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PARAMETRIZING UNSTABLE AND VERY UNSTABLE
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Dedicated to Yulij Ilyashenko on the occasion of his 60th birthday

Abstract. Existence and uniqueness theorems for unstable manifolds
are well-known. Here we prove certain refinements. Let f : (Cn, 0) →
Cn be a germ of an analytic diffeomorphism, whose derivative Df(0)
has eigenvalues λ1, . . . , λn such that

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|,
with |λk| > 1.

Then there is a unique k-dimensional invariant submanifold whose
tangent space is spanned by the generalized eigenvectors associated to
the eigenvalues λ1, . . . , λk, and it depends analytically on f .

Further, there is a natural parametrization of this “very unstable
manifold,” which can be extended to an analytic map Ck → Cn when
f is defined on all of Cn, and is an injective immersion if f is a global
diffeomorphism.

We also give the corresponding statements for stable manifolds, which
are analogous locally but quite different globally.
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The origin of this paper lies in an attempt to numerically compute unstable
manifolds for Hénon mappings H : C2 → C2. Suppose H(p) = p and that DH(p)
has eigenvalues λ, µ with |λ| > 1 > |µ|. Let v be an eigenvector for the eigenvalue
λ. Our parametrization of the unstable manifold at p is given by the following
theorem.

Theorem 1. The limit

Φ(z) = lim
m→∞

Hm
(
x +

z

λm
v
)

(1)

exists and gives an injective immersion of C onto the unstable manifold Wu(p) that
satisfies Φ(λz) = H(Φ(z)).

This theorem is proved as a special case of Corollary 25. The parametrization is
quite effectively computable, and is used in the program saddle drop [3], explained
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106 J. HUBBARD

in [2]. As far as I know this construction of unstable manifolds, obvious though it is,
is not in the literature; it may represent a more flexible approach than the graph-
transform method, described in many papers and books on dynamical systems.
On the other hand, there is nothing new about taking a “model map” g and a
“perturbed map” f , and constructing a conjugacy by considering limm→∞ fm ◦
g−m. I learned of the construction in Nelson’s book [5]; it is sometimes called the
scattering construction, since a similar construction arises in physics in scattering
theory.

A case in point comes up in the paper [1] by Buzzard, Hruska and Ilyashenko,
in which they prove that Hénon mappings satisfying Axiom A form a residual set
of parameters in the parameter space of Hénon maps. Generalizing this to higher
dimensions requires the “very unstable manifold” given below, specifically in the
case where this is not the unstable manifold. I don’t see how to get this from graph
transforms.

We will work throughout in the complex analytic category, because that is the
context in which the problems arose, and because many of the proofs are simpler in
that case. But it should be clear that most of the results (particularly Theorem 6, on
which everything else is based) go through verbatim in the C∞ category. In the case
of finite differentiability, it might be delicate to figure out just how differentiable
the parametrizations of the very unstable manifolds are.

This paper contains a large number of statements; by far the main result is
Theorem 6. Everything else follows from this result and a number of formal power
series computations, which are more or less standard.

I wish to thank Professor Ilyashenko for some very useful conversations, and
especially the referee for pointing out a serious error in an earlier version of the
paper.

2. Polynomial Changes of Variables

At several points, we will change variables to bring our mappings to a favorable
form. In these sorts of computations, half the battle is choosing notation that is
sufficiently light to be readable and sufficiently precise to be unambiguous.

We will use multiindices I ∈ Nn to label monomial mappings Cn → C: if
I = (i1, . . . , in) ∈ Nn, we define

xI = xi1
1 · · ·xin

n , of total degree |I| = i1 + · · · + in.

We will use the same notation when we have eigenvalues λ1, . . . , λn by setting
λI = λi1

1 · · ·λin
n .

Our real interest is not scalar functions but mappings Cn → Cn, and we define
the monomial mapping

pj
I(x) =





0
...

xI

...
0




← jth position.
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The mappings pj
I are totally ordered by setting

pj
I ≺ pj′

I′ if






|I| < |I ′|, or

|I| = |I ′| but I &= I ′ and il > i′l for the first l such that il &= i′l, or

I = I ′ and j > j′.
(2)

Our main tool in making polynomial changes of variables will be the mappings
Φj

I(a) : Cn → Cn defined by

Φj
I(a)(x) = x + apj

I(x).

If |I| > 1, the map Φj
I(a)(x) is tangent to the identity at 0, hence a local diffeomor-

phism. Whenever I does not include the index j, it is even a global diffeomorphism.
This case arises in Proposition 4, but the fact that the changes of coordinates are
global diffeomorphisms is not used in the proof.

We chose our order on the mappings pj
I so as to keep track of changes when

passing from a mapping f : Cn → Cn to its conjugate by Φj
I(a).

Proposition 2. Let U be a neighborhood of 0 in Cn and let f : U → Cn be an
analytic mapping such that f(0) = 0 and such that the matrix of Df(0) is upper
triangular, with the eigenvalues λ1, . . . , λn appearing in that order on the diagonal.
If the coefficient of pj

I in the Taylor series of f at the origin is b, then the coefficient
of the same monomial pj

I in the Taylor series of

g = (Φj
I(a))−1 ◦ f ◦ (Φj

I(a))

is b + a(λj − λI).
Moreover, the other monomials whose coefficients are different for f and g all

appear later in the order of monomial mappings.

Proof. First observe that

(Φj
I(a))−1 = Φj

I(−a) + o(|x||I|).

Next, observe that only the linear terms of f (i. e., the triangular matrix Df(0))
and the term bpj

I can contribute terms of degree ≤ |I| that are different for f and
g (see for instance Proposition 3.4.4 of [4]), and recall that terms of degree > |I|
appear later in the order. Thus we only need to consider the mapping

Φj
I(−a) ◦ (Df(0) + bpj

I) ◦ Φj
I(a).

Since Df(0) is upper triangular, (Df(0) + bpj
I) and (Df(0) + bpj

I) ◦Φj
I differ only

by terms apj′

I for j′ ≥ j, corresponding to the non-zero terms in the jth column of
Df(0). In particular, the coefficient of pj

I in (Df(0) + bpj
I) is b + aλj .

