is on the outgoing curve, and that in between s and s/2k, R(Kc, θ)
evolves in U+(c).

R(Kc, θ) eventually intersect the outgoing curve for a potential w(c). Proposi-
tion 17.7 then shows that (for c sufficiently close to c0), there exists t ≤ w(c) such
that on [t/2k, t], RKc

(θ) again evolves in U+(c). Let us set

τ(c) = sup{t | t ≤ w and on [t/2k, t], RKc
(θ) |rmevolves in U+(c)}.

Now, R(Kc, θ)(τ(c)) is on the outgoing curve Γ.
in between τ(c) and w(c), it is possible that R(Kc, θ) intersects Γ at several

points; let us call σ(c) the parameter contained in between τ(c) and w(c) corre-
sponding to the intersection of Γ andR(Kc, θ)([τ(c), w(c)] the closets toRKc(θ)(s(c))
(on the same side as RKc(θ)(τ(c)).

The capture zone P is then defined as the open set bounded byRKc([σ(c), s(c)])
and Γ in between RKc(θ)(σ(c)) and R(Kc, θ)(s(c)).

w(c)

s(c)

σ(c)

τ(c)

R(Kc,θ)

Let us observe that for c sufficiently close to c0, P contains no critical value
of f◦kc : indeed, regarding f◦kc (ω′) for ω′ distinct from ω(c), when c = c0, they are
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not in the regions covered by the images of the 2 · 2M · M branches of (f◦kc )−i

(for N − M + 1 ≤ i ≤ N) for which the image of Y1 provide the region where a
continuous curve γ, satisfying γ(2t) = f◦kc0

(γ(t)) and evolving in Y1 ∪ . . . ∪ YM in
between 1 and 2k, can evolve in between 1/(2k)N and 1/(2k)N+1; therefore, they
are not in those regions for c close to c0, so they are not in P .

The same reasonning shows that the ω′′ distinct from ω such that f◦kc (ω′′) =
f◦kc (ω) are not in P either.

Moreover, we have a continuous determination of (fc)−1 on ∂P (equal to
R(Kc, θ)(u) 7→ R(Kc, θ)(u/2k) on the part of P defined by an arc of the ray
R(Kc, θ) and by the determination of (f◦kc )−1 which sends W0 to W−1 on the
part of ∂P defined by an arc of Γ), which sends ∂P on a simple closed curve ∂P ′

contained in P .
If f◦kc (ω) were in P , one preimage should be in P

′
. Since no ω′′ 6= ω such

that f◦kc (ω′′) = f◦kc (ω) is in P
′
, it would necessarily be ω. But we then have a

contradiction, since if ω ∈ P ′, f − c◦k would map P ′, simple closed curve turning
around a single critical point onto a simple closed curve, and if ω were in ∂P ′, it
would be on R(Kc, θ) so c would be on R(M, 2i0(θ), what we excluded.

The continuous determination of (f◦kc )−1 which sends ∂P on ∂P ′ therefore
extends has a univalued holomorphic branch of (f◦kc )−1 which sends P into itself.

Let us finally observe, which will be useful for later purposes, that for m ≥ 0
fixed, if we take c sufficienlty close to c0 (the proximity condition depends on m), the
same reasonning guaranties that none of the (f◦kc )i(ω′) for ω′ critical point of f◦kc

distinct from ω and 1 ≤ i ≤ m), and none of the ω′′ 6= ω such that (f◦kc )◦m(ω′′) =
(f◦kc )◦m(ω), are in P ; since f◦kc (ω) is not in P and since every point in P has a
preimage in P , we deduce that the (f◦kc )◦i(ω) (1 ≤ i ≤ m) are not in P either. In
terns of fc, this means that the f◦ic (0) are not in P for 1 ≤ i ≤ km.

We now have the tools to prove the three propositions.

4.4. Proof of proposition 17.3. For t ≤ σ(c), R(Kc, θ)(t) evolves in P :
indeed, we see by induction on n ≥ −1, that the branch of (f◦kc )−1 to be chosen

to go from RKc(θ)
([

σ(c)
(2k)n+1

,
σ(c)
(2k)n

])
to RKc(θ)

([
σ(c)

(2k)n+2
,

σ(c)
(2k)n+1

])
, maps

R(Kc, θ)
(

σ(c)
(2k)n

)
which is in P to RKc(θ)

(
σ(c)

(2k)n+1

)
which is also in P , and so,

this branch is the one that sends P into itself.
(f◦kc )−1, of degree 1 from an open subset of C into an open set strictly con-

tained in the first one, is strictly contracting for the Poincaré metric on P ; it has a
fixed point which is α or β (depending on the position on the cylinder of the loop
corresponding to the first entry of the ray); the sequence of (f◦kc )−n(u) therefore
converges to α or β.

4.5. Proof of proposition 17.4. We observed that P does not contain f◦ic (0)

(1 ≤ i ≤ km) for c sufficiently close to c0; since RKc(θ)
[
s(c)
2k

, +∞
[

is continuous

with respect to c, we see that for c close to c0, it does not go through f◦ic (0)

(1 ≤ i ≤ km) and RKc(θ)
]
0,

s(c)
2

]
neither, since it is contained in P .
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4.6. Proof of the additional information 2 of theorem 13.1 in chapter
13. We already know (chapter 13 – additional information 1 to lemma 13.1) that
if the additional information 2 were not true, it would be that an external ray of
M whose argument θ1 has even denominator, lands at the root c0 of a hyperbolic
component. Let us consider n such that 2nθ1 has odd denominator. There exists
c’s arbitrarily close to c0 such that c ∈ R(M, θ1), so c ∈ R(Kc, θ1) and so, f◦nc (c) =
f◦n+1

c (0) ∈ R(Kc, 2nθ1).

• If R(Kc0 , 2
nθ1) lands on a point in a repelling cycle, R(Kc, θ1) moves con-

tinuously with respect to c in a neighborhood of c0, so RKc0
(θ1) goes through c0

which is a contradiction since c0 ∈
◦
Kc0 .

• If R(Kc0 , 2
nθ1) lands on a point in a rationally indifferent cycle, we can

(modifying n if necessary) assume that it is on α1. But then, the fact that we
can find c arbitrarily close to c0 such that f◦n+1

c (0) ∈ R(Kc, 2nθ1) contradicts
proposition 17.4.

4.7. Proof of proposition 17.5. The position of the ray with respect to
f◦ic (0) (1 ≤ i ≤ km) does not change, as long as c is sufficiently close to c0. In
order to give a sense to this remark, let us compactify C by a point at infinity in
each direction of half-lines, et let us exted R(Kc, θ) by choosing for R(Kc, θ)(∞)
the point at infinity in the direction of θ: the ray is then continuous on [0,∞].

In the space Ĉ constructed above, for c sufficiently close to c0 and not on
R(M, 2i0θ), the rayR(Kc, θ) is homotopic with fixed extremitites to a curve ηc equal
toRKc(θ) on [s(c),+∞] and to a segment of line between α or β andR(Kc, θ)(s(c)),
without going through f◦ic (0) (1/ ≤ i ≤ km).

So, R(Kc, θ) is not continuous with respect to c, but is homotopic to ηc which
is continuous with respect to c. The extremity of R(Kc, θ1) for 2nθ1 = θ (with
n ≤ km) is then equal to the extremity of the determination of (fc)−n(ηc) which
maps the point at infinity in the direction θ to the point at infinity in the direction
of θ1.

The same reasonning as in the case of Misurewicz points, given the fact that
the homotopy occurs at each step in the space F there defined, shows that this
extremity is continuous with respect to c.

Remark. When q 6= 1, we have 2q cylinders and no longer 2. We can however use
the same argument starting with the entrance of the ray in one of the cylinders,
and bound its distortion. If we are on the side of β1, then the argument used in
the case q = 1 shows that in bounded time, we come back in the zone defining the
first cylinder, and we can construct the same trap around β1 as in the case q = 1.

If we are on the side of α on the cylinder, after crossing the zone corresponding
to the first cylinder, we will end on a second in finite time. But we will again be
on the side of α: indeed, for c sufficiently close to c0, the ray evolves in a petal for
Kc0 during its possible passage outside the zones providing the cylinders: we cross
in such a way a second cylinder, with again limitations on the distortion of the ray
during this crossing. After crossing the 2q zones providing the cylinders, the ray
comes back in the one where it did its first entry, and a trap is formed around α.
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CHAPTER 18

Additional information on trees.

By Pierre Lavaurs

1. Trees at the centers and the roots.

Let W be a hyperbolic component of
◦

M with multiplicity µ, and c1, . . . , cµ its
roots.

For all point c ∈ M and θ ∈ Q/Z, the ray R(Kc, θ) lands at a point γc(θ) ∈ Kc:
we can therefore define an equivalence relation ∼c on Q/Z by θ ∼c θ′ ⇐⇒ γc(θ) =
γc(θ′).

Proposition 18.1. ∼c is constant on W ∪ {c1, . . . , cµ}.
Proof.

• The property is true on W :
For θ and θ′ fixed, the set of c ∈ W such that γc(θ) = γc(θ′) is closed in W

since those two functions are continuous with respect to c (cf. theorem in chapter
17; in fact, on W , we are in the easy case of this theorem).

Let c0 ∈ W be given; for c close to c0 the functions c 7→ γc(θ) and c 7→ γc(θ′)
providing two preperiodic points, varying continuously with respect to c, and sent
by a constant number of iterations n, without going through 0, on a cycle of length
constantly dividing an fixed integer p. Those two functions therefore satisfy the
functional equation f◦n+p

c (α(c)) = f◦pc (α(c)). If we assume θ ∼c0 θ′, the implicit
function theorem guaranties the equality of γc(θ) and γc(θ′) for c close to c0: the
set of c such that θ ∼c θ′ is therefore open in W .

For all pair (θ, θ′), the equivalence θ ∼c θ′ is therefore true for all c in W or for
none.

