THE MONODROMY OF PROJECTIVE STRUCTURES
John H. Hubbard

Introduction

In this paper we shall give a new proof of the result, due to Hejhal [5],
that the map associating to an isomorphism class of projective structures
its conjugacy class of monodromy homomorphisms is a local homeomorphism.

We shall follow the following plan: show that the domain (Prop. 1) and
the range (Prop. 4) are manifolds, identify their tangent spaces (Prop. 2
and 4), and compute the derivative of the map above. It turns out that one
space is an Eichler cohomology space and the other is the cohomology of
a group; they are canonically isomorphic by a classical theorem of alge-
braic topology. The derivative is the canonical isomorphism.

The idea of using differential calculus on this problem is not new:
both Earle [2] and Gunning [4] have proposed similar proofs; this paper
‘explains the appearance of Eichler cohomology in their computations,

Many of the other results I establish in this paper were already known to
Hejhal, Kra, Gunning, Maskit, Earle, Weil and no doubt others. The ex-
position is, I hope, in the spirit of Gunning’s book and in fact the paper is
largely a matter of putting parameters in arguments appearing there.

I wish to thank Earle, Douady, Kra, and Gunning for helpful conversa-

tions, and the N.S.F. for financial support during part of the preparation of
‘this paper.
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258 JOHN H. HUBBARD

NOTATION.
P! is the complex projective line (the Riemann Sphere)
Gi= PGLQ(C) _ Aut P!; ACG is the subgroup of affine maps
zpaz+b.
G = pgl,(C) = Space of analytic vector fields on pi.
(]

The adjoint action of G on | corresponds to the direct image of the

corresponding vector fields.

We will speak of the fundamental group of a space only after a univer-
sal covering space has been chosen; the fundamental group is then the
group of automorphisms of the universal covering space. All universal

covering maps will be denoted u.

1. Projective structures

A projective atlas on @ Riemann surface X is an open cover U; of
X and analytic maps a;: u; - P1 which are homeomorphisms onto their
images such that a; ° ai‘l is the restriction to a-l(UiﬂU j) of an element
of G. Two projective atlases are equivalent if together they form a pro-
jective atlas; a projective structure on X is an equivalence class of pro-

jective atlases.

ExaMpLES. (i) If X is compact of genus > 2 and H is the upper
half plane, there is a covering map u:H - X by the uniformization
theorem. Sections of u over simply-connected open subsets of X define
a projective atlas.

(ii) Other planar covering spaces of X, such as the Schottky cover-
ing space, can be used to describe projective structures.

Gii) ¥ I'cC isa {attice and X = C/T", appropriate restrictions of
the canonical coordinate 2 of C define a projective structure on X as
above; restrictions of 8% also do forany a e (C-{0}. In these cases,
the changes of coordinates are affine; a projective structure which can be

defined by an affine atlas is called an affine structure.
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Let a be a projective structure on a Riemann surface X, and X be

a universal covering space of X, with u: X - X the covering map.

LEMMA 1. (i) There exists an analytic map f: X -+ P! such that on any
contractible open subset U C X the composition f eu™! is a projective
chart, Any other such map is of the form o°f{ for some o¢G.

(ii) To every such f there corresponds a unique homomorphism

pg: m(X) - G such that pe(y)=f = foy, and p, ¢= gOpfco_l :

Proof. Cover X by open subset U; on which u is injective, and such
that there exist projective charts q; : u(U;) -+ PLl. let Bi = aiﬁuﬁl . Then
0;j.= @ -ﬂai_l is a l-cocycle on X with values in G. Since X is con-
tractible, this cocycle is a coboundary, after refining the cover if neces-
sary, and there exist o; ¢ G such that oj; = .7]71 og;. Thenon U; N Uj,
0 °a; = ;°a; SO all the o; = a; are restrictions of a global map

f: X - P! with the appropriate properties. The second part of (i) is
obvious.

In any U; there is a homomorphism PE i m(X) » G such that
pf’i(y)of(x) = f((x)) for x ¢U;, since both f o u! and foyou! are
projective coordinates on X. But it is clear from analytic continuation
that pri(y)OE =foy on all of X , since X is connected and both sides
are analytic functions of x. Q.E.D.

Such a map f is called a developing map of X; p¢ is the correspond-
ing monodromy homomorphism.