Any such terms with j′ > j will still appear in Φj
I(−a) ◦Df(0) ◦Φj

I . There may
also be new terms in the jth row, but they all appear later in the order, except for
pj

I itself, which appears with coefficient b + a(λj − λI). !

Example 5 below illustrates this procedure.
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3. Prepared Mappings

In proving the local existence of unstable manifolds, we will need the conditions
of Equation (4) below to be satisfied; this is only true if we make an appropriate
change of variables and bring the mapping to prepared form.

Suppose U ⊂ Cn is a neighborhood of the origin, and f : U → Cn is an analytic
mapping with f(0) = 0. Let the eigenvalues of Df(0) be λ1, . . . , λn with

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn| and |λk| > 1. (3)

We will refer to λ1, . . . , λk as the high eigenvalues, and λk+1, . . . , λn as the low
eigenvalues. Let EH ⊂ Cn be spanned by the generalized eigenspaces of the
high eigenvalues, and let EL ⊂ Cn be the subspace spanned by the generalized
eigenspaces for the low eigenvalues.

Let prH : Cn → EH be the projection onto EH , parallel to EL and prL : Cn →
EL be the projection onto EL, parallel to EH . A basis v1, . . . , vn of Cn will be
called an (H, L)-basis if v1, . . . , vk is a basis of EH and vk+1, . . . , vn is a basis of
EL.

Definition 3. We will say that f is (N, k)-prepared if, written in coordinates with
respect to an (H, L)-basis, the power series expansion of f at the origin contains
no monomial terms pj

I with |I| ≤ N, j > k and only the indices 1, . . . , k appearing
in I.

Equivalently, f is (N, k)-prepared if there exists ε > 0 and a constant C such
that for any x ∈ EH with |x| < ε, we have |prL(f(x))| ≤ C|x|N .

The second characterization shows that being (N, k)-prepared is independent of
the (H, L)-basis chosen.

Proposition 4 shows that we lose very little by assuming that our mappings are
appropriately prepared.

Proposition 4. Let U be a neighborhood of 0 in Cn, and let f : U → Cn be an
analytic mapping with f(0) = 0. Suppose the eigenvalues λ1, . . . , λn of Df(0)
satisfy the inequalities of Equation (3). Choose N so that |λk|N > |λ1|. Then
there exists an invertible polynomial mapping Φ: Cn → Cn such that Φ−1 ◦ f ◦Φ is
(N, k)-prepared.

Proof. Begin by putting Df(0) in triangular form by a linear change of variables,
so that λ1, . . . , λn appear on the diagonal in that order.

We will say that the term bpj
I is (N, k)-offending if |I| ≤ N , j > k and only

i1, . . . , ik appear in I. We will take the (N, k)-offending terms in the order on
monomial mappings of Equation (2). Let pj

I be the first. According to Proposi-
tion 2, the coefficient of pj

I in (Φj
I(a))−1 ◦ f ◦ Φj

I(a) is b + a(λj − λI), and since
|λj | < |λI |, we can choose a so that this coefficient vanishes. The only terms of
(Φj

I(a))−1 ◦f ◦Φj
I(a) that are different from those of f appear later in the order, so

we can now eliminate the next (N, k)-offending term, until all the (N, k)-offending
terms are eliminated.
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Observe that all the Φj
I(a) used in the process are globally invertible. Indeed, if

Φj
I(x) = u, then obviously xi = ui for i &= j. The equation for xj reads xj + axI =

uj , and since j is not among the indices appearing in I, this gives xj = uj−auI . !
Example 5. Let

f




x
y
z



 =




λ3x

λ2y + z
λz + bxy



 .

We will try to bring f to be (2, 2)-prepared, and at the moment the term bxy in
the third line is (2, 2)-offending. Thus we will conjugate the mapping by Φ3

[1,1,0](a)
for an appropriate a. Note that

(Φ3
[1,1,0](a))−1 = Φ3

[1,1,0](−a);

the analogous statement will always be true when eliminating (N, k)-offending
terms.

Let us compute the conjugation:



x
y
z



 Φ+→




x
y

z + axy



 f+→




λ3x

λ2y + z + axy
λ(z + axy) + bxy



 Φ−1

+−→




λ3x

λ2y + z + axy
λ(z + axy) + bxy − a(λ3x)(λ2y + z + axy)



 .

The term that really matters is xy(b + a(λ − λ5)) in the third coordinate; this
term can be made to vanish by setting a = b/(λ5 − λ). The other new terms of
degree 2 are

(1) the term aλ3xz in the third line; this is later than the term xy in the third
term because of the second condition in the definition of ≺, and

(2) the term axy in the second line; this is also later than the xy-term in the
third line by the third condition in the definition of ≺.

There is also a cubic term in the third line, which is also later. In fact, after
conjugation there are no more (2, 2)-offending terms: the term in x2y in the third
term involves only x and y but has too high degree. (If we required a (3, 2)-prepared
mapping, we would need to eliminate it.)

4. Local Existence of Very Unstable Manifolds

Suppose that U is a neighborhood of 0 in Cn, and that f : U → Cn is an analytic
mapping with f(0) = 0. Let the eigenvalues λ1, . . . , λn of Df(0) be ordered to
satisfy both conditions of Equation (3).

By a linear change of variables, we may choose an (H, L)-basis so that the matrix
of Df(0) is upper triangular.

Choose N so that |λk|N > |λ1|. By a further polynomial change of variables
tangent to the identity, we may assume that f is (N, k)-prepared.

Define
g = prH ◦ (f |EH ) : EH → EH .
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We obtain g from the power series of f by retaining only the monomials involv-
ing only x1, . . . , xk in the first k lines and of total degree ≤ N . Since Dg(0) is
invertible, g is invertible in some neighborhood of the origin in EH .

Note that when k = 1 (which requires |λ1| > |λ2|), we can take N = 1, and then
g(x) = λ1x.

Theorem 6. There exists a neighborhood W of 0 in EH such that the sequence of
mappings fm ◦ g−m : W → Cn is defined for all m ≥ 0, and converges uniformly to
an analytic mapping F : W → Cn whose derivative at 0 is the canonical injection
EH ↪→ Cn, and such that f ◦ F = F ◦ g.