• The property is true at the roots:
It is still true, for the same reasons, that for θ and θ′ fixed, the set of c in W ∪

{c1, . . . , cµ} such that γc(θ) = γc(θ′) is closed in W ∪ {c1, . . . , cµ}: the equivalence
relation is therefore bigger at a root than in W .

Let us take θ and θ′ equivalent at c1 for example.
If γc1(θ) = γc1(θ

′) is repelling preperiodic, the argument used on W can be
used identically, and we see that θ and θ′ are still equivalent in a neighborhood of
c1, so in W .

If γc1(θ) = γc1(θ
′) is indifferent preperiodic, it is necessary to analyze more

carefully the cycles that ”merge” at c0 to provide the indifferent cycle. This anal-
ysis has been made at the beginning of chapter 16; it shows that if α(c1) is on
the indifferent cycle of fc1 , there are q + 1 ways of defining α(c) continuous in a
neighborhood of c1 in W so that α(c) is a periodic point of fc (one is of period kq,
the q others are of period k). Among those q +1 determinationsm, q are attracting
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in W so only one can be the landing point of the rays. If γc1(θ) = γc1(θ
′) is on

the rationally indifferent cycle, the continuity of γc(θ) or γc(θ′) with respect to c
implies that for c close to c0, we still have θ ∼c θ′; if γc1(θ) = γc1(θ

′) is rationally
indifferent preperiodic, there exists n such that γc1(2

nθ) is rationally indifferent
periodic: since γc(θ) and γc(θ′) both satisfy the functional equation

f◦nc (γc(θ)) = f◦nc (γc(θ′)) = γc(2n(θ),

they are the same branch of f−n
c (γc(θ)) and both are equal for c sufficiently close

to c1 in W .

Proposition 18.2. Let c and c′ be centers or roots of hyperbolic components;
if ∼c=∼c′ , the Hubbard trees Hc and Hc′ are isomorphic.

Proof. We associate to c, center or root of a hyperbolic component, a (finite)
subset Θc of Q/Z composed of:

• external arguments of branching points in the Hubbard tree of fc

• external arguments of points in ∂U0, . . . , ∂Un−1 (where U0, . . . , Un−1 are
the components of the periodic cycle of fc) which form a cycle of length
n

• external arguments of points in ∂U0, . . . , ∂Un−1 with internal argument
opposite to the previous ones.

Let us consider Θc ∪ Θc′ : the restriction of ∼ to this set is the same for c
and c′. The external rays having those arguments give the same drawing in the
plane (in the sense of the existence of a homeomorphism of the plane respecting
the directions at infinity) for Kc and Kc′ .

Examples: • c landing point of the external ray of M of argument 1/7

11/28
1/7

15/28

4/7

11/14

x1

0=x0=x3

x2

9/28 2/7 15/56 11/56 9/56

1/14

9/14

• c landing point of the external ray of M of argument 5/31
This drawing subdivides the plane in a certain number of regions.

Lemma 18.1. For all i ≥ 0, f◦i(0) is in the same region for c and for c′.
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0=x0=x5

x4 x1

x3

x2

37/62

191/248

5/62

3/31

67/124

17/31

4/7

18/31

161/248 24/3120/31

191/496

12/31

1/7

9/31 5/31
161/992

191/9926/31

37/124161/496
10/31

2/7

Proof. We will show that for θ, θ′ ∈ Q/Z equivalent for ∼c=∼c′ , and distinct,
we know where to put f◦i(0) with respect to the curve joining ∞ to ∞ through
RKc(θ) ∪R(Kc, θ′) or RK′

c
(θ) ∪R(K ′

c, θ
′).

For i = 0, it is obvious: Kc (or Kc′) being symmetric with respect to 0, 0 is on
the side that leaves the largest arc in between θ and θ′ on the circle R/Z.

We will then proceed by induction on i: R(Kc, θ) and RKc(θ
′) do not land at 0,

so θ 6= θ′+1/2: θ and θ′ have in total four halves θ/2, θ′/2, θ/2+1/2 amd θ′/2+1/2.
The rays indexed by those halves are grouped on Kc in two points mapped by fc on
the landing point of R(Kc, θ). Since ∼c=∼c′ , the rays for Kc′ are grouped pairwise
in the same way, subdividing the plane in three regions; by induction hypothesis,
we know where to put f◦i(0) with respect to those three regions; we deduce where
to put f◦i+1(0) with respect ot R(K, θ) ∪R(K, θ′) which is therefore the same for
c and for c′. ¤

We will deduce from this lemma that H is the same for c and for c′.
Let us observe that

• there is at most one point of Hc (or Hc′ since the lemma shows that they
are put in the same way) in each region: it is for this reason that we
put in Θc rays landing at two points in each component of the cycle of
components of

◦
Kc

• the branching points of Hc or Hc′ are all points where at least three regions
of the drawing formed by those meet.

Now, there is only one way, from the point of view of topology and up to isotopy
in C, to join the marked points: on the boundary of each region, composed of one
or two curves, we put an exiting point by curve, and the tree must go through those
exiting points to join the marked points.
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2. Tree at a bifurcation.

Let W be a hyperbolic component of
◦

M , ρ(c) the multiplier of the cycle for fc

which is attracting in W . We will describe how to obtain thre tree H ′ of a point
c of ∂W where ρ = e2iπp/q with p and q coprime, q 6= 1 (the case q = 1 has been
treated in the previous section), given the Hubbard tree H at the center of W . We
will say that H ′ is obtained from H after bifurcation of argument e2iπp/q. (To be
rigorous, it is of course the isotopy class of isomorphism of tree that we construct).

2.1. Description of the construction. Let (xi)0≤i≤k−1 be the marked points
of H. Let us replace each xi by a star with q branches, centered at xi, with ex-
tremities (yj)j=i+lk 0 ≤ l ≤ q− 1, indexed so that the rotation of angle p/q around
xi sends yj to yj+k mod kq. We then have points y0, . . . ykq−1.

When a branch of H come to a point xi, we let it come to a point yj with
j = i mod k. There us a unique way of doing this, so that the tree H ′ we get,
equipped with the yi, satsify to the Hubbard condition: ∃F : H ′ → H ′, continuous
and injective on each component of H ′ cut along y0, with F (yi) = yi+1, F (ykq−1) =
y0.

Example:

x2 x1

0=x0=x4

x3

p/q=2/5

y14

y2
y10

y18
y6

y17 y9

y1

y13
y5

y12

y4

y16

y11

y3 y15

y7

y19

y8

0=y0=y20

2.2. Justification of the construction. Let c1 be a center of U , and con-
sider Θc1 defined as in the beginning of the proof of proposition 18.2. The argument
of proposition 18.1 immediately shows that the graph of ∼c contains the one of ∼c1 ;
moreover, the landing points of the rays indexed by Θc land in Kc1 on repelling
(pre)periodic points which are not backward images of 0, so do not ”merge”: as in
the case of a root, we see that those ray provide the same ”drawing” in the plane
of Kc1 and the plane of Kc (here, we only have to use the ”easy” case of chapter
17). Lemma 18.1 can be applied: we know how to put the points (yi)0≤i≤kq−1

with respect to the rays of Θc. The tree H ′ is therefore obtained from the tree
H by replacing the point (xi)0≤i≤k−1 by the subtree generated by the (yj)j=i+lk

0 ≤ l ≤ q − 1. However, this subtree is associated to the q components adjacent
to a periodic point of period k: it is therefore the star with q barnches described
above.

H ′, isomorphic to the Hubbard tree for a c root of hyperbolic component,
satisfy the Hubbard condition.
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We still have to show that this construction is not ambiguous, i.e., that there
is only one way to put the stars on H. But δ standing for the degree, Hubbard
condition implies easily (see chapter 4 proposition 4.4), δ(y0) = 2,

δ(y1) = 1 ≤ δ(y2) ≤ . . . ≤ δ(ykq−1) ≤ 2 = δ(ykq)

(setting ykq = y0); at x1 it is therefore necessary to attach the star to H by its
vertex having the largest index.

Finally, the injectivity of F on the two components of H ′ cut at y0 allows to
determine how the stars are mapped one to another (the path going to the star
cotaining y0 being mapped to the path going to the star containing y1), so to
complete the indexing of the points (yi)0≤i≤kq−1 on the stars.

3. Computation of external arguments in M .

Let c1 be a root of a hyperbolic component W of
◦

M and H be its Hubard tree.
We will explain how we find its external arguments in M given the tree H. Let
x0 = 0, x1 = c,. . . , xk = x0 be the ;arked points of H (where k is the period of x0).
Let us choose a continuous map F : Hc → Hc, such that F (xi) = Xi+1, injective
on each component of Hc cut at 0. We assume that we have chosen F so that it has
a periodic point α1 inside the edge going to x1 (let us recall that x1 is an extremity
in Hc). The period of α1 is k. The arguments θ− = arg−(c) and θ+ = arg+(c) are
the arguments of α1, computed with the algorithm desribed in chapter 7 section 4
(which only uses combinatorial datas).
Variation. We can (as in [DH1]) put α1 at x1, but we only put one bud at the
extremities of Hc (instead of an infinity), and we choose the dynamics on the
accesses to xi (which is not determined for x0 7→ x1) so that those accesses are
periodic of period k.

Let us show that this algorithm is convenient: it is clear that the result does
not depend on the position of the point α1 on the edge going to x1, neither on the
chosen F ; the rationally indifferent periodic point is in the tree Hc precisely on this
edge, possibly at its root a (cf chapter 14 proposition 14.4); if it is strictly on the
edge, the above computation gives all its external arguments in Kc which are two:
we are in the case q = 1 (primitive root) and we have found the external arguments
of c in M ; if it is at a, the computation gives the same result as the one we would
obtain by considering the accesse to a adjacent to the edge [a, x1], i.e., precisely the
external arguments of c in M .

From this algorithm and the one described in section 2, we can deduce an
arithmetic algorithm which provides the external arguments θ−p/q and θ+

p/q in M

of a point c in ∂W obtained from the bifurcation of argument e2iπp/q given the
external arguments θ− and θ+ in M of the point c1.