We will need the following fact:

LEMMA 2. A projective structure on a compact Riemann surface is

equivalent to an affine structure if and only if the surface is of genus 1.

Proof. See [3], p. 173. The result is purely topological, essentially say-
ing that if a surface admits an affine structure, the cotangent bundle is

trivial. Q.E.D.
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COROLLARY, If X is a compact Riemann surface of genus >2 and a
is a projective structure on X, then the monodromy homomorphism pg

for any developing map f has non-commutative image.

Proof. Any commutative subgroup of G is conjugate by an appropriate

o ¢ G to a subgroup of the affine group A C G. The projective atlas
formed by maps of the form o°fe u"! on contractible open subsets of X
is affine. Q.E.D.

The real interest of projective structures is the geometry of developing
maps and the monodromy homomorphism. Beyond this corollary there is
little to be said in general; the developing maps may fail to be covering
spaces of their images, the monodromy homomorphisms may fail to be
isomorphisms, and their images may fail to be discrete. In fact all of
these pathologies occur for the family given in example (iii) for appropriate

values of a,

2. The Schwarzian derivative and the affine structure of P(X)

Let U be a Riemann surface, x ¢ U, and f, g meromorphic func-
tions on U such that f/(x)£0, g’(x)# 0. There exists a unique o¢G
such that f and oog agree toorder 2 at x. Then d3(f-o°g)(x) is
naturally a cubic map T, U - Tf(x )Pl , and f'(x) ! od3(f-cog)(x) isa
cubic map T, U - T, U. But for any one dimensional complex vector
space V, the cubic maps V - V cortespond naturally to the quadratic
maps V - C. Therefore the construction above defines a quadratic form
S, g)(x) on TXU , and it is easy to see that S(f,g) is a meromorphic
quadratic differential _fon:n on U, holomorphic at those points x where
f'x)£0 and g'(x)#0.

If UcC and z is the canonical coordinate on C, then S(f,z) =
i *;i(f”)z/(f’)z, as the classical definition requires.

For any Riemann surface U, let Q(U) be the space of holomorphic

quadratic forms on U.
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LEMMA 3. The Schwarzian derivative has the following properties :

(i) S(f,g) = S(f, ocg) = S(oof,g) forall veG.

(ii) S(f,g)=0 if f=ogog, and conversely f = gog if S(f,g)=10
and U is connected.

(iii) S(f,g) + S(g,f)=S(f,h), and S(f,g)=-S(g f).

(iv) If U is simply connected, f is schlicht on U and q ¢ Q(U),
there exists a solution g schlicht on U to the equation
S(f.g)=q.

Proof. Parts i, ii, iii are obvious. Part (iv) is similar to Lemma 1. Q.E.D.

Suppose the projective structures ¢ and B on X are defined by
atlases (U;,a;) and (Vj, Bj). Then the quadratic forms S(a;, Bj), de-
fined in U; N VJ coincide on open sets of form Uil n Ui2 MV so they
are induced by a quadratic form q = a-f8 on X.

Conversely, if a ¢ P(X) and gq ¢ Q(X), there is a unique projective
structure f8 ¢ P(X) such that B-a =q, we shalldenote it q + . If

{>@j) is an atlas defining a and the U; are simply connected, then S
may be defined by (U;, B;) where the 3 are solutions of S(B;,a;)=q
in U;, which exist by Lemma 3, (iv).

LEMMA 4. The map Q(X) x P(X) » P(X) given by (q,a)+ q+a makes
P(X) into an affine space under Q(X).

Proof, All that is left to show is that P(X) is not empty. This follows
from the uniformization theorem, as in the example (i) §1, or from Riemann-

Roch as in [3], p. 172. Q.E.D.

COROLLARY. The space P(X) is canonically a complex manifold, and
for all a ¢ P(X), we have TaP(X) = Q(X).

3. Relative projective structures
Let 7n: X -8 be a smooth family of compact Riemann surfaces para-

metrized by a complex manifold S (i.e. a proper analytic submersion with
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fibers X(s) = 7 1(s) of dimension 1). A relative projective atlas on X
is a relative atlas (Ui’ai) where the U; form an open cover of X, and
the a;:U; - P! are analytic maps where restrictions to fibers of =~ are
isomorphisms onto their images, such that over each s ¢S, the pair
(Uy(s), a;i(s)) is a projective atlas on X(s).