The image of F is the k-very unstable manifold of 0 for f . It is clearly invariant
under f . The main difficulty in proving Theorem 6 is that it is not clear that
fm ◦ g−m is defined on any neighborhood of 0 in E for all m, since f expands like
multiplication by |λ1|, whereas g−1 contracts like division by |λk|, so unless k = 1
it seems that f should win and that fm ◦ g−m(x) should be undefined for large m.

Throughout the paper, we will use the Euclidean norm on Cn denoted by | |; the
norm on matrices is the operator norm with respect to the Euclidean norm.

Proof. Choose ε > 0 so small that that (|λk| − ε)N > |λ1| + ε.
Make a linear change of variables so that Df(0) satisfies ‖Df(0)‖ < |λ1| + ε/2.

This is pure linear algebra: put Df(0) into triangular form and scale the coordinates
so that the off-diagonal terms are sufficiently small.

Next choose ρ > 0 so that
• f is defined on the ball Bρ(0) of radius ρ around 0,
• g is invertible on Bρ(0) ∩ E,
• On Bρ(0) we have

‖Df(x)‖ ≤ |λ1| + ε so that |f(x)| ≤ (|λ1| + ε)|x|,

|g−1(x)| ≤ |x|
|λk| − ε

when x ∈ EH ∩Bρ(0),

|f ◦ g−1(x)− x| ≤ C|x|N for some constant C

(4)

(this requires that f be prepared).
Define

α =
|λ1| + ε

(|λk| − ε)N
,

so that 0 < α < 1, and let r0 be the positive solution of r0 + CrN
0 /(1 − α) = ρ.

Define rm inductively by rm+1 = rm + CαmrN
0 , so that limm→∞ rm = ρ.

Theorem 6 now follows from Proposition 7, which is merely a more precise re-
formulation.

Proposition 7. (a) For all x ∈ EH with |x| < r0, all the compositions fm◦g−m(x)
are defined.

(b) The sequence fm ◦ g−m converges uniformly on EH ∩Br0(0) to a map

F : EH ∩Br0(0) → Bρ(0)

whose derivative is the canonical inclusion EH ⊂ Cn.
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(c) The map F satisfies the equation f ◦ F = F ◦ g.

Proof. The hardest part is (a). We will prove by induction on m that if |x| < r0,
then f lg−m(x) is defined for all l with 0 ≤ l ≤ m, and satisfies

|f l ◦ g−m(x)| ≤ rm for all l satisfying 0 ≤ l ≤ m.

This is certainly true for m = 0, so suppose it is true for some m and we will prove
it for m + 1.

First, let us see that the inductive hypothesis implies that for all l, 0 ≤ l ≤ m,
the map f l is defined on the ball B of radius

C
rN
0

(|λk| − ε)mN
(5)

around g−m(x), and maps it into Brm+1(0). If this were false, there would exist
l0 ≤ m such that f, f2, . . . , f l0−1 are all defined on B and bounded by rm+1 on
B, and there exists y ∈ B such that f l0(y) (which is defined since |f l0−1(y)| < ρ)
satisfies |f l0(y)| ≥ rm+1. But this does not occur, since

|f l0(y)− f l0 ◦ g−m(x)| ≤ (|λ1| + ε)l0 |y − g−m(x)|
≤ (|λ1| + ε)l0C(|λk| − ε)mN

≤ C
(|λ1| + ε)m

(|λk| − ε)mN
|x|N = Cαm|x|N < CαmrN

0 .

Thus

|f l0(y)| ≤ |f l0(y)− f l0(g−m(x))| + |f l0(g−m(x)| < CαmrN
0 + rm = rm+1.

With this under our belt, the rest is easy. We have

|fm+1 ◦ g−(m+1)(x)− fm ◦ g−m(x)| ≤
∣∣fm(f ◦ g−1(g−m(x))− fm(g−m(x)

∣∣

≤ (|λ1| + ε)m
∣∣(f ◦ g−1(g−m(x))− g−m(x)

∣∣

≤ (|λ1| + ε)mC|g−m(x)|N

≤ C
(|λ1| + ε)m

(|λk| − ε)mN
|x|N = Cαm|x|N ,

where the term fm+1◦g−(m+1)(x) is well defined because it can be rewritten fm(f ◦
g−1(g−m(x))), and f ◦ g−1(g−m(x)) belongs to the ball B given in Equation (5).
We have also used the chain rule, which requires that all the intermediate iterations
belong to Bρ(0), which was also justified above.

This proves (a), but it also proves (b), since it shows that the series on the right
of

lim
m→∞

fm ◦ g−m(x) = x +
(
f ◦ g−1(x)− x

)
+

(
f2 ◦ g−2(x)− f ◦ g−1(x)

)
+ . . .

converges uniformly and absolutely on the ball of radius r0. The series can be
differentiated term by term, and the only term with non-vanishing derivative at
the origin is the first, giving the canonical inclusion EH → Cn.

Finally, (c) follows from

F (g(x)) = lim
m→∞

fm ◦ g−m+1(x) = f ◦ lim
m→∞

fm−1 ◦ g−(m−1)(x) = f(F (x)).



112 J. HUBBARD

This completes the proof of Proposition 7 and Theorem 6. !

5. Local Existence of Very Stable Manifolds

In the large, stable manifolds behave quite differently from unstable manifolds
when f is not an automorphism. But locally, if f is locally invertible, it is easy to
adapt the proof for the unstable manifolds to show existence for stable manifolds.

Let U ⊂ Cn be a neighborhood of 0 and f : U → Cn be an analytic mapping
such that f(0) = 0 and Df(0) has eigenvalues λ1, . . . , λn satisfying

0 < |λ1| ≤ · · · ≤ |λk| < |λk+1| ≤ · · · ≤ |λn| and |λk| < 1.

Suppose that N is an integer such that |λk|N < |λ1|, and suppose that f−1 is
(N, k)-prepared. Let EL be the generalized eigenspace corresponding to the first k
eigenvalues, and EH the direct sum of the generalized eigenspaces corresponding
to the other eigenvalues.

