Hints for 8.2, 8.3 and 8.4

1. (8.3.57) Evaluate $A = \int x^3 \sqrt{1 - x^2} dx$ using **a.** integration by parts We use IBP for $u = x^2$, $dv = x\sqrt{1-x^2} \, du = 2x$, $v = -\frac{1}{3}(1-x^2)^{3/2}$ then $A = -\frac{x^2}{3}(1-x^2)^{3/2} + \frac{1}{3}\int \frac{1}{3}(1-x^2)^{3/2}2xdx = -\frac{x^2}{3}(1-x^2)^{3/2} - \frac{2}{15}(1-x^2)^{5/2} + C$ **b.** a u-substitution Let $u = 1 - x^2$ then du = -2xdx so $x^3dx = \frac{1}{2}x^22xdx = -(1-u)du$. Thus,

$$\begin{split} A &= -\frac{1}{2} \int (1-u)\sqrt{u} du = -\frac{1}{2} \int (u^{1/2} - u^{3/2}) du \\ &= -\frac{1}{3}u^{3/2} + \frac{1}{5}u^{5/2} + C = -\frac{1}{3}(1-x^2)^{3/2} + \frac{1}{5}(1-x^2)^{5/2} + C \end{split}$$

c. a trig substitution

 $x = \sin \theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and proceed as in class

4. (8.3.35)Calculate $A = \int_0^{\ln 4} \frac{e^t dt}{\sqrt{e^{2t}+9}}$ First let $u = e^t$ then $du = e^t dt$ and the boundary points are $e^0 = 1$ and $e^{\ln 4} = 4$ then

 $A = \int_{1}^{4} \frac{du}{\sqrt{u^{2}+9}}$ Now we use the trig substitution $u = 3 \tan \theta$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ then $\sqrt{u^2+9}=3|\sec\theta|=3\sec\theta$ as $\sec\theta$ is nonnegative on the domain. Furthermore, $du = 3 \sec^2 \theta d\theta$. Thus $\int \frac{du}{\sqrt{u^2+9}} = \int \frac{3 \sec^2 \theta d\theta}{3 \sec \theta} = \int \sec \theta d\theta = \ln |\sec \theta + \tan \theta| + C$ Now in order to evaluate the definite integral, we have to write down that

last result in term of u.

 $\tan \theta = \frac{u}{3}$ and since $\sec \theta$ is nonnegative,

$$\sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \frac{u^2}{9}}$$

Then $A = (\ln \sqrt{1 + \frac{u^2}{9}} + \frac{u}{3}) \mid_1^4 = \ln 9 - \ln (\sqrt{10} + 1)$

6. First doing a long division yields

$$\frac{x^3}{x^2 - 2x + 1} = x + 2 + \frac{x - 2}{x^2 - 2x + 1}$$

Then since $x^2 - 2x + 1 = (x - 1)^2$, $\frac{x-2}{x^2 - 2x + 1} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$. Multiplying both sides by $(x - 1)^2$ and then letting x = 1 give B = -1. Substituting into the above equation gives A = 1