As above, two relative projective atlases are equivalent if together
they still form a projective atlas, and a relative projective structure on X

is an equivalence class of relative projective atlases.

REMARK. To say that a family of projective structures a(s) is induced

by a relative structure is to say that a(s) depends analytically on s.

ExAMPLES. The family of projective structures obtained by applying the
uniformization theorem fiber by fiber does not define a relative projective
structure: the normalization requiring the images of the universal covering
spaces to be the upper half plane cannot be made analytic.

The generalization of the uniformization theorem given by Bers [1]
does give relative projective structures on the universal curve over
Teichmiiller space.

The canonical family of projective structure on P(X)x X » P(X) is
induced by a relative projective structure.

Let Pg(X) be the set of pairs (s,a) such that s ¢S and a is a

projective structure on X(s).

PROPOSITION 1. (i) There is a unique structure of a complex manifold
on PS(X) such that the projection p: PS(X) - S given by (s,a) s is
analytic, and analytic families of projective structures on X given by
section of p are induced by relative projective structures on X.

(ii) The action of Qg(X) on Py(X) over S given by
((s, @), (s,a)) + (s, g+ a) makes PS(X) into an analytic affine bundle over
S, under the analytic vector bundle QS(X).

Proof. The proposition is clearly local in S. Suppose a relative projec-

tive structure @ on X can be found (even locally over small subset of S).



THE MONODROMY OF PROJECTIVE STRUCTURES 263

Then the map (s,q)~ (s,q9+a(s)) is a bijection Qg(X) » Pg(X). Give
P (X) the induced structure; with this structure, Pg(X) clearly satisfies
(ii).

To see that it satisfies (i), we need to know that if g is a section of
Q4(X), then the family of projective structures induced by a(s) + g(s) is
induced by a relative projective structure.

Let (U;,a;) be a relative projective atlas defining a. On U(s), the
equation S(a;(s), B;) = g(s) is an analytic differential equation of third
order depending analytically on s, whose solutions will exist in Ui(s)
by Lemma 3, (iv) if the U; are sufficiently small, and will depend analyt-
ically on s if initial conditions are chosen analytic in s. But this can
be done, for instance by picking (locally in S) a section S - X of #»
and requiring Bi(s) to coincide with a;(s) to order 2 along the section.
Clearly the f8; form a relative projective atlas with the desired properties.

Thus we are left with showing that over sufficiently small open sub-
sets of §, X carries a relative projective structure. This may be shown
by appealing to the universal property of Teichmiiller space and the simul-
taneous uniformization theorem of Bers [1]; we shall prove a slightly more

general result.

LEMMA 5. Let n: X » S be a proper and smooth family of Riemann sur-
faces of genus at least 2, with S a Stein manifold. Then X admits

relative projective structures.

Proof. Let (U;, &;) be any relative atlas (relative atlases exist by the
implicit function theorem). On the U, N Uj , consider the section of
ans given by S(;(s), qu(s)). These define a 1-cochain with values in

Qfg?s for the cover !Ui! which is a cocycle by Lemma 2, iii.

But the Leray spectral sequence of 7 gives an exact sequence
2 @2
0 - HOS, RIz+Q%%) » HI(X, n;@j’s) »HY(S, mxQy %)

and the first term is zero because H!(X(s), 2®?)= 0 by Riemann-Roch;

the last term is zero because S is Stein.
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Therefore refining the cover if necessary, we may assume that there

are sections g; of Qggfs over Uj such that
q; - Qj, = S(‘ﬁi-(ﬁj) .

Solutions a; of the differential equations S(a;, &) = G chosen so as to
satisfy some analytic initial condition such as to agree with ¢&; to order
2 along some section S - of 7, will then form a projective atlas for
| X, perhaps after further refining the cover to make them injective on
fibers. Q.ED.

CoROLLARY. (i) The family of projective structures on the family of
Riemann surfaces p*X = PX which is a on the fiber over a¢ P.X is
induced by a canonical relative projective structure ag(X).

(ii) The space PgX has the following universal property: The map
which associates to any analytic mapping f: T > Pg(X) the projective
structure £* aS(X) on the family of Riemann surfaces (pof Y*X is a bijec-

tion of Mor (T, PS(X)) onto the set of relative projective structures on
(pof)*X.