If c1 = 1/4, the Hubbard tree of fc is a star with q branches indexed so that
we go from the point yi to the point yi+1 by a rotation of p/q. We can use the
above algorithm to compute the external arguments of c in M ; we will denote their
representatives in ]0, 1[ by f−(p/q) and f+(p/q) with f−(p/q) < f+(p/q); in this

way, f−(1/2) = 1/3, f+(1/2) = 2/3, f−(1/3) = 1/7, f+(1/3) = 2/7, . . . .
◦
θ
−

and
◦
θ
+

stand for the representatives of θ− and θ+ in ]0, 1[ and we assume
◦
θ
−

<
◦
θ
+

.
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Proposition 18.3. The representatives of θ−p/q and θ+
p/q in ]0, 1[ are obtained

in the following way: we write
◦
θ
−

= .u−1 . . . u−k and
◦
θ
+

= .u+
1 . . . u+

k in base 2. Then,
in the diadic development of f−(p/q) (respectively f+(p/q)) in base 2, we replace
the zeros by u−1 . . . u−k and the ones by u+

1 . . . u+
k .

Proof. It is enough to explicit what happens when we aply the algorithm of section
3 to find the tree associated to c, and then the one of the first part of this section
to compute the associated arguments.

Indeed, one can check that the extended star in the sense of chapter 7, the arc
[−β, β] goes through zq−1 and z0 (we denote by z0 the critical point for this tree,
zi+1 is the image of zi for its dynamics)

−β

z1

z3

z0

z2

z4

β

In the tree Hc, the backward images of [−β, β] go through the stars at y(l−2)q+l

and y(k−1)q+l (1 ≤ l ≤ k).

−β γ with F (γ)=−β

y13

y20

y14

y18 y17

y16

y19

y15

β

Therefore, if we choose a point α1 on the edge going to y1, an access to α1 will
evolve during the k first iterations as an access to x1 ”to the right” when we go
to x1 on Hc1 if y1 is ”to the right” of the arc ykq−1 to ykq−q−1, i.e., if z is ”to the
right” of the path from z0 to zq−1, i.e., if f−(p/q) (or f+(p/q) depending on the
bud considered at α1) starts with a 0, as an access to x1 ”to the left” if f−(p/q)
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starts with a 1: we replace the first digit of f−(p/q) by u−1 . . . u−k if it is a 0 and by
u+

1 . . . u+
k if it is a 1. We see that it is again what we must do for each sequence of

k iterations.

Proposition 18.4. If c1 6= 1/4, 0 and W are on both sides of the curve
L = RM (θ+) ∪R(M, θ−) ∪ {c1}.
Proof. Indeed, 0 and W are positionned with respect to L as 1/4 with respect
to a point c obtained from c1 after bifurcation of argument 1/2. The algorithm of

proposition 18.3 shows that if
◦
θ
−
1/2 and

◦
θ
+

1/2 are the representatives in ]0, 1[ of θ−1/2

and θ+
1/2, we have

0 <
◦
θ
−

<
◦
θ
−
1/2<

◦
θ
+

1/2<
◦
θ
+

< 1,

so L separates c from 1/4, landing point of R(M, 0).





CHAPTER 19

Simplicity of hyperbolic components.

Theorem 19.1. For all hyperbolic component W of
◦

M , the map ρW : W → D
is an isomorphism

We can give several proofs of this theorem. Here are the sketches.

1. First proof.

Lemma 19.1 (Gleason). All root of Pk is simple. (Pk is defined in chapter
14, section 6).

Proof. Let us denote by A the ring of z ∈ C which are algebraic integers on Z. The
polynomial Pk is monic, so if Pk(c) = 0, we have c ∈ A. But Pk(2) = (Pk−1(2))2+2,
so P ′k = 2Pk−1P

′
k−1 + 1 and if c is a root of Pk, we have P ′k(c) ≡ 1 mod 2A, so

P ′k(c) 6= 0.

Proof 1 of Theorem 19.1. A component W only has one center by chapter 18
proposition 18.1 and by chapter 6. This center is simple by lemma 19.1.

2. Second proof.

Using proposition 18.4 in chapter 18, we show the following proposition.

Proposition 19.1. Let W1 and W2 be two hyperbolic components, c1 a root of
W1 and c2 a root of W2. If c1 6= c2, we have W 1 ∩W 2 = ∅, {c1} or {c2}.
Proof. For i = 1, 2, ci is the landing point of 2 rays R(M, θ+

i ) and R(M, θ−i ). We
set Li = RM (θ+

i ) ∪ R(M, θ−i ) ∪ {ci}. We have L1 ∩ L2 = ∅, so C \ (L1 ∪ L2 has
three connected components U1, U2, U3 with ∂U1 = L1, ∂U2 = L1 ∪L2, ∂U3 = L2.
If 0 ∈ U1, we have W 2 ⊂ U3 ∪ {c2} and W 1 ⊂ U2 ∪ {c1, c2} so W 1 ∩W 2 ⊂ {c2}. If

0 ∈ U2, we have W 1 ⊂ U1∪{c1} and W 2

◦
K⊂ U3∪{c2}, so W 1∩W 2 = ∅. If 0 ∈ U3

we have W − 1 ⊂ U1 ∪ {c1} and W 2 ⊂ U2 ∪ {c1, c2}, so W 1 ∩W 3 = ∅ or {c1}.
Corollary 19.1. Theorem 19.1.

Because we cannot have W − 1 = W2 and c1 6= c2.

3. Third proof.

Lemma 19.2 (Sullivan). Let c ∈ W be such that ρ(c) 6= 0. Then, ρ′(c) 6= 0.

The proof relies on the Measurable Riemann Mapping Theorem of Morrey-
Ahlfors-Bers.
Proof. Let {α1, . . . , αk} be the attracting cycle of fc. The basin of this cycle

is
◦
K, let us set V =

◦
K \{z | ∃n, f◦n(z) = α1}. Let E be the quotient of V by
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the equivalence relation z1 ∼ z2 ⇐⇒ ∃(n1, n2) f◦n1
c (z1) = f◦n2

c (z2). Then E
is a compact Riemann surface of genus 1. If σ is a continuous Beltrami form of
norm < 1 on E, denoting by χ : V → E the canonical map, σ̃ = χ∗(σ) extended
by 0 is a Beltrami form invariant by fc, measurable and bounded with norm < 1,
so integrable. If ϕ : C → C is such that ∂̄ϕ/∂ϕ = σ̃, the map ϕ ◦ fc ◦ ϕ−1 :
C→ C is holomoprhic (since σ̃ is fc-invariant), proper of degree 2, it is therefore a
polynomial of degree 2, affinely conjugated to one z 7→ z2 + c(σ). We have c(0) = c
and log ρW (c(σ))/2iπ is equal to the ratio between the periods of (E, σ). We can
choose a continuous map ρ 7→ σ(ρ) so that ρ 7→ c(σ(ρ)) is a continuous section of
c 7→ ρW (c).

Proof 1 of Theorem 19.1. Lemma 19.2 and 19.1 show that ρW : W → D is a
covering map. Since D is simply connected, it is trivial.

For a fourth proof, variant of the preceding one but avoiding Gleason’s lemma,
see [Do1].



CHAPTER 20

Veins.

We first give a technique to study a full, connected, locally connected compact
susbset of C. Le compact set M is full and connected, but we do not know how to
show that it is locally connected. We will see that due to its combinatorial aspect,
our techniques can be applied to M .

1. Extremal points.

Let K ⊂ C be a compact, full, connected and locally connected, and choose a
center for each connected component of

◦
K. For x and y in K, we denote by [x, y]K

the allowable arc from x to y, and if x1, . . . , xn are elements of K, we denote by
[x1, . . . , xn]K the allowable hull of {x1, . . . , xn} (cf chapter 2).

Denote by γK the Caratheodory loop T → ∂K. For x ∈ K, the points of
γ−1

K (x) are the external arguments of x.

Proposition 20.1. and definitions. Let x ∈ K. The following conditions
are equivalent:

(i) x ∈ ∂K and K \ {x} is connected
(ii) x has one external argument and only one
(iii) one cannot find two points y, z ∈ K \ {x} such that x ∈ [y, z]K .

If x satisfies these conditions, we say that x is an extremal point in K.

Proof. a) (not (i)) ⇒ (not (iii)): if x belongs to a connected component U of
◦
K,

we can find y and z ∈ ∂U such that x ∈ [y, z]. If K \ {x} is not connected, we take
y and z in two different connected components of K \ {x}; then, x ∈ [y, z]K .

b) (not (iii)) ⇒ (not (ii)): If x ∈ ◦
K, it does not have any external argument. If

x ∈ ∂K and x ∈]y, z[K , there are two accesses to x relatively to the tree [y, z]K (cf.
chapter 7), so x has at least 2 external arguments.

c) (not (ii)) ⇒ (not (i)): Let t and t′ be two arguments of x and L = R(K, t)∪
R(K, t′) ∪ {x}. We can find s ∈ [t, t′] and s′ ∈ [t′, t] such that y = γ(s) 6= x and
z = γ(s′) 6= x (a Carathéodory loop is never constant on an interval). Then, y and
z are on both sides of L and x ∈ [y, z]K .

2. Veins in K.

Same assumptions on K. Let (an)n∈N be a sequence of extremal points in K.
We denote by tn the external argument of an, and we assume that t0 = 0. We set
Hn = [a0, . . . , an]K1. For each n, Hn is a finite topological tree, and for n ≥ 1 we

1If a0 ∈ ∂U0, where U0 is a component of
◦
K (necessarily unique since a0 is extremal), we

choose for H0 the internal ray of U0 with extremity a0 and not the set {a0}
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can write Hn = Hn−1 ∪ [dn, an]K with Hn−1 ∩ [dn, an]K = {dn}. This determines
dn ∈ K.