Corollary 8. Let
g = prL ◦ (f |EL) : EL → EL

be the polynomial map obtained by truncating the Taylor expansion of f to degree N ,
restricting to EL and projecting on EL. Then there exists a neighborhood W ⊂ EL

of 0 and an analytic mapping F : W → Cn mapping 0 to 0, such that DF (0) is
the canonical inclusion EL ↪→ Cn, and such that F ◦ g = f ◦ F .

Proof. Since λ1 &= 0, the mapping f is locally invertible, and we simply apply
Theorem 6 to f−1. !

The image of F will be called the k-very stable manifold of 0.

6. Analytic Dependence of Very Unstable Manifolds on Parameters

Let t0 ∈ T be an analytic manifold with a distinguished point. Let U ⊂ Cn be
a neighborhood of 0, and let ft : U → Cn, t ∈ T , be an analytic family of analytic
mappings parametrized by T . Suppose that for all t we have ft(0) = 0 and that
ft0 satisfies the conditions of Theorem 6.

We want our parametrization of the k-very unstable manifolds for ft to depend
analytically on the parameter t, and there is a problem. Our construction of F
depends in an essential way on preparing f , and our proof that f can be prepared
depends on the matrix of Df(0) being triangular. Of course nothing stops us from
taking Dft0(0) triangular, but in general we cannot find a linear change of variables
that depends analytically on t and makes all Dft(0) triangular. If there were such a
thing, then the entries on the diagonal of the Dft(0), i.e., the eigenvalues, would also
depend analytically on t, and the roots of a polynomial do not depend analytically
on the coefficients when the polynomial has multiple roots.

Of course, we could simply take as a hypothesis that all Dft(0) are triangular, or
that they can be analytically triangularized. But that would be a serious weakening
of our desired result, as we would usually lose the analytic dependence whenever
Dft0(0) has multiple eigenvalues.

First, let us give an example to illustrate the difficulties which arise.
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Example 9. Let

ft





x1

x2

x3

x4



 =





λ3x1 + x
tx1 + λ3x2

λx3 + x4 + b1x1x2

tx3 + λx4 + b2x1x2



 ,

where we assume |λ| > 1; we will attempt to construct the 2-very unstable manifold.

The matrix
[
λ 1
t λ

]
cannot be triangularized analytically in t, since the eigen-

values are λ±
√

t do not depend analytically on t; neither can
[
λ3 1
t λ3

]
. Thus the

linear terms beneath the diagonal cannot be eliminated by a change of variables
that depends analytically on t.

In this case to prepare ft we must eliminate (3, 2)-offending terms. The first such
term is the monomial b2x1x2 in the fourth term. If we conjugate by Φ4

[1,1,0,0](a) as
in the proof of Proposition 4, the fourth coordinate is

tx3 + λx4 + x1x2(a(λ− λ6) + b2)− atλ3x2
1 − aλ3x2

2.

As in Proposition 4, we can choose a so as to eliminate the offending term, but
at the cost of introducing the new offending term −atλ3x2

1, which in our order
comes before the offending term p4

[1,1,0,0] just eliminated. Even if we ignore this,
a similar computation will show that when we eliminate the term b1x1x2 in the
third coordinate, we will introduce a term in x1x2 back into the fourth coordinate.
Eliminating offending terms one at a time is hopeless.

Proposition 10. Let the eigenvalues of Dft0(0) satisfy the conditions (3), suppose
N is chosen so that |λk|N > |λ1|. Then there exists a neighborhood T ′ ⊂ T of t0
and a polynomial change of variables Φt depending analytically on t ∈ T ′ such that
(Φt)−1 ◦ ft ◦ Φt is (N, k) prepared.

Proof. Let the distinct eigenvalues of Dft0(0) be µ1, . . . , µm with multiplicities
l1, . . . , lm; and suppose that |µ1| ≥ · · · ≥ |µm|.

Lemma 11. There is a neighborhood T ′ ⊂ T of t0 and a linear change of variables
Φt depending analytically on t ∈ T ′ so that if we set gt = Φ−1

t ◦ ft ◦ Φt, then
the matrices of Dgt(0) are all block diagonal, i. e., all entries outside of square
blocks of side l1, . . . , lm along the diagonal vanish, and the matrix Dgt0(0) is upper
triangular.

Note that this already says that ft has no linear offending terms for t ∈ T ′.

Proof of Lemma 11. One way of approaching this is via complex analysis. Choose
discs Di around the µi, and let T ′ be so small that the spectrum of Dft(0) is
contained in these discs for all t ∈ T ′. Then the operators Pi(t) : Cn → Cn given
by

Pi(t) =
1

2πi

∫

∂Di

(ζ −Dft(0))−1dζ

are projectors onto the direct sum of the generalized eigenspaces corresponding to
the eigenvalues of Dft(0) in Di. These projectors evidently vary analytically with
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t for t ∈ T ′, and it is easy to see that the rank of each Pi is li for all t ∈ T ′. Denote
by E1(t), . . . , Em(t) the images of P1(t), . . . , Pm(t). Choose bases vi,1, . . . , vi,li of
Ei(t0) such that in these bases Dft0(0) is upper triangular, for instance by taking
Dft0(0) in upper Jordan canonical form. Then set

vi,j(t) = Pi(t)(vi,j)

These vi,j(t) will form a basis of Cn for t in some perhaps smaller neighborhood
of t0, and in this basis the matrix of Dft(0) has the desired block-diagonal form,
since the Ei(t) are invariant under Dft(0). !

Now we will deal with all offending terms of each degree 2, . . . , N at once rather
than one at a time. By induction, suppose that for some q ≤ N , the maps ft have
no offending terms of degree < q. We will conjugate ft by Φt given by

Φt(x) = x +
∑

pj
I offending, |I|=q

aj
I(t)p

j
I(x).