The proof is left to the reader.

4. Infinitesimal deformations and Eichler cohomology

In this paragraph, we shall carry out an infinitesimal deformation
theory for projective structures analogous to the Kodaira-Spencer theory
for complex structures.

Let U be a Riemann surface, a bea projective structure on U and
y an analytic vector field on U. Choose a one-parameter family of maps
by U= U with &g = id and &g =¥, and define the Lie derivative of

a in the direction ¥

$ila)-a

L (a) = lim
X TS0 t
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Clearly Ly(a) is an analytic quadratic form on U, and we leave it
to the reader to prove that if ¢ is a projective coordinate on U and

e y(g)%, then L, (a)=x"({)d¢?. In particular, the Lie derivative

does not depend on the family ¢, that was chosen.

Let A, be the subsheaf of the sheaf of germs of analytic vector
fields which is the kernel of the morphism  » Ly(a); we then obtain an
exact sequence of sheaves

0 A Ty H@), ge2 0

a

which will be important; TU stands for the sheaf of germs of vector
fields on U (as opposed to the tangent bundle TU), and the Lie deriva-

tive is surjective because of the formula that computes it in a projective

coordinate.

REMARKS. In a projective coordinate {, sections of A are exactly

those vector fields which can be written p({)% with p a polynomial of

degree at most two; such vector fields are calle;:l infinitesimal automor-
phisms of a because the flows they generate send « to itself.

The sheaf Aa is locally constant of rank 3, an example of what
topologists call a local system. In particular, it may be thought of as the
sheaf of germs of sections of a covering space, with fiber isomorphic to
C3 with the discrete topology.

Let X »S a family of Riemann surfaces, s; ¢S and X, the surface
above it. Suppose a is a relative projective structure on X which in-
duces the projective structure a, on X,. We shall describe a linear
map Tg OS > HY X a Aao) which measures the infinitesimal deformation
of a.

Let (Ui,qi) be a relative projective atlas on X; by restricting S
and refining the cover U = {U;} we may assume that for each i and all
s ¢S the maps ay(s): U(s) » P! are homeomorphisms onto some open
set V;C P!. Define bi(s) = agi(s)*1 °aj(s,) and ¢i,j(s) = qS-l(s)*l °¢j(s),
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where d)i J-(s) is defined in an open subset of Ui M Uj which will in-
clude any given point for s sufficiently near sg- The maps &; J-(s)

satisfy the following two identities:

‘bi,j(s)otﬁj,k(s‘) qbi'k(s)

0,

]

*
‘ﬁi’j(s) 2n—ap

the first obviously and the second because (U;,@;) is a relative projec-
tive atlas.

Since &y j(so) is the identity map UiﬂUj - UiﬂUj, the derivative
dsoq')i'j(v) = Yi,j(v) is a vector field on U; n Uj for any v ¢ TSOS, and

the derivatives of the identities above give:
Yi,j(v) + Yj'k(v) = )(‘i'k(\')

Lyi,j(ao) = 0.

The first identity says that y(v) = ly; j(V)f is a cocycle in
ctd, TX,), and the second that it is in fact in C!(1l, A, ). Define the
0

infinitesimal deformation of a at Sg

2 1
dg i Tg S = HIKg, Ay )

by dg (a)(v) = the cohomology class of y(v). We leave it to the reader
0

to prove that the class does not depend on the projective atlas that was
chosen.

The map dg (a) has the following properties:

(i) It commutes with change of basis, i.e., if f: T-S is a map with
f(to) =s, and we give f*X the relative projective structure f*a, then
d; (*a)=d (a)od, f.

to( So( t0
(ii) The map i od; av' T, 8> HI(XO, TX,) obtained by composing
0 0

dg a with the map H'(X(, A, )~ H'(X,, TX,) induced by the inclusion
0 0
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Aao C TX, is the Kodaira-Spencer map classilying the deformation of the
complex structure of X at x;.

(iii) Let X,, a, be any compact Riemann surface with a projective
structure, and let a be the canonical relative projective structure on

P(X)x X, » P(Xo). Then TGOP(XO) = Q(XO), and daoa QX)) >
HI(XO, A ao) is the “‘connecting homomorphism’’ coming from the long

exact sequence associated to the short exact sequence (1).