We denote h(tn) and we call vein of extremal external argument tn, or vein
with extremity an, the allowable arc [dn, an]K . The point dn is called the origin
of h(tn), and h∗(tn) =]dn, an]K = [dn, an]K \ {dn} is called the strict vein with
extremity an. For x and y ∈ K, we will say that y is after x and we will write
x ≤ y if x ∈ [a0, y]K .

We will define, for all x ∈ K, two numbers arg−(x) and arg+(x) in [0, 1]. For

t ∈ T, denote
◦
t the representative of t in [0, 1[.

If x ∈ ∂K \ {a0}, we set arg−(x) = inf
t∈γ−1

K (x)

◦
t and arg+(x) = sup

t∈γ−1
K (x)

◦
t.

If x = a0, we set arg−(x) = 0 and arg+(x) = 1.

If x is the center of a component U of
◦
K, teh arc [a0, x]K cuts ∂U at a unique

point y = πU (a0) (projection of a0 on U , and arg−(y) and arg+(y) correspond to 2

accesses to y relatively to [a0, x]K . We take for arg−(x) the largest
◦
t for t external

argument of y in the same access as arg−(y), and we define arg+(x) symetrically.
We therefore have

0 ≤ arg−(y) ≤ arg−(x) ≤ arg +(x) ≤ arg+(y) ≤ 1.

If x belongs to U without being the center, denote by x0 the center of U and
let [x0, x1]K be the internal ray of U going through x. We set:

arg±(x) = arg±(x1) if x1 6= πU (a0) and
= arg±(x0) if x1 = πU (a0).

In any case, we denote by I(x) the interval [arg−(x), arg+(x)].
We also define the arguments associated to x.
If x ∈ ∂K \{a0}, the arguments associated to x are the

◦
t, where t is an external

argument of x.
If x = a0, they are 0 and 1.
If x is the center of a component U of

◦
K, they are arg−(y) and arg+(y) for

y ∈ ∂U \ {πU (a0)}, together with arg−(x) and arg+(x).
If x belongs to U without being the center, the arguments associated to s are

arg−(x) and arg+(x).

For all interval I ⊂ [0, 1] containing one of the
◦
tn, we call leader of I the number

tn(I) where n(I) is the smallest n such that
◦
tn∈ I.

Proposition 20.2. Let n ∈ N and x ∈ K. Assume x ∈ ∂K or x is the center
of a component of

◦
K.

a) We have x ∈ h∗(tn) if and only if tn is the leader of I(x).
b) We have x ∈ h(tn) if and only if tn) is the leader of an interval of the

form [θ′, θ′′], where θ′ and θ′′ are arguments associated to x.

Proof. Let us set θ± = arg±(x); let x1 be the common landing point of R(K, θ−)

and R(K, θ+) (which is x if x ∈ ∂K). If x belongs to a component U of
◦
K, we set

x0 = x. We set L = ∇K(θ−) ∪RK(θ+) ∪ {x1}.
(a) Case x1 = a0. With the chosen conventions, we have x ∈ h∗(t0) = h(t0).

However, I(x) = [0, 1], and the leader of [0, 1] is 0 = t0.
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(a) x1 6= a0, ⇐. L is homeomorphic to R, and C\L has 2 connected components
V0 and V1, V0 ⊃ R(K, 0). By definition of the leader, we have: ai ∈ V0 for
i = 0, . . . , n− 1 and an ∈ V1 ∪ {x1}. Since dn ∈ Hn−1, we have dn ∈ V0 ∪ {x1}.

If dn = x1, let ti be such that i < n and ai ≥ x1; we have ti ∈ I(x1), so
I(x1) 6= I(x), this is only possible if x = x0 is the center of a component U , et in
this case, x ∈]dn, an].

(a) x1 6= a0, ⇒. Let us keep the definitions of L, V0 and V1. We have an ≥ x.
We deduce that an ∈ V1 ∪ {x1}, and so tn ∈ I(x). For i < n, we have ai 6≥ x. We
deduce that ai ∈ V0 ∪{x1}. We could have ai = x1 only if x0 > x1, but in this case
x1 is not extremal, so necessarily ai 6= x1, ai ∈ V0 and ti 6∈ I(x). As a consequence,
tn is the leader of I(x).

(b) ⇐. Let us set L′ = R(K, θ′) ∪ RK(θ′′) ∪ [x′1, x
′
1]K , where x′1 and x′′1 are

the landing points of respectively R(K, θ′) and RK(θ′′). Denote by V ′
0 and V ′

1 the
connected components of C \ L′, with V ′

0 ⊃ R(K, 0). We have tn ∈ [θ′, θ′′], so
an ∈ V ′

1 ∪ {x′1, x′1}. For i < n, we have ti 6∈ [θ′, θ′′], so ai ∈ V ′
0 . As a consequence,

dn ∈ V ′
0 ∪ {x0}, and in each case, we deduce that x ∈ [dn, an] = h(tn).

(b) ⇒. If x ∈ ∂K, let θ′ and θ′ be external arguments of x in accesses to Hn

such that among the points a0, . . . , an, only an is in between R(K, θ′) and RK(θ′′).
Then, tn ∈ [θ′, θ′′], ti 6∈ [θ′, θ′′] for i < n and tn is the leader of [θ′, θ′′].

Let us assume that x belongs to a component U of
◦
K with center x0. Denote

by y the piont where [x, an]K cuts ∂U . If x 6∈]x0, πU (a0)], we take θ′ = arg−(y0
and θ′′ = arg+(y). If x ∈]x0, πU (a0)], we take θ′ = arg−(x0) and θ′′ = arg+(x0).
In each case, we have ti 6∈ [θ′, θ′′] for i < n, and we have tn ∈ [θ′, θ′′] since tn ≥ y
in one case and tn ≥ πU (a0) in the other. So, tn is the leader of [θ′, θ′].

3. Combinatorial veins.

In the Mandelbrot set M , let us define a countable subset: we denote D0

(respectively D1) the set of centers (respectively of roots) of hyperbolic components

of
◦

M . Denote by D2 the set of Misurewicz points, and set D = D0 ∪ D1 ∪ D2.
We will define for each c ∈ D the (combinatorial) arguments associated to c.
If c ∈ D2, the point c has in Kc a finite nu;ber of external arguments (which

are rational with even denominator). Those are the arguments associated to c. The
smallest and the largest are denoted by arg−(c) and arg+(c).

If c ∈ D1, let α1 be the indifferent periodic point attracting the component U1

of
◦
Kc containing c. The argument associated to c are the 2 external arguments of

α1 corresponding to the interpetals adjacent to U1. The smallest (respectively the
largest) is denoted by arg−(c) (respectively arg+(c)).

If c is the center of a hyperbolic component W of
◦

M , the arguements associ-
ated to c are the arguements associated to the points of ∂W of rational internal
arguments (which are points in D1). The smallest and the largest are respectively
arg−(c1) and arg+(c1), where c1 is the root of W . We will set arg−(c) = arg−(c1)
and arg+(c) = arg+(c1).

If c ∈ D1 ∪ D2, for all argument θ associated to c, the external ray R(M, θ)
lands at c.

We denote by (tn) the sequence of numbers in [0, 1[ of the form p/2k, ordered
by k increasing and for each k by p increasing, so that:

p/2k = tn with 2n + 1 = 2k + p.
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Remark. The fact of choosing for each k the ordering of increasing p has no
relevance for what we want to do, since the order is useful to define the leader of
intervals of [0, 1[. But each interval I ⊂ [0, 1[ which contains a point of the form
p/2k (in particular every interval not reduce to a point) contains a unique such
point with k minimal. Indeed, if p/2k and p′/2k are in I, with p and p′ odd and
p′ > p, p + 1/2k ∈ I but this fraction simplifies.

Remark. For all n ≥ 0, denote by an the landing point of R(M, tn). The
polynomial fan

is such that 0 ends in finite time on the fixed point β(an) with
external argument 0. In particular, an ∈ D2, and there is only one argument as-
sociated to an, namely tn. We obtain in such a way a bijection from {tn}n>0 to
{c | (∃k), f◦k+1

c (0) = β(c)}. (This follows from chapter 13).

We have a0 = 1/4 ∈ calD1. We set I(c) = [θ−(c), θ+(c)]. We define the
combinatorial vein N(tn) and the strict combinatorial vein N∗(tn) by:

N∗(tn) = {c ∈ D | tn is the leader of I(c)}
N(tn) = {c ∈ D | (∃θ′, θ′ associated to c) tn is the leader of [θ′, θ′′]}.

Remark. If, as we imagine, M is locally connected and all point c ∈ D1 ∪ D2 has
no other external argument in M than its associated arguments, we have N(tn) =
h(tn) ∩ D and N∗(tn) = h∗(tn) ∩ D thanks to proposition 20.2.

4. Ordering on D.

For c ∈ D, let us set I(c) = [arg−(c), arg+(c)]. We will write c < c′ if I(c)
contains strictly I(c′) or if c is the root and c′ is the center of a common hyperbolic

component of
◦

M . We will write c ≤ c′ if c < c′ or c = c′. We define in such a way
an order on D.

Proposition 20.3. Let c and c′ be in D. We have I(c) ⊃ I(c′) or I(c′) ⊂ I(c)
or I(c) ∩ I(c′) = ∅.
Proof. If c is the center of a hyperbolic component W , let us denote by c1 the root
of W ; let us set c1 = c if c ∈ D1 ∪ D2. If c is not extremal2, L(c) = R(M, θ−(c) ∪
R(M, θ+(c))∪{c1} is homeomorphic to R, and C\L(c) has 2 connected components
V0(c) and V1(c) (by convention, R(M, 0) ⊂ V0(c)). If c1 = c′1, we have I(c) = I(c′).
Otherwise, we have L(c)∩L(c′) = ∅, so V1(c) is strictly contained in V1(c′) or V1(c)
strictly contains V1(c′) or V1(c) ∩ V1(c′) = ∅, and the conclusion follows.