One way of understanding the proof of Proposition 4 is to say that the numbers aj
I

for which the mapping
(Φt0)

−1 ◦ ft0 ◦ Φt0

has no offending terms of degree q are the solutions of a system of linear equations
such that if we order the unknowns according to Equation (2), then the matrix Lt0

of coefficients is upper triangular, with entry λj−λI on the diagonal in the column
corresponding to the unknown aj

I(t0). In particular this matrix is invertible.
Now the assertion that

(Φt)−1 ◦ ft ◦ Φt

has no offending terms of degree q is also a system of linear equations, for the
same unknowns. This time the matrix Lt is not triangular; that is why we cannot
eliminate the offending terms one at a time. But it is of the form

Lt = Lt0 + (t− t0)Mt;

in particular, it is still invertible for t sufficiently close to t0. Thus for t sufficiently
close to t0 we can choose analytic functions aj

I(t) so that after conjugating by Φt

the mapping ft has no offending monomials of degree q. It is easy to see that we
have introduced no new offending terms of degree < q. !

With this preparation, Theorem 12 is easy, and its proof is left to the reader.

Theorem 12. Suppose that for all t we have ft(0) = 0, that ft0 satisfies the
conditions of Theorem 6. Then the hypotheses of Theorem 6 are satisfied for t in
some neighborhood T ′ ⊂ T of t0, and if we denote by gt, Ft the mappings constructed
in Theorem 6 from ft, then Ft depends analytically on t in T ′.

Remark 13. Note the hypothesis that ft(0) = 0. In many settings, we have a family
of analytic maps ft, but no point that is fixed by all ft. Corollary 12 applies anyway
in a neighborhood of a fixed point p of ft0 , so long as none of the eigenvalues of
Dft0(p) is 1. Under this hypothesis, the implicit function theorem implies that
there is locally near t0 an analytic map t +→ p(t) with p(t0) = p and ft(p(t)) = p(t)
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for all t in a neighborhood of t0. But if 1 is an eigenvalue of Dft0(p), then usually
the fixed point p bifurcates, and Corollary 12 does not apply.

7. The Naturality of F

There are two questions involved in the naturality of very unstable manifolds:
is the image of F unique, and is the parametrization natural. We will see in this
section that the answer to the first is an unqualified yes, and in the next that the
answer to the second is a qualified no.

Again, suppose that U is a neighborhood of 0 in Cn, that f : U → Cn is an
analytic mapping with f(0) = 0, and that the eigenvalues of Df(0) are λ1, . . . , λn,
ordered so that

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|.
Recall that EH and EL are the direct sums of the generalized eigenspaces cor-

responding to the high and the low eigenvalues.
Then a k-very unstable manifold will be the graph of an analytic mapping

α : W → EL without constant or linear terms, and defined on some neighbor-
hood W ⊂ EH of 0. Moreover, the invariance of the manifold is expressed by the
following equation:

f

(
x

α(x)

)

L

= α(f
(

x
α(x)

)

H

), (6)

where the indices indicate projection onto EL and EH respectively.
We already know that the image of F is the graph of such a map α, so the

following proposition settles the existence and uniqueness problem for the very
unstable manifold, at least in the analytic category.

Proposition 14. Equation (6) has a unique solution in the ring of formal power
series.

Proof. Choose an (H, L)-basis for which Df(0) is in upper-triangular form, and
write

Df(0) =





λ1,1 λ1,2 . . . λ1,k

0 λ2,2 . . . λ2,k

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . λk,k



 ,

where λi = λi,i.
Let the series for α be α =

∑
|I|≥2

∑n
j=k+1 aj

Ip
j
I , where the multiindex I only

concerns the first k variables. Substitute this expression in Equation (6). Clearly
the lowest degree term in which aj

I appears is contributed by the linear terms of f .
These give the equation

aj
I(λ1,1x1 + · · · + λ1,kxk)i1(λ2,2x2 + · · · + λ2,kxk)i2 · · · (λk,kxk)ik = aj

Iλjx
I . (7)

In particular, the coefficient of xI is λi1
1 · · ·λik

k − λj , and since all |λi| > |λj | for
1 ≤ i ≤ k, we see that this coefficient does not vanish. Since all the monomials of
degree |I| that appear in Equation (7) come later in the ordering, the coefficients
can be recursively computed. !
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It is essential that the eigenvalues we are considering be the big ones. There is
not necessarily any invariant manifold corresponding to small eigenvalues, and if
one does exist, it may fail to be unique. Thus even though we are considering a
formal power series computation, the magnitudes of the eigenvalues have to play a
role.

Example 15. Consider the map

f

(
x
y

)
=

(
4x
2y

)
.

Then the curves of equation x = Cy2 are all invariant, and all tangent to the y-axis,
which is the eigenspace for the small eigenvalue 2.

If instead we consider

f

(
x
y

)
=

(
4x + y2

2y

)
,

then there is no invariant analytic curve tangent to the y-axis. Indeed, if we set
x = α(y) = a2y2 + a3y3 + . . . , then Equation (6) leads to 4a2 = 4a2 + 1.

8. The Affine Structure of Very Unstable Manifolds
and Resonant Forms

We have proved that on its very unstable manifold, a mapping f is locally con-
jugate to a certain polynomial map g, obtained by truncating the Taylor series of
f , restricting and projecting. The mapping g is polynomial, hence defined on all
of Cn, but its global dynamics may be complicated: it will probably have critical
points, and even if it doesn’t, it may be as complicated as a Hénon mapping.

Of course, the restriction of f to the very unstable manifold is also locally con-
jugate to any other map locally conjugate to g, and we may wonder whether there
is a nicer one.

The obvious candidate is the restriction of Df(0) to EH , and usually (as we will
see), g is conjugate to this linear map. Even when it isn’t, there is a fairly nice map
conjugate to g, called a resonant form, which reduces to a linear map when there
are no “resonances”. This resonant form is already interesting locally: it almost
provides a normal form for g. But it is much more interesting globally; although
g might have complicated global dynamics, resonant forms don’t: in our setting,
they are bijective and all points iterate to ∞ under g and to 0 under g−1.

What do we mean by “globally”? Suppose X is a complex manifold (often Cn

in practice), and f : X → X is analytic, so that in particular all iterates fm are
defined on all of X. Suppose p ∈ X is a fixed point of f , and that Df(p) satisfies
the conditions of Theorem 6. If M is the local very unstable manifold provided by
Theorem 6, we can consider the global unstable manifold given by the increasing
union

M̃ =
∞⋃

m=0

fm(M).