Part (i) follows immediately from the construction, (ii) is clear since
the cocycle y(v) is a definition of the Kodaira-Spencer map (7], (iii) is a
computation we shall leave to the reader.

Now let us examine the universal case; let M be a compact surface
of genus at least 2, @,, the Teichmiiller space modelled on M and
w: EM - ®M the universal Teichmiuller curve. We shall omit the subscript
M in the sequel.

Let p: P@E - ® be the canonical projection and give p*E the
canonical relative projective structure @ given by the corollary to Propo-

sition 1.

PROPOSITION 2. Let 0 bea pointin ®, X,=n () the Riemann
surface above it and a, e P(X). Then

q = 1
daoa. Iaopa... - HY(X,, AaD)
is an 1somorphism.

Proof. Consider the diagram

0

T, PXo) — T, Po= Ty & ——=0
id d a ?

g

i
0 ®2 1 ¥ 01
H (XO,Q ) —H (XO,AGO)—-H (XO,TXU) —0
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The top line is induced by the inclusion of P(X,) as the fiber of p
above 0, (cf. Prop. 1), the bottom line is extracted from the long exact
sequence associated to the short exact sequence (1), the left vertical map
is the isomorphism of the corollary to Lemma 4 and the right vertical map
is the Kodaira-Spencer isomorphism. The left-hand square commutes by
properties (i) and (iii) of d, Oa and the right-hand square by property (1i).

The proposition now follows from the five lemma. Q.E.D.

REMARK. Proposition 2 identifies the tangent space to the space P@E
of ‘‘all projective structures on all Riemann surfaces’’ exactly in the same
sense that the Kodaira-Spencer isomorphism identifies the tangent space

to the space ® of “‘all Riemann surfaces’ as Ty O = HAME,, TX o)
0y 0+ %o

5. The space Hom(I',G)
Let T' be the fundamental group of a surface, given by generators

3= hal, ---,azgi subject to the one relation

4

]._.[ [ai’ai+g] =1

i=1

Clearly the set Hom(l',G) may be identified with the subset of G28
defined by the analytic equation f—1 where f: G228 5 G is given by
S
f(oy, u-,agg) = 11 ["i' °i+g]‘ This gives Hom(I',G) the structure of an
i=1
analytic space.
LEMMA 6. With this analytic structure, Hom (I',G) has the following
universal property: for any analytic space S, morphisms S - Hom I, aG)

correspond bijectively to morphisms Sx1' - G which are analytic, and

whose restrictions to s} x 1" are group homomorphisms for all s €S.

REMARK. In this lemma I is considered as a discrete analytic space.

The proof is trivial and left to the reader. In particular, the analytic
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structure on Hom (I', G) does not depend on the chosen presentation. We
may therefore expect that there is an intrinsic description of the local
structure of Hom (I',G), in particular of its tangent space, etc. The

object of this paragraph is to give such a description.

Let Hom™(I", G) C Hom(I", G) be the open set of representations with
non-commutative image.

For any representation p:I" - G, we may consider g as a ['-module
by y-&=Ad p(y)(£); we shall denote this I'-module 8, Recall [6]
that a derivation &: 1" = g, is a map satisfying 8(3’17’2) = 8y )+ vy - 8(y,)
and that those derivations of the form 55 (y) = é—y- & are called principal
derivations. Call Der(I", gp) the space of derivations and IDer (I, gp)
the subspace of principal derivations, A classical description of
HYT, gp) is Der (I, gp)/lDer(l", gp); this is the description we shall use.

The tangent space to G atany o is ¢ (in two different ways); we

shall use the local chart @ » G of G near o givenby &t exp(£)o.

PROPOSITION 3. The space Hom™(I",G) is a submanifold of G28,
For any p e Hom*(I',G) the map Der (I, gp) - g%8 given by 8+ 312
is an isomorphism of Der (I, gp) onto TpHom I, G).