Corollary 20.1. In the ordered set D, every subset which has an upper bound
is totally ordered.

Proof. Let X be a subset which admits ĉ as upper bound. For c and c′ in X, we
have I(c) ⊃ I(ĉ), I(c′) ⊃ I(ĉ), so I(c) ∩ I(c′) 6= ∅, and c ≤ c′ or c′ ≤ c.

Corollary 20.2. For all n 6= 0, the set N∗(tn) is a totally ordered set, whose
largest element is an.

Remark. N(a0) = N∗(0) = {1/4, 0} with a0 = 1/4, 0 > 1/4.

Proposition 20.4. Let c and c̃ be two elements of N(tn) with c̃ ∈ N(tn) \
N∗(tn); then c̃ ≤ c.

2If c is extremal or c = 0, I(c) is reduced to a point or c = [0, 1]
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Proof. If c is extremal, c = tn and c̃ ≤ c. We assume that c is not extremal. Let
θ′ and θ′′ be the arguments associated to c, such that tn is the leader of [θ′, θ′′].
We define L(θ′, θ′′) in the following way:

If c ∈ calD1 ∪ D2, we set L(θ′, θ′′) = R(M, θ′) ∪R(M, θ′′) ∪ {c}.
If c ∈ calD0, denote by c′1 and c′′1 the landing points of R(M, θ′) and
R(M, θ′′). We have c′1 and c′′1 ∈ ∂W , where W is the component centered
at c. If c′1 = c′′1 , we set L(θ′, θ′′) = R(M, θ′)∪R(M, θ′′)∪{c′1}. Otherwise
we set L(θ′, θ′′) = R(M, θ′) ∪R(M, θ′′) ∪ [c, c′1]W ∪ [c, c′′1 ]W .

In both cases, L(θ′, θ′′) is homeomorphic to R, and C \ L(θ′, θ′′) has 2 connected
components V0(θ′, θ′′) and V1(θ′, θ′′), with R(M, 0) ⊂ V0(θ′, θ′′).

We have V1(θ′, θ′) ∩ V1(c̃) = ∅, since those two sets contain R(M, tn), and
V1(θ′, θ′′) 6⊃ V1(c̃) since I(c̃) contains a tn with n′ < n and [θ′, theta′′] does not. If
c̃1 6= c′1, c

′′
1 , we have L(θ′, θ′′) ∩ L(c̃) = ∅, so V1(θ′, θ′) ⊂ V1(c̃) and c̃ ≤ c. If we had

c̃1 = c′1 6= c1, we would have V1(c̃) ⊂ V1(θ′, θ′′) which is not the case. If we had
c̃1 = c′1 = c′′1 = c1, we would have V1(θ′, θ′′) = V1(c̃), which is not possible. We are
therefore in the case c̃1 6= c′1, c

′′
1 and we have c̃ ≤ c.

Corollary 20.3. and definition. The set N(tn) \ N∗(tn) has at most one
point. If it has a point, it is the smallest element of N(tn), we say it is the origin
of the vein N(tn).

We will show – it is the main theorem in the theory of veins – that every vein
has an origin.





CHAPTER 21

Tree of the origin of a vein of M .

1. Abstract Hubbard trees.

We call an abstract Hubbard tree a topologically finite tree H, equipped with
a finite preperiodic sequence xn of points, and of a isotopy class of embeddings
H → C (or equivalently of a cyclic order at the branching points), satisfying the
following conditions:

(i) Every extremity is one of the (xi);
(ii) H \ {x0} has at most 2 components;
(iii) There exists an injective and continuous map F : H → H preserving the

cyclic order at the branching points on each component of H \ {x0}, and
such that F (xi) = xi+1 for all i.

The map F is determined uniquely, up to isotopy fixing the points xi.
An abstract Hubbard tree is called periodic or preperiodic depending on whether

x0 is periodic or preperiodic for F .
The Hubbard tree of a polynomial f : z 7→ z2 + c such that 0 is preperiodic has

an underlying abstract tree.
Given an abstract Hubbard tree H, we can define arg−H() and arg+(H),

together with the argument associated to H, using the algorithms described in
chapters 7, 20 and 18.

2. Results and notations.

Let τ ∈ Q/Z be an element of the form p/2k. We want to show that the
combinatorial vein N(τ) of M has an origin in D0 ∪ D2.

In this chapter, we will construct an abstract tree Ȟ having the property that
if it is the tree of a point č ∈ D0 ∪D2, the point č is at the origin of the vein N(τ).

Theorem 21.1. There exists an abstract Hubbard tree Ȟ having the following
properties:

a) τ belongs to I(Ȟ) = [arg( H), arg+(H)] without being its leader.
b) there exist two arguments θ′ and θ′′ associated to Ȟ such that τ is the

leader of [θ′, θ′′].

In the remaining, we fix τ = p/2k (with k ≥ 1, p odd, 0 < p < 2k). Let c = aτ

be the landing point of R(M, θ). We set f = fc : z 7→ z2 + c, K = Kc, H = Hc

(Hubbard tree of f), β = βc (fixed point of f with external argument 0. We have
f◦k(c) = f◦k+1(0) = β, f◦k−1(c) = −β, the compact set K is full, connected,
locally connected, with empty interior. For x and y in K, we denote by [x, y] the
arc from x to y in K; more generally, for all finite subset A of K, we denote by [A]
the connected hull of A in K. We set xn = f◦n(0). If X is a tree and z ∈ X, we
denote by νX(z) the number of branches of X at z.
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3. Rank of a point in K.

For z ∈ K, we set rg(z) = inf{r | f◦r(z) ∈ [β,−β]}. We therefore have
rg(z) = ∞ if (∀r), f◦r(z) /∈ [β,−β] and rg(z) = 0 if z ∈ [β,−β]. If rg(z) > 0, we
have rg(f(z)) = rg(z)−1. We have rg(c) = k−1. Indeed, f◦k−1(c) = −β ∈ [β,−β]
and if k ≥ 2, f◦k−2(c) ∈ f−1(β); it is an extremal point of K distinct from β and
−β, so it does not belong to [β,−β]1.

Remark. If rg(z) = r > 0, we have f◦r(z) ∈ [0,−β]. Indeed, f([beta, 0]) = [β, x] ⊃
[β, 0]. As a consequence, f−1([β, 0]) ⊂ [0,−β] = [β,−β], and if f◦s(z) ∈ [0, β] with
s > 0, we have f◦s−1(z) ∈ [β,−β] and s > rg(z).

Remark. If rg(z) = r, the point z has 2 external arguments t and t′ in K, having
expansions in base 2 t = .ε1ε1 . . . εn . . ., t′ = ε′1ε

′
2 . . . ε′n . . . such that εi = ε′i for i ≤

r, ε′r+1 6= εr+1 (possibly t = t′ with with two different expansions). Indeed, a point
in [β,−β] has 2 external arguments t = .0 . . . and t′ = .1 . . ., and this characterizes
the points in [β,−β], and the external arguments of f◦i(z) are obtained from the
external arguments of z by multiplication by 2i, which is interpreted in terms of
the expansion in base 2 by the deleting of the first i digits.

4. The tree Zr.

For r ∈ N, we denote by Zr the set of z ∈ K such taht rg(z) ≤ r. We have
Zr+1 = f−1(Zr) ∪ [+β,−β].

Proposition 21.1. The set Zr is the connected hull in K of f−(r+1)(β).

Proof. (by induction on r). We have Z0 = [β,−β] = [f−1(β)]. Let us write K
as K+ ∪ K−, with K+ ∩ K− = {0}, K− = −K+, and for all subset A of K, let
us set A+ = A ∩ K+ and A− = A ∩ K−. The map f induces a homeomorphism
from (f−1(Zr))+ to Zr and similarly for (f−1(Zr))−. If Zr = [f−(r+1)(β)], we have
(f−1(Z − r))+ = [(f−(r+2)(β))+] and similarly with −.

For all finite subset A ⊂ K containing β and −β, we have [A] = [A+] ∪ [A−] ∪
[β,−β]. As a consequence,

[f−(r+2)(β] = [f−1(Z − r)]+ ∪ (f−1(Zr))− ∪ [β,−β] = f−1(Zr) ∪ [β,−β] = Zr+1.

Corollary 21.1. For all r, the set Zr is a finite topological tree.

Proposition 21.2. For r ∈ N, the set Zr+1 \ Zr contains no branching point
of Zr+1.

Proof. (by induction on r). Sice 0 ∈ Z0, f induces a locally injective map
Z1 \ Z0 → Z0. However, Z) = [β,−β] has no branching point. So, Z1 \ Z0 has no
branching point. For each r ≥ 1, the map f induces a locally injective map from
Zr+1 \Zr to Zr \Zr−1. Hence, we see by induction that Zr+1 \Zr has no branching
point.

Proposition 21.3. For r ≥ k − 1, we have f(Zr) ⊂ Zr.

Proof. For all r ∈ N, we have f(Zr) ⊂ Zr−1 sup f([β,−β]) = Zr−1 ∪ [β, x1], and
Zr−1 ⊂ Zr. But if r ≥ k1, we have [β, x1] ⊂ Zr, so f(Zr) ⊂ Zr.

1What about c = −2?



6. THE TREE Ȟ. 163

5. The point y1.

We have x1 ∈ Zk−1 \Zk−2 since rg(x1) = k− 1. Denote by y1 the projection of
x1 on Zk−2, i.e., the first point (starting at x1) where the tree [x1, 0] meets Zk−2.

We set yn = f◦n−1(y1).

Proposition 21.4. The point y1 is a branching point of Zk−1.

Proof. For z ∈ K, if z 6= 0 and if f(z) is extremal in K, z is extremal. Since β is
extremal (chapter 7, lemma 7.1), if f◦n(z) = β and f◦i(z) 6= 0 for 0 ≤ i ≤ n, the
point z is extremal. In particular, if f◦k(z) = β, z is extremal in K.