What is the structure of M̃? As a subset of X, it tends to be terribly complicated,
usually dense in some complicated fractal invariant subset of X. (Understanding
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the structure of this fractal is what one means by “understanding f”, something
that has seldom been achieved for any interesting class of maps in dimension greater
than 1.) But the intrinsic structure of M̃ is never complicated: there is always a
holomorphic mapping F : Ck → M̃ such that f ◦F = F ◦g for some resonant form g.
Thus we think of M̃ as all tangled up in X, like a sheet all tangled in a washing
machine, and of F as “untangling” M̃ into Ck (with a resonant form Ck → Ck),
like the same sheet spread out to dry.

We begin by defining resonant monomials and resonant forms. These depend on
a linear map L : Ck → Ck, whose matrix we will assume to be upper triangular,
with eigenvalues λ1, . . . , λk satisfying |λ1| ≥ · · · ≥ |λk|. The monomial mapping
pj

I is called resonant with respect to L if

λj = λi1
1 · · · · · λik

k = λI . (8)

A mapping f : Ck → Ck is called a resonant form with respect to L if all its
monomials are resonant.

Remark. We are allowing |I| = 1; this means that pj
i is resonant if λi = λj . Thus

the off-diagonal terms of Jordan canonical form are resonant; and indeed it is well
known that they cannot be eliminated by conjugation. We have already encountered
condition (8) several times, first in Proposition 2 and most recently in Equation (7).

Proposition 16. Let L : Ck → Ck be as above, upper triangular with eigenvalues
satisfying |λ1| ≥ · · · ≥ |λk| > 1 and suppose |λk|N > |λ1|. Then any resonant form
g : Ck → Ck with g(0) = 0 and Dg(0) = L has degree < N and is invertible; and
under iteration of g all points x &= 0 iterate to infinity, and they all iterate to 0
under g−1.

Proof. Since for any I we have

|λI | ≥ |λk||I| > |λ1|,
no monomial resonant with respect to L can have degree ≥ N .

Our condition implies that the kth line of the equation g(y) = x is simply
λkyk = xk, since

λk = λi1
1 · · · · · λik

k

implies that i1 = · · · = ik−1 = 0 and ik = 1; now use the fact that Dg(0) is
triangular. Thus we can solve for yk in terms of xk.

More generally, the jth line of the equation g(y) = x is of the form

λjyj + (terms involving only yj+1, . . . , yk) = xj .

Indeed, the monomial pj
I is resonant if λj = λI , and since we have |λi| > 1 for all i,

only λl with l ≥ j can occur in I, except for linear terms for j′ > j with λj′ = λj ;
the triangular form of Dg(0) says that this also occurs only if j′ ≥ j. Thus if we
have recursively solved for yj+1, . . . , yk in terms of xj+1, . . . , xk, we can solve for
yj , . . . , yk in terms of xj , . . . , xk.

Continue until you get to y1.
This proves that g is invertible. If a point x ∈ Ck does not iterate to infinity

under g, then the formula λkyk = xk shows that xk = 0. But then xk−1 = 0 also,
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and so forth until we get to x1. The same argument shows that all points iterate
to 0 under g−1. !

When we try to extend this result to an analytic family of mappings ft, we run
into the same difficulties that we encountered in Proposition 10: the linear terms
of the perturbed mapping cannot always be made diagonal, and the terms beneath
the diagonal prevent us from solving for the coordinates of ft(y) = x one at a time.

Proposition 17. Let L : Ck → Ck be as above, upper triangular with eigenvalues
satisfying |λ1| ≥ · · · ≥ |λk| > 1. and suppose |λk|N > |λ1|. Let t0 ∈ T be a
distinguished point of an analytic manifold, and gt : Ck → Ck be an analytic family
of polynomial maps, such that gt0 is a resonant form for L, and such that all gt

have non-zero coefficients only for monomials that are resonant for L. Then there
exists a neighborhood T ′ of t0 such that all gt, t ∈ T ′, are invertible and have the
simple dynamics of resonant forms: all points x &= 0 iterate to infinity under g,
and they all iterate to 0 under g−1.

Remark. We are not assuming that Dgt(0) = L for t &= t0, so in all likelihood the
monomials of gt are not resonant for gt. But we cannot eliminate them if we want
holomorphic dependence.

Proof. We need to modify the proof of Proposition 16. The difficulty comes from
the linear terms: the matrix Dgt(0) may acquire terms below the diagonal (in
positions (i, j) where λi = λj ; we have seen that these are resonant). This prevents
us from solving the equation gt(y) = x for the variables yk, . . . , y1 one at a time.

We will overcome this as in Proposition 10 by considering all the variables cor-
responding to each generalized eigenspace at once. Let µ1, . . . , µm be the distinct
eigenvalues of Dg(0), and Eµi be the generalized eigenspace for µi. Let us denote
by xµ, yµ the variables of the eigenspace Eµ. Then the equation gt(y) = x for the
vector yµ in that eigenspace becomes

(Dgt(0)|Eµ)(yµ) + (terms involving only previously computed y’s) = xµ.

This can be solved because Dgt(0)|Eµ is a small perturbation of the invertible
matrix Dgt0(0)|Eµ . !

As in Theorem 6, let us suppose that U is a neighborhood of 0 in Cn, and
that f : U → Cn is an analytic mapping with f(0) = 0. Again we suppose that
the eigenvalues of Df(0) satisfy the conditions (3), and EH , EL have the same
meaning as in Section 3, and choose an (H, L)-basis with respect to which Df(0)
is upper triangular. Choose an integer N such that |λk|N > |λ1|.

The restriction L = Df(0)|EH is the linear map underlying our resonances, and
although we are considering maps f : Cn → Cn, we will be particularly interested
in monomials involving only the first k variables, which we will call k-monomials
(i. e., monomial mappings pj

I where j ≤ k and I ∈ Nn satisfies ik+1 = · · · = in = 0).
We next show that our map f can be conjugated so that its k-monomials of

degree < N are all resonant.
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Proposition 18. There exists a neighborhood V ⊂ Cn of 0 and a mapping Φ: V →
Cn tangent to the identity such that if we set fΦ = Φ−1 ◦ f ◦ Φ and define

g = prH ◦(fΦ|EH ) : EH → EH ,

then g is a resonant form.