Proof. A computation which begins

V3
1

£ Eive - e A
l=e 1(':’1‘* 1+&,"’11)(01“1+g"11“3 "1“1~l+g”11)

—1
£ AdoyLy g ~Ad(001, 007 16y

I] [efiai, e£i+goi+g

¥ 2
and ends using X117, e)(1 L I8 0(|)(1|2 szf“’) shows that the
derivative of f at o= (oy,, crzg) ¢ G2&_in the direction & = (.fl,---, .fzg)

3 ggg is

i=1

i-1
daf(§) = 2 H [G'j, Uj+g1' ((1 - ai"i+gai-l) ¢ gl +(0’iﬁ [O'i, 0i+g])' EH-g)'
i i=1
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If o=plg forsome pe Hom (T, G), essentially the same computation
shows that d cf(ﬁ) - 0 is the necessary and sufficient condition for
E:X-4@ o to extend (obviously uniquely) to a derivation ' = @ o

Thus all we need to prove is that dqf: g%g > 8 is surjective if
pe Hom*(I",G). The basic fact (left to the reader) is that if 74,7, ¢ G do
not commute, the linear map 8,%08p" 8p given by (51,52) i (1—71)51 +
= r2)§2 is surjective.

This result gets applied twice. First suppose that for some i,
1<i<eg, 9% and Tirg do not commute. Then since

- "i0i+g°{1)‘fi +(o5-loy ai+gh‘fi+g

% S
- ooy, 0i Gt - Tiagli o5 Cive)

the images of the £, and Eivg already fill out the image of dgf-
If each o commutes with ;.o the expression for the derivative of
f simplifies to
g
4,60 = 2, -0y, &+ @1~D i)
1

i=

[

and the result is clear since for some i, i» 94 and a3 do not commute.

Q.E.D.

REMARK. This result is a special case of the following more general re-
sults: If 1" is a group of finite presentation, G is a Lie group with Lie
algebra @, then Hom (T, G) is an analytic space, its Zariski tangent
space at p 18 Der (I, gp) and the equations defining locally Hom I, G)
in Der(I’, gp) may be chosen to have values in HA(T, gp). In our case,
this boils down to the fact that if the image of p is not commutative,

H3T, q.)=0. which may be proved by Poincaré duality.
p

PROPOSITION 4. (i) The group G acts freely on Hom*(I",G), and the
quotient Hom*(", G)/G has a unigue structuré of an analytic manifold
such that the projection Hom™(I",G) - Hom™(I',G)/G is analytic.

’.-h‘k -
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(ii) For any p ¢ Hom™(I", G), the derivative of the inclusion

G » Hom™([I",G) givenby o oopo o' at 1eG is the map

q
p
Hom™(", G)/G at the image of p is canonically isomorphic to BT, gp).

= Der (I, gp) given by & 5 '3{:_—. In particular the tangent space to

Proof. The fact that G acts freely follows from the fact that commuting
is an equivalence relation on non-trivial elements of G. This may for
instance be seen by observing that oy #1 and o, # 1 commute if and
only if they have the same fixed points in PL.

Similarly, if p, and p, are not conjugate, they have neighborhoods
U; and U, such that noelement of U, is conjugate to an element of
U2 , since the fixed points of a non-trivial y ¢ G vary continuously with
y. Therefore the graph of the equivalence relation is closed, and the
quotient is Hausdorff. The existence and uniqueness of the analytic
structure follows from the analyticity of the action of G, and the deriva-

tive in (ii) is computed from efpe—'f = ef_p"fpa-()(ifl?'). Q.E.D.

6. Hejhal's theorem

Let 7: X S be a family of Riemann surfaces with a relative projec-
tive structure «. Suppose S is contractible and let I = 7, (X) = m(X(s)).
If » admits analytic sections, there are relative developing maps
f:X Pl , i.e., analytic maps which, restricted to 5((5), are developing
maps of a(s). This is just a matter of picking an analytic normalization,
for instance requiring that f should agree to order 2 with a relative

analytic chart along a section.

REMARK. The requirement that » admit analytic sections is too strin-
gent. In fact, there are relative developing maps if S is contractible and
Stein. Indeed, the space of all developing maps of the X(s) forms a
principle analytic bundle under G over S, and so is trivial by Grauert’s
theorem if S is Stein and contractible. This applies in particular to the

universal family over PgZE.
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Clearly if f: X - P! is a relative developing map, the associated
pg: S »Hom(I', G) which associates toeach s ¢S the monodromy homo-
morphism of f(s), is analytic.

Let F: P®E +Hom (I', G)/G be induced by the above construction,

for the universal family of projective structures parametrized by P@E.