Yet, y1 is not an extremal point in Zk−1 since y1 ∈ x1[⊂]β, x1[. So, f◦k(y1) 6= β,
and y1 is neither an extremal point in Zk−2. There are therefore at least two
branches of Zk−2 at y1, and [y1, x1] is a branch of Zk−1 at y1, distinct from the
preceding ones since [y1, x1]∩Zk−2 = {y1} by definition of y1. This makes at least
three branches of Zk−1 at y1.

Corollary 21.2. The point y1 is preperiodic for f .

Proof. The point x1 = f(0) is an extremal point of Zk−1. As a consequence,
0 is not a branching point of Zk−1, and if z is a branching point of Zk−1 (with
νk−1(z) branches, νk−1(z) ≥ 3), it is the same for f(z) (with νk−1(f(z) ≥ νk−1(z)).
Since the number of branching points in Zk−1 is finite, every branching point is
preperiodic.

Since f−1(x1) = {0}, the set f−1([y1, x1]) is an arc [δ,−δ]. The points δ and
−δ are the points of f−1(y1). The open arc ]δ,−δ[ contains no branching point
of Zk−1, since f(] − δ, δ[) =]y1, x1], and since this arc, contained in Zk−1 \ Zk−2,
contains no branching point of Zk−1 (proposition 21.2).

In particular, (∀n), yn 6∈]δ,−δ[.
We will now define a point y0: if y1 is periodic of period k, we have yk = δ or

−δ. We then set y0 = yk. If y1 is strictly preperiodic, we have yn 6∈ {δ,−δ} for all
n, we take for y1 one of the two points δ or −δ.

6. The tree Ȟ.

We denote by Ȟ the connected hull of (yn)n≥0 in Zk−1 (or in K which is the
same).

Proposition 21.5. We have f(Ȟ) ⊂ Ȟ ∪ [y1, x1] and Ȟ ∩ [y1, x− 1] = {y1}.
Proof. Let (Zk−1)+ and (Zk−1)− be the components of Zk−1 cut at 0, and set
Ȟ+ = Ȟ ∩ (Zk−1)+, and similarly for Ȟ−. The set Ȟ+ is the connected hull of
(yn)n∈Λ+ , where Λ+ = {n | yn ∈ (Zk−1)+}, ad possibly of 0. Then,

f(Ȟ+) ⊂ [{yn+1}n∈Λ+ , x1], f(Ȟ−) ⊂ [{yn+1}n∈Λ− , x1]

and
f(Ȟ) ⊂ [{yn}, x1] = Ȟ ∪ [y1, x1].

The second assertion follows from the fact that ]y1, x1] contains no branching
point of Zk−1, so no yn.

Remark. We can show, using the fact that f is sub-hyperbolic, that f(Ȟ) =
Ȟ ∪ [y1, x1], except if Ȟ = {y1}, which happens if y1 is a fixed point of f .
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Proposition 21.6. The point y1 is an extremal point of Ȟ.

Proof. We will write ν̌(z) for νȞ(z).
If y1 is periodic of period K, we have:

ν̌(y1) ≤ ν̌(y2) ≤ . . . ≤ ν̌(yk) ≤ ν̌(y1) + 1

according to proposition 21.5 and to the fact that none of the yi is 0. Yet, Ȟ has
at least one extremity. We therefore have ν̌(y1) ≤ 1.

If y1 is strictly preperiodic, we have:

ν̌(y0)− 1 ≤ ν̌(y1) ≤ ν̌(y2) ≤ . . . .

Yet, Ȟ is not reduced to a point, there are at least 2 extremities, so ν̌(y1) = 1.

7. Hubbard’s condition for Ȟ.

The tree Ȟ is equipped from the topology and the embedding in C inherited
from those of K (or of Zk−1, or of H), and the points (yn).

Proposition 21.7. The tree Ȟ is an abstract Hubbard tree.

Proof. Condition (i) of the definition of abstract Hubbard trees follows from the
fact that Ȟ is the connected hull of the yi. We have ν̌(y0) ≤ ν̌(y1) + 1 ≤ 2, so (ii)
follows. We will show condition (iii).

Let us set f̌ = ρ ◦ f , where ρ : Zk−1 → Zk−1 coincides with the identity on
Zk−1\]y1, x1], and maps [y1, x1] on y1. We have f̌(Ȟ) ⊂ Ȟ according to proposition
21.5, and f̌(yn) = yn+1 for all n. However, f is constant on [δ,−δ] = [y0,−y0].

If Ȟ∩]y0,−y0] = ∅ (which only occurs if H = {y1}), f̌ is injective on Ȟ and Ȟ
is an abstract Hubbard tree. We now assume that this intersection in not empty,
so [y0,−y0] ⊂ Ȟ. In the periodic case as in the preperiodic case, the point −y0 is
not a marked point of Ȟ. We have ν̌(−y0) ≤ ν̌(y1) + 1 ≤ 2, so it is an ordinary
point or an extremity. But if it were an extremity, it would be a marked point.
Thus, it is an ordinary point (ν̌ = 2), i.e., a non remarkable point. Let α be the
first remarkable point after −y0 coming from y0. The map f̌ |[α,y0] is injective on
[α,−y0] and constant on [−y0, y0].

We can find a continuous map F : Ȟ → Ȟ which coincides with f̌ (so with
f) on Ȟ\]α, y0[ and in a neighborhood of α, and which is injective on [α, y0] with
F ([α, y0]) = f̌([α, +y0]) = f̌([α,−y0]). Since f̌ is injective on each of the 2 compo-
nents of Ȟ\] − y0, y0[, the map F is injective on each component of Ȟ cut at y0.
Of course, we have F (yn) = yn+1 for all n. As a consequence, Ȟ is an abstract
Hubbard tree.

8. External arguments of y1.

Proposition 21.8. a) If y1 is strictly preperiodic, the external argu-
ments of y1 are the same in H and in Ȟ.

b) If y1 is periodic, all the external arguments of y1 in H belong to I(Ȟ) =
[arg−(Ȟ), arg+(Ȟ)].

c) If y1 is periodic, the arguments in H of the accesses to y1 adjacent to
[y1, x1] are associated to H.

Proof. Let us set H̃ = Ȟ ∪ [β,−β]. The map F̃ : H̃ → H̃ which coincides with F

on Ȟ and with f (and f̌) on [β,−β]\ Ȟ is injective on each component of H̃ cut at
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y0, extend F and maps β and −β to β. As a consequence, H̃ is the tree obtained
by extending Ȟ (cf. chapter 7).

a) The forward orbit of y1 does not meet [δ,−δ], so in a neighborhood of each
of those points, F coincides with f . The tree we obtain by adding buds to H̃, as
explained in chapter 7 section 4 can be identified with a neighborhood of Ȟ in H.
If ξ is an access to y with respect to H, or to Ȟ which is the same, the f◦n(ξ)
and F ◦n(ξ) coincide, so the digits in the expansion in base 2 are the same for the
arguments of ξ relatively to H and to Ȟ.

b) Denote by Θ the set of external arguments of y1 in H (i.e., in K). Denote
by θ− and θ+ the smallest and the largest element of Θ, and let θ ∈ Θ. Let k be
the period of y1, and for all t ∈ [0, 1[ equipped with an expansion in base 2, let εi(t)
be the i-th digit after the comma of this expansion.

The arguments θ̌− = arg−(Ȟ) and θ̌+ = arg+(Ȟ) are characterized by the fact
that they have a periodic expansion of period k, with εi(θ̌−) = εi(θ−) and εi(θ̌+) =
εi(θ+) for 1 ≤ i ≤ k. For each s ∈ N, we have 2skθ ∈ Θ, so (.εsk+1(θ) . . . εsk+k(θ))
is contained in between (.εsk+1(θ−) . . . εsk+k(θ−)) and (.εsk+1(θ+) . . . εsk+k(θ+)).
As a consequence, θ̌− ≤ θ ≤ θ̌+.

c) Let k be the period of y1. Set q = νZk−1(y1) and define p1 by the condition
that the branch [y1, x1] is the p1-th branch after [y1, β] turning counter-clockwise.
Let z1 be a point on ]y1, x1[ next to y1, set zn = f◦n−1(z1) for n ≤ kq + 1. The
point zkq1+1 also belongs to ]y1, x1[.

Denote by Ȟ1 the connected hull of {z1, . . . , zkq} in Zk−1. Define α as in the
proof of proposition 21.7. We can construct F1 : Zk−1 → Zk−1 coinciding with
f on Zk−1\]y0, α[, and also on each [yi, zi+sq] for 0 ≤ i ≤ k − 1 and q such that
1 ≤ i + sq ≤ kq − 1, with F (zkq) = z1, and F injective on eqch component of Ȟ1

cut qt z0 = zkq.
The tree Ȟ1 is an abstract Hubbard tree, which can be indentified with the tree

obtained from Ȟ by bifurcation of argument p/q. As in a), the arguments of x− 1
are the same in H and in Ȟ1. The arguments of the accesses adjacent to [x1, z− 1]
(i.e., to [x1, y1]) therefore are arg−(Ȟ1) and arg+(Ȟ1), they are associated to Ĥ.

9. Proof of the theorem.

Denote by θ− and θ+ the smallest and the largest external argument of y1 in
K (or in Zk−1, it is the same). Denote by θ′ and θ′′ the external argument of the
accesses to y1 adjacent to [y1, x1] with respect to Zk−1, with θ′ < θ′′. We therefore
have θ− ≤ θ′ < θ′′ ≤ θ+. The arguments θ′ and θ′′ are associated to Ȟ.

The external argument of x1 in K is τ and we have θ′ < τ < θ′′. For all
τ ′ = p′/2k′ with k′ < k, the point γ(τ ′) of K, with external argument τ ′, is an
extremity of Zk−2, so τ ′ /∈ [θ′, θ′′]. Thus, the argument τ is the leader of [θ′, θ′′].