Proof. This follows immediately from Proposition 2, which says that we can get rid
of non-resonant terms one at a time in the order (2), without introducing others
which come earlier in the order. We might as well get rid of all non-resonant
monomials of degree ≤ N ; there will then be no non-resonant monomials in the
first k coordinates involving only the variables of EH . !

Remark. Proposition 18 is simple because of the hypothesis |λk| > 1. If there are
eigenvalues λj with |λj | < 1, there may be infinitely resonant monomials. More
serious, there usually will be infinitely many “near resonances”, and these lead to
very interesting but difficult small divisor problems. But these will involve both
the variables of EH and of EL, and need not concern us here.

The following example illustrates this computation.

Example 19. Let

f




x
y
z



 =




λ3x + yz
λy + z

λz + byz



 , |λ| > 1.

The term yz in the third coordinate is not resonant, so we can eliminate it. Set

Φ




x
y
z



 =




x
y

z + ayz



 , so that Φ−1




x
y
z



 =




x
y

z − ayz + a2y2z − . . .



 .

Here, as is typical, we have

Φ−1 = I − apj
I + (terms of degree ≥ 2|I| − 1)

and the extra terms do not affect our conclusions (you have to think carefully about
the linear terms: if |I| = 1, then 2|I| − 1 = |I|). Now compute the conjugation
(omitting most terms of degree > 2):




x
y
z



 Φ+→




x
y

z + ayz



 f+→




λ3x + y(z + ayz)

λy + z + ayz
λ(z + ayz) + by(z + ayz)



 Φ−1

+→




λ3x + yz + ay2z

λy + z + ayz
λz + yz(λa + b)− a(λy + z)λz



 .

The term that really matters is yz(b + a(λ− λ2)) in the third coordinate, which
can be made to vanish by setting a = −b/(λ− λ2). This reflects the fact that the
polynomial yz in the third entry, i. e., p3

(0,1,1), is not resonant. The other new terms
of degree 2 are
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(1) the term ayz in the second term. This is later than the term yz in the
third term because of the third condition in the definition of ≺, reflecting
the fact that the linear terms of f are upper triangular, and

(2) the term −aλz2 in the third coordinate; this is also later by the second
condition. Again this reflects the fact that L is upper triangular; we are
substituting coordinate functions with higher indices in pj

I .
There are lots of new terms of degree 3 or higher, which will be dealt with later.
Note the term ay2z in the first line: it is resonant, even though there was no such
resonant term in the original mapping.

Resonances occur on a closed set, so one would not expect the resonant form g
of a mapping f : E → E to depend analytically on f . But we can do almost as
well; we can associate to a family of mappings ft a family of mappings gt, so that
gt0 is resonant, but all gt have the same simple dynamics as resonant mappings.

Corollary 20. Let t0 ∈ T be an analytic manifold with a distinguished point.
Let U ⊂ Cn be a neighborhood of 0, and ft : U → Cn, t ∈ T , be an analytic
family of analytic mappings parametrized by T , such that ft(0) = 0 for all t ∈ T .
Moreover, suppose that ft0 satisfies the conditions of Theorem 6. Then there exists
a neighborhood T ′ of t0 and an analytic family of locally invertible mappings Φt,
t ∈ T ′, such that the non-zero k-monomials of

Φt ◦ ft ◦ Φ−1
t

of degree < N are all resonant monomials for Dft0(0).

Proof. We have encountered the difficulty in this proof twice already: the possible
terms beneath the diagonal of Dft(0) prevent us from eliminating terms one by
one. We have also solved the problem twice, and we will use the same method
here. The equation for eliminating from the power series of ft all monomials of a
given degree that are non-resonant for Dft0 leads to a system of linear equations
for the coefficients of the conjugating map. This system is a small perturbation of
the system for ft0 , and for that system, Proposition 18 tells us that the matrix of
coefficients is upper triangular with non-zero entries on the diagonal.

Note that we are carefully not trying to eliminate the terms of Dft(0) that might
be below the diagonal, and that correspond to resonant linear terms of Dft0 .

Now we can claim that a small perturbation of an invertible matrix is invertible,
so the system can be solved. !

9. The Global Structure of Unstable Manifolds

We now come to our main result on the global structure of unstable manifolds.
Let X be a complex manifold, f : X → X be an analytic mapping, and p ∈ X be a
fixed point of f . Suppose the eigenvalues of Df(p) are λ1, . . . , λn, ordered so that

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|,

and that |λk| > 1.
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We know that there is a local very unstable manifold M in some neighborhood
of p, and we can consider the global object M̃ =

⋃
m≥0 fm(M). Theorem 21 tells

us how to parametrize M̃ .

Theorem 21. There exists a neighborhood U of 0 ∈ TpX, a local chart φ : U → X
tangent to the identity, and a resonant form g : EH → EH such that the limit

F = lim
m→∞

fm ◦ φ ◦ g−m

exists for all x ∈ EH . This limit defines an mapping F : EH → X whose image is
M̃ , and such that f ◦ F = F ◦ g.

Proof. This is simply a matter of putting together Theorem 6 and Propositions 18
and 16.

By Proposition 18, there exists a neighborhood U of 0 ∈ TpX and local coordi-
nate φ : U → X tangent to the identity such that φ−1 ◦f ◦φ satisfies the conclusion
of Proposition 18. This gives us a resonant form g : EH → EH , and applying
Proposition 16, we know that for any compact set K ⊂ EH , there exists q such
that gq(K) ⊂ U . Now on K we can write

F = lim
m→∞

fm ◦ φ ◦ g−m = fq ◦ lim
m→∞

(
fm−q ◦ φ ◦ g−(m−q)

)
◦ gq,

and by Theorem 6, the limit exists, and satisfies f ◦F = F ◦g. Being a limit of ana-
lytic mappings that converges uniformly on compact sets, it is analytic. The image
of F contains the local k-very unstable manifold M of p, hence M̃ =

⋃
i f i(M). !