REMARK. The global existence of F does not require Grauert’s theorem,

because we have divided by the action of G. It does require the con-

.
tractibility of PgE, so that a universal coverin space p'= induces a
® £

universal covering space p*E over each fiber of p*E - PgE.
THEOREM. The map F is an analytic local homeomorphism.

The fact that F is analytic follows from the fact that F lifts locally
(and even globally by Grauert) to an analytic map PgE -+ Hom(T', G).

By the corollary to Lemma 2, the image of a monodromy homomorphism
is never commutative, and so both the range and the image of F are mani-
folds, whose tangent spaces we know.

Let aj ¢ P®E be a projective structure on Xy let f: Xy~ P! be
a developing map for a, and p: I" + G its monodromy homomorphism.

The theorem will now follow from

LEMMA 6. The derivative d, F: HI(XO, Aa )= Hl(r, @) is an
0 0 p

isomorphism.

The two tangent spaces look similar; they are in fact canonically iso-
morphic by the classical theorem of algebraic topology which says that
one way to compute the cohomology of a group I" with values in a
I'-module is to compute the cohomology of a K(T, 1), with coefficients

in the associated local system in the sense of the following lemma.

LEMMA 7. The group I acts on 5(0 x 6, by y-(x,&)=(y- x,p(1), ),
and the map 5(0 X g, Aao given by (x,&) - (u(x), u f*€) induces an

isomorphism on the quotient.
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The proof is immediate and left to the reader.

We cannot unfortunately use the canonical isomorphism without ex-
plicitly constructing it. There are many ways to do this; the one we shall
use here is adapted to our knowledge of the two spaces, one via Cech
cocycles and the other via derivations.

It is possible to compute Cech cohomology using a generalization of
‘an open cover: an etale cover. The “‘open sets’’ are manifolds U; and
immersions U; » X, whose images are required to cover X. The intet-
sections U; n Uj must be replaced by the fiber products Ui Xx Uj , and
similarly for multiple intersections.

Moreover, Leray’s theorem still applies: if the U; as well as all
their fiber products are cohomologically trivial (for whatever sheaf we may
be considering) the Cech cohomology for that cover is the cohomology of
the sheaf (either in the Cech sense of direct limit over all covers, or via
resolutions, or whatever, which are all isomorphic).

We shall apply this to the cover consisting of a single open set XX,
The map X Xy X Xy X x.ovn Xx X=XxIM given by (x,y,, -, y,)

(x, Y (x), -, yn(x)) and the identification of Lemma 7 give isomorphisms
Cn(X,J—(; /\a) = gl;n. In fact the complex is the classical inhomogeneous

bar complex [6] whose first two differentials are

do: 9,8, givenby do(€)() = E-y-&;

d,: 91; - ngr given by d;x(y;.7,) = x(yy)+ v, ¥0)- ¥(r17,)-
In particular, the kernel of d, is formed of the derivations I" - ap and
the image of d, is formed of the principal derivations.

In our case, XO isa K(I",1) so Leray’s theorem applies to guarantee

that the cohomology of the complex is in fact HI(XO, Aa_o).

LEMMA 6°. The derivative d, F is the isomorphism H'(X;,A_ )
0 0

HY(A, q.) described above.
ap
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Proof. Choose an analytic curve a(t) in P@E; let f; be a relative
developing map and p, the corresponding monodromy homomorphisms.
Define (as in the construction of §4) a family of analytic maps
by Uy = X(t) which:
a) are analytic isomorphisms onto their images, and analytic in t;
b) are defined in subsets U, C X which fill out X as t becomes
small;

c) satisfy f,=f° & in Uy, and ¢, = identity of X

Then -a—-a(t) is represented by the Cech cocycle for the cover X,

which is, on the component X x tyl of X xxo 5(0, given by
£, -& @itovedy| -
Using fioy = pt(y)ft the expression above may be written
T
fy ~dt
defined in Ug.

(fa1 Opt(y)°f D)lt=0 , where the entire expression fal opy(y) of 5 is

. d 2 B . .
i — h
If we write P o <_fy (it is best to think of fy as a vector

field on P1), then differentiating the expression above gives §v = f’g{-’;.
This is the identification of Lemma 7. Q.E.D.

REMARKS. Some obvious questions, unsolved to the author’s knowledge,
are:

What is the image of F?

What do the fibers of F look like, and their projections in Teichmiiller
space? It is known [8] that F is not injective, but it is injective on
fibers (3]
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