The point y1 in not an extremal point of Zk−2, so there exists an extremal
point ζ ∈ Zk−2 such that y1 ∈]β, ζ[. We have argK(ζ) ∈ [θ−, θ+], and argK(ζ) is
of the form p′/2k′ with k′ < k (proposition 21.1). As a consequence, τ is not the
leader of [θ−, θ+].

We have I(Ȟ) ⊃ [θ−, θ+] ⊃ [θ′, θ′′], so τ belongs to I(H) without being its
leader.





CHAPTER 22

Addresses.

1. Origin of a vein.

We keep the notations of the two preceding chapters. H is the set of isomor-
phisms classes of abstract Hubbard trees. For each H ∈ H, we have defined the
associated arguments and the interval I(H) = [arg−(H), arg+(H)].

This enables us to define the veins in terms of trees: for τ = p/2k with k > 0,

NH(τ) = {H ∈ H | (∃θ′, θ′′ associated to H) τ is the leader of [θ′, θ′′]},
N∗
H(τ) = {H ∈ H | τ is the leader of I(H)}.

In chapter 21, we have proved the following theorem.

Theorem 22.1. For all τ of the form p/2k with k > 0, there exists a tree
Ȟ ∈ NH(τ) \N∗

H(τ).

But we do not know whether the tree we constructed is the tree of a point
c ∈ D0 ∪ D2.

However, we will prove the following theorem.

Theorem 22.2. There exists c ∈ D0 ∪D2 such that every arguemtn associated
to Ȟ is associated to c.

We immediately obtain the following theorem.

Theorem 22.3. For all τ = p/2k with k > 0, the vein ND(τ) has an origin.

The vein ND(0) consists in the points 0 and 1/4. We will declare that 1/4 is
the origin of the vein ND(0), even if it belongs to N∗

D(0). In the following, we will
write N for ND.

We will call proper arguments of an abstract tree H its associated arguments if
it is preperiodic, but only its arguments arg−(H) and arg+(H) if it is periodic; for
c ∈ D1 ∪ D2, the proper arguments of the tree of fc are the arguments associated
to c, i.e., the external arguments of c in M .

We will fix a τ = p/2k, k > 0; we will denote by cτ the point of M of external
argument τ , H the Hubbard tree of fcτ .

1.1. Construction of the point anounced in theorem 22.2. We take the
proper arguments θ1 . . . θm of Ȟ; we consider the points of D0 ∪ D2 smaller than
cτ (in the sense of relation < of chapter 20 section 4) whose tree has a 2iθj (i ≥ 0,
1 ≤ j ≤ n) as proper argument. Those are finitely many; since the set of points in
D0 supD2 smaller than cτ is totally ordered (chapter 20, corollary 20.1), there is a
greatest point c among the points smaller than cτ , whose tree has a 2iθj as proper
argument; we will show that c gives a solution to theorem 22.2.

167
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For c1 ∈ M , ∼c1 stands for the equivalence relation on Q/Z defined by θ ∼c1 θ′

if and only if θ and θ′ are external arguments of a common point of Kc1 .
We will now explain how Ȟ enables us to define an equivalence relation ∼H on

A = {2iθj | i ≥ 0, 1 ≤ j ≤ n} ∪ {1/2 + 2iθj | i ≥ 0, 1 ≤ j ≤ n}.
The construction of the extended tree Ȟ at the beginning of proposition 21.8 and the
algorithm described in chapter 18 section 3 enables us to define, for all preperiodic
point of Ȟ, its rational ”combinatorial associated arguments”.

To the opposite of what happens in Julia sets, it is possible that two distinct
points in H have common combinatorial arguments.

For θ, θ′ ∈ A, we will set θ ∼Ȟ θ′ if there is a point of Ȟ of the form yi or
−yi having α and α′ as combinatorial arguments. (We do not claim at the moment
that ∼Ȟ is an equivalence relation).

We have defined yi for all i ≥ 0 with yi+1 = f(yi), f being the dynamics on Ȟ;
for i ≥ 1 in the preperiodic case, i ≥ 0 in the periodic case, yi is also a well defined
point of H.

The following proposition completes proposition 21.8.

Proposition 22.1. a) All elements of A are external arguments of points
yi or −yi (i ≥ 1) of H.

b) For all i > 0, the combinatorial arguments of yi in Ȟ are external argu-
ments of yi in H.

Proof. a) θj is an external argument of y1 (1 ≤ j ≤ n), so for i ≥ 0, 2iθj is an
external argument of yi+1; 1/2 + 2iθj is therefore an external argument of −yi.

b) In the preperiodic case as in the periodic case, with the notations of chapter
21, yi /∈ [−δ, δ] and we can reproduce the proof of proposition 21.8 a).

Corollary 22.1. ∼H=∼cτ |A.

We will denote by γM (α) the point of M with external argument α for α ∈ Q/Z.

Lemma 22.1. Let U be the connected component of M \{γM (2iθj) | i ≥ 0, 1 ≤
j ≤ n} containing cτ . On U , ∼c|A is constant.

Proof. Let θ, θ′ ∈ A. Let us show that the set of C1 ∈ U such that θ ∼c1 θ′ is
open and closed in U .

It is closed because θ ∼c1 θ′ ⇐⇒ γc1(θ) = γc1(θ
′), where gammac1(θ) (respec-

tively γc1(θ
′)) stands for the landing point of the ray of argument θ (respectively

θ′) in Kc1 , and γc1(θ) as γc1(θ
′) is a continuous function of c1 (see chapter 17; here

we only use the easy part of the theorem).
It is open since by choice of the points we removed in M , γc1(2

iθj) or γc1(1/2+
2iθj) (for i ≥ 0, 1 ≤ j ≤ n) is repelling preperiodic and not in the backward
orbit of zero for fc1 , so there exists in a neighborhood of c1 only one preperiodic
determination of the same kind for the continuous function γc1(2

iθj) or γc1(1/2 +
2iθj).

Lemma 22.2. If c is periodic, ∼cτ |A=∼c|A.
If c is preperiodic, the graph of ∼c|A contains the one of ∼cτ |A.

Proof. In the periodic case, U defined in lemma 22.1 contains c, since otherwise
one of the points γM (2iθj) (i ≥ 0, 1 ≤ j ≤ n) would not be in between c and cτ



1. ORIGIN OF A VEIN. 169

in the sense of the order defined on D, which would contradict the definition of c.
Thus, lemma 22.1 implies that ∼cτ |A=∼c|A.

In the preperiodic case, we can only say that c ∈ U by the same argument; the
relations α ∼ α′ are open at c (i.e., α 6∼c α′), so they remain open in q neighborhood
of c, so in U , which yields the result.

Remark. What can happen in that case is, if c is of the form γM (2i0θj) with
i0 > 0 and 1 ≤ j ≤ n, that the 2i0θj and 1/2 + 2i0θj which are not linked for ∼c0

get grouped fr ∼c; for i < i0, the 2iθj and 1/2+2iθj land in Kc at opposite points,
so are not linked together.

We therefore deduce, given corollary 22.1, the following result.

Corollary 22.2. If c is in D0, ∼Ȟ=∼c|A.

1.2. Proof of theorem 22.2. Case where H is periodic. Here, there are only
two θj : θ1 and θ2, which have odd denominator. By definition of c, at least one
proper argument of the tree associated to c is of the form 2iθj (i ≥ 0, j = 1, 2);
reindexing θ12 and θ2 if necessary, we may assume that it is 2iθ1 which has odd
denominator: c is therefore in D0.

Given the purely algorithmic construction of the arguments associated to a
periodic tree provided the proper arguemnt (see chapter 18 section 3), it is enough
to show that the tree associated to c and Ȟ have the same proper arguments. Since
it is equal to the tree associated to c (see chapter 18 propositions 18.1 and 18.2),
we may consider the tree at the root c1 of the hyperbolic component M of which c
is the center.

Case where c1 is a primitive root (i.e., the multiplier of the rationally indiffer-
ent cycle is 1). Then, every ray landing at a point of the rationally indifferent
cycle which attracts c1 in Kc1 provides a proper argument of c1: since there are
two external rays of M landing at c1, there are exactly two such rays. We have
2i0θ1 ∼Ȟ 2i0θ2, so 2i0θ1 ∼c1 2i0θ2 and the proper arguments of the tree of c1 there-
fore are 2i0θ1 and 2i0θ2 for some i0 ≥ 0. We still have to show that i0 = 1: on a
circle, for each i, let us join with a segment the point of argument 2iθ1 to the point
of argument 2iθ2 on the one hand, and the point of argument 1/2 + 2iθ1 to the
point of argument 1/2 + 2iθ2 on the other hand. If k is the period of θ1 or θ2 for
multiplication by 2, i0 is determied by the fact that the segments from 2i0+k−1θ1

to 2i0+k−1θ2 and from 1/2 + 2i0+k−1θ1 to 1/2 + 2i0+k−1θ2 bound a region which
contains the center of the circle; but it is precisely the case for i = 1 (the rays of
arguments 2kθ1, 2kθ2, 1/2 + 2kθ1, 1/2 + 2kθ2 landing in H at δ and −δ with the
notations of chapter 21).

θ1 and θ2 are the proper arguments of c1.

Case where c1 is not a primitive root. Here, fc1 acts transitively on the rays
landing at the points of the rationally indifferent cycle; since θ1 ∼Ȟ θ2, we also
have θ1 ∼c1 θ2, so θ2 is of the form 2aθ1 for some a ≥ 0. As in the case where c1

is primitive, let us join with a segment 2iθ1 to 2iθ2 and 1/2 + 2iθ1 to 1/2 + 2iθ2.
Here again, the segments from 2kθ1 to 2kθ2 and from 1/2 + 2kθ1 to 1/2 + 2kθ2

bound a region which contains the center of the circle, which shows that the rays
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in Kc1 which are adjacent to the petal containing c1 are θ1 and θ2, and those are
the proper arguments of c1.

Case where H is preperiodic. As in the previous case, let us join on a circle the
points of argument α and α′ for all pair α, α′ of points of A which are equivalent
for ∼H , and which are therefore also equivalent for ∼c (see lemma 22.2).