Now we put analytic parameters in the construction. Let t0 ∈ T be an analytic
manifold with a distinguished point, and ft : X → X, t ∈ T , be an analytic family of
analytic mappings parametrized by T . Suppose that p(t) is a point of X depending
analytically on t ∈ T , such that for all t we have ft(p(t)) = p(t), and such that
ft0 satisfies the hypotheses of Theorem 21 with respect to p = p(t0). We can then
consider the “eigenspace” Et for t ∈ T ′ for an appropriate neighborhood T ′ of T0,
and we will choose a basis e1(t), . . . , ek(t) of Et, depending analytically on t ∈ T ′.
Our construction will depend on this choice of basis.

Corollary 22. There exists a family gt : Ck → Ck of maps that depend analytically
on t in a neighborhood T ′ of t0, all having the simple dynamics of resonant forms,
and a family φt of local coordinates near p(t) such that the limit

Ft = lim
m→∞

fm
t ◦ φt ◦ g−m

t

exists uniformly on compact subsets of T ′ × Ck, and gives for each t ∈ T ′ a
parametrization of the unstable manifold of p(t) in the sense of Theorem 21.

Proof. Use Proposition 20 to choose local coordinates near the p(t) so that the
expression of ft has only appropriate monomials, then use Proposition 17 to assert
that the mappings gt constructed have the desired simple dynamics, and finally use
Theorem 6 to guarantee the convergence, as in the proof of Theorem 21. !
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10. The Critical Points of F

In general F is neither injective, nor an immersion.

Example 23. Consider the mapping f(z) = z2 − 2, with the fixed point 2, where
f ′(2) = 4. In that case, the map F (t) = 2 cos

√
t satisfies

f(F (t)) = F (4t),

and it is in fact the limit

F (t) = lim
m→∞

fm

(
2 +

t

4m

)
.

But it is clearly neither injective nor an immersion.

It is easy to see what the critical points of F are.

Proposition 24. Suppose f : X → X and p satisfy the hypotheses of Theorem 21.
Let Z ⊂ X be the critical locus of f . The critical points of F are a subset of

⋃

m>0

gm(F (Ck) ∩ Z).

Proof. Differentiate the equation fm ◦ F = F ◦ gm, to find
(
D(fm)(F (x))

)
DF (x) =

(
DF (gm(x))

)
D(gm)(x).

We see that the only way to have DF (gm(x)) non-injective is for either DF (x)
or D(fm)(F (x)) to fail to be injective. But any point x ∈ EH can be written
gm(y) for some y such that DF (y) is certainly injective. Thus DF ((gm)(y)) non-
injective implies that D(fm)(F (y)) also non-injective, which means that the orbit
of y passes through Z. !

If f : X → X is an automorphism (or more generally an injective immersion),
this leads to the following result.

Corollary 25. Let f : X → X be an automorphism, and p a fixed point of f
satisfying the hypotheses of Theorem 21. Then the parametrization F : Ck → X of
the k-very unstable manifold constructed in that theorem is an injective immersion.

Proof. We just saw that F is an immersion. The injectivity is similar but easier:
the equation fm ◦ F = F ◦ gm implies that if F (x1) = F (x2), then

fm ◦ F ◦ g−m(x1) = fm ◦ F ◦ g−m(x2).

For m sufficiently large, F ◦ g−m(x1) &= F ◦ g−m(x2) when x1 &= x2. Then use the
assumption that f is injective. !

Note that we have now proved Theorem 1.
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11. The Case of Stable Manifolds

If f : X → X is an automorphism, of course very stable manifolds behave just like
very unstable manifolds, simply by considering f−1. For the sake of completeness,
we state this as Theorem 26. Note that for all of its being obvious, we are proving
that in the case of attractive fixed points, the basins are Fatou-Bieberbach domains.

Theorem 26. Let X be a complex manifold, f : X → X an automorphism, and
p ∈ X a fixed point such that the hypotheses of Corollary 8 are satisfied. Then
there is an injective immersion F : Ck → X which parametrizes the k-very stable
manifold of p.

But in the case where f is not an automorphism, stable and unstable manifolds
are quite different, and in particular stable and very stable manifolds are not in
general isomorphic to Ck.

Example 27. Consider the polynomial f(z) = λz + z2 with 0 < |λ| < 1. Then
the stable manifold of 0 is the basin U of 0, the set of points z ∈ C such that
limm→∞ fm(z) = 0. This set is clearly bounded, and cannot be the image of any
non-constant map C → U .

The appropriate statement about global very stable manifolds in general is The-
orem 28.

Theorem 28. Let X be a complex manifold, and f : X → X be an analytic map-
ping. Let p ∈ X be a fixed point satisfying the hypotheses of Corollary 8. Let EL

be the direct sum of the eigenspaces for the generalized eigenvalues λ1, . . . , λk, and
suppose that W ⊂ EL and F : W → X are as in Corollary 8. Let M = F (W ) and

M̃ =
∞⋃

m=0

f−m(M).

Then there exists a resonant form g : EL → EL such that

Ψ = lim
m→∞

g−m ◦ F−1 ◦ fm (9)

converges uniformly on compact subsets of M̃ to a surjective analytic map M̃ → Ck

satisfying Ψ ◦ f = g ◦Ψ.

Proof. Construct first a local coordinate near p in which the expression of f−1

(which exists near p by the inverse function theorem) is given in EL by a resonant
form g−1. This can be done by Proposition 18. Now using these local coordinates,
apply Corollary 8, to construct W and F : W → X locally parametrizing the k-very
stable manifold of p.

Now consider the limit of Equation (9). For any compact subset K ⊂ M̃ , there
exists a number q such that fq(K) ⊂ M . For all m > q, we then have

g−m ◦ F−1 ◦ fm = g−(q+1) ◦ F−1 ◦ f (q+1).

Therefore the limit of Equation (9) does exist, uniformly on compact subsets. !
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Note that the mapping Ψ of Theorem 28 is usually not a ramified covering map,
but more like a generic analytic mapping, with extremely complicated behavior
near the boundary of M̃ .

We will spare the reader the applications of Corollary 12, showing that so long as
the fixed point p does not bifurcate, the map Ψ can be made to depend analytically
on parameters.
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