Case where c ∈ D0. We will show that this case is not possible. It is not enough
here to consider ∼Ȟ , and we must come back to ∼cτ

, which is equal to ∼c on A by
lemma 22.2. Then, in the auxilliary scheme, we can add the segments between the
external arguments of δ (respectively −δ). Since δ and d are on both sides of zero
on H (see chapter 21 section 5), there is no branching point of Zk−1 on ] − δ, δ[,
we can therefore find α and α′ such that 2α and 2α′ are one of the θj and one of
the θ′j (1 ≤ j ≤ n, 1 ≤ j′ ≤ n), such that the associated rays land in Kcτ

at δ, and
such that on the auxilliary scheme, the segments from α to α′ and from 1/2 + α
to 1/2 + α′ separate the center of the circle from all the segments corresponding to
∼Ȟ|A. We then have the following situation:

2k−1θ′

α′

1/2+α

1/2+2k−1θ

1/2+2k−1θ′

1/2+α′

α

2k−1θ

If θ and θ′ are the proper arguments of tree of c, and k the periodi of the
cycle of fc, we then have a contradiction, since the reasonning of lemma 22.1 show
that R(Kc, α) and R(Kc, α

′) still land at a common point, which has to be on the
allowable arc in Kc which joins the landing points of R(Kc, 2k−1θ) and R(Kc, 1/2+

2k−1θ); but this arc is in
◦
Kc, which is a contradiction.

Case where c ∈ D2. We can define α and α′ as above. If a 2iθj (1 ≤ j ≤ n, i ≥ 0)
is a proper argument of the tree of c, all other 2iθj′ (1 ≤ j′ ≤ n) also are, since they
are ∼c equivalent to 2iθj . Assume it is the case for some i0 > 0. According to the
remark that follows lemma 22.2, all the 2i0−1θj and the 1/2 + 2i0−1θj (1 ≤ j ≤ n)
are ∼c equivalent. We therefore have the following situation:

Since ∼c is not crossed, it means that R(Kc, α) also land at 0, which is impos-
sible since 2i0−1θj is of the form 2pα with p 6= 0 and 0 is not periodic for fc.

Since at least one 2iθ)j (i ≥ 0, 1 ≤ j ≤ n) is an argument associated to c by
choice of c, the θj (1 ≤ j ≤ n) are proper arguments of the tree of c.
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α′

1/2+α

1/2+α′

α

2i0−1θ2

2i0−1θ1

1/2+2i0−1θ2

1/2+2i0−1θ1

2. Finite addresses.

Let c be a point ofD. A finite address for c is a finite sequence (c0, τ0, c1, τ1, . . . , cr−1, τr−1, cr)
such that

(a) c0 = 1/4; τ0 = 0 and c1 = 0 if r ≥ 1.
(b) cr = c.
(c) ci is the origin of N(τi) for i = 0, . . . , r − 1.
(d) ci+1 ∈ N∗(τi) for i = 0, . . . , r − 1.

Proposition 22.2. Let c ∈ D be such that I(c) is not reduced to a point, or is
of the form {p/2k}. Then, c has a unique finite address.

Proof. Let us set c′0 = c, and define c′i, τ ′i by induction. For all i, τ ′i is the leader
of I(c′i), and c′i+1 is the origin of N(τ ′i). (Note that the I(c′i) form an increasing
sequence, so that the leader of I(c′i) is defined for all i.) The number τ ′i is of the
form p′i/2k′i , and the k′i are strictly decreasing until they vanish. Therefore, there
exists r such that k′r−1 = 0, i.e., τ ′r−1 = 0, so c′r = 1/4. We then set ci = c′r−i and
τi = τ ′r−1−i, and (c0, τ0, . . . , τr−1, cr) is a finite adress of c. It is clear that a finite
address is necessarily obtained in this way, so we have uniqueness.

Remark. Let c ∈ D have address (c0, τ0, c1, τ1, . . . , cr). We have c0 < c1 < . . . <
cr. The set of points before c is [c0, c1]N(τ0) ∪ . . .∪ [cr−1, cr]N(τr−1). If c′ ∈]ci−1, ci],
the point c′ has address (c0, τ0, . . . , ci−1, τi−1, c

′).

Remark. We can define infinite addresses, by replacing condition (b) by (b’):⋂
I(cr) = I(c). We can than show that all point of D has a finite or infinite

address.

3. Seperation points.

Proposition 22.3. Let c and c′ be two points of D satisying the conditions of
proposition 22.2. Then, c and c′ have in D a lower bound c′′ = c ∧ c′.
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Proof. Let (c0, τ0, . . . , cr) and (c′0, τ
′
0, . . . , c

′
r′) be the adresses of respectively c and

c′, and let k be the largest i such that τi = τ ′i . The points ck+1 and c′k+1 belong to
the strict vein N∗(τi), so they are comparable; let c′′ be the least one. It is clear
that c′′ is the greatest common lower bound of c and c′.

Remark. The hypothesis that c and c′ satisfy the conditions of proposition 22.2
is not necessary: we can get rid of it by considering infinite addresses if necessary.

Proposition 22.4. Let c and c′ be two points of D satisying the conditions of
proposition 22.2 and set c′′ = c ∧ c′. We assume that c and c′ are not comparable
(i.e, c 6≤ c′ and c′ 6≤ c, so that c′′ < c and c′′ < c′). Then, there exist three
arguments θ1, θ2, θ3 associated to c′′ such that, exchanging c and c′ if necessary,
we have 0 < θ1 < arg−(c) ≤ arg+(c) < θ2 < arg−(c′) ≤ arg+(c′) < θ3 < 1.

Proof. Let (c0, τ0, . . . , cr = c) and (c′0, τ
′
0, . . . , c

′
r′ = c′) be the adresses of c and c′,

and k be the largest i such that τi = τ ′i . We have c′′ ∈ N(τk). Let us set τ∗ = τk+1

if c′′ = ck+1 and τ∗ = τk if c′′ < ck+1, and let us define similarly τ ′∗. We have
c′′ ∈ N(τ∗) and c′′ ∈ N(τ ′∗), so there exists four segments θ∗1 , θ∗2 , θ∗3 , θ∗4 associated
to c′′ such that τ∗ is the leader of [θ∗1 , θ∗2 ] and τ ′∗ the leader of [θ∗3 , θ∗4 ]. We then have
θ∗1 < arg−(c) ≤ arg+(c) < θ∗2 and θ∗3 < arg−(c′) ≤ arg+(c′) < θ∗4 . On the other
hand, τ 6∈ [θ∗3 , θ∗4 ] or τ ′ 6∈ [θ∗1 , θ∗2 ]. It follows that we can extract of {θ∗1 , θ∗2 , θ∗3 , θ∗4}
three arguments satisfying the required conditions.

For c ∈ D and θ an argument associated to c, we define R̂(c, θ) in the following
way: if c ∈ D1 ∪D2, R(M, θ) lands at c and we set R̂(c, θ) = R(M, θ) = R(M, θ)∪
{c}. If c ∈ D0, c is the center of a hyperbolic component W and R(M, θ) lands at
a point c′ ∈ ∂W ; we then set R̂(c, θ) = R(M, θ) ∪ [c, c′]W .

Proposition 22.3 has an additional information.

Corollary 22.3. Let c, c′, c′′, θ1, θ2, θ3 be as in proposition 22.3. Then
c, c′ and R(M, 0) are contained in three distinct connected components of C \
3⋃

i=1

R̂(c′′, θi).

4. The implication (MLC)=⇒(HG2).

Theorem 22.4. If M is locally connected, every connected component of
◦

M is
hyperbolic.

Proof. Assume M is locally connected and let W be a non hyperbolic connected
component of

◦
M . The set ∂W is uncountable, and since D is countable, we can find

three distinct points x1, x2 and x3 in ∂W \ D. The Carathéodory loop T→ ∂M is
surjective; we have ∂W ⊂ ∂M , so we can find t1, t2, t3 such that R(M, ti) land at
xi. Permuting the xi if necessary, we may assume that 0 < t1 < t2 < t3 < 1. Let
τ = p/2k and τ ′ = p′/2k′ be such that:

(4) 0 < t1 < τ < t2 < τ ′ < t3 < 1;

denote by c and c′ the landing points of R(M, τ) and R(M, τ ′), and set c′′ =
c ∧ c′ (points c and c′ satisfy the conditions of proposition 22.2). Since c and c′

are maximal in D, they are not comparable. According to proposition 22.3 and
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θ1

θ2

θ3

c′′

c

c′

θ1

θ2

θ3

c

c′

c′′

c′′∈D2 c′′∈D0

its corollary, we can find three arguments θ1, θ2, θ3 asociated to c′′ such that c, c′

and R(M, 0) are in three distinct connected components of C \ Y , where Y =
3⋃

i=1

R̂(c′′, θi). Let us set X = W ∪
3⋃

i=1

R(M, ti) ∪ {xi}. The set X is connected.

We have X ∩ Y = ∅: indeed, the points of X in C \ M have irrational external
arguments whereas those of point in Y ∩C\M are rational, X ∩∂M ⊂ ∂W \D and

Y ∩ ∂M ⊂ D, X∩ ◦
M⊂ W non hyperbolic whereas Y ∩ ◦

M is empty or contained in
a hyperbolic component of center c′′. Relation 4 shows that c, c′ and R(M, 0) are
in three distinct component of C \X.

Let U be the connected component of C\X containing Y and V the connected
component of C \ Y containing X. Every connected component of C \ X other
than U is contained in V , so V contains at least two of the three sets {c}, {c′} and
R(M, 0). Contradiction
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Figure 1. Impossible to realize with X ∩ Y = ∅.



CHAPTER 23

Similarity between M and Kc at a Misurewicz
point.

By Tan Lei

The french version of the Orsay notes contains a chapter written by Tan Lei.
The results have been published in Communication in Mathematical Physics [Ta].
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