Hints for 10.3 and 10.4

2. Use the integral test to compare the series with the integral $\int_2^\infty \frac{dx}{x \ln x \sqrt{(\ln x)^2 + 1}}$. Then use the substitution $u = \ln x$ to transform the integral into $\int_{\ln x}^\infty \frac{du}{u\sqrt{u^2 + 1}}$. Finally, use the limit comparison test to compare $\frac{1}{u\sqrt{u^2 + 1}} \sim \frac{1}{u^2}$. The last integral converges so the original one also converges. **3.** Either direct comparison test or limit comparison test with the geomet-

ric series $b_n = \frac{6^n}{7^n}$

4. For n > 1, $\frac{1}{n!} \leq \frac{1}{n(n-1)}$ (here n(n-1) are the last two terms in n!). Then we can use the limit comparison test between $a_n = \frac{1}{n(n-1)}$ and $b_n = \frac{1}{n^2}$ to conclude that all series here are convergent.

5. Using the limit comparison test between $a_n = \frac{1}{\sqrt{n \ln n}}$ and $b_n = \frac{1}{n}$ with $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$. Then apply the conclusion of the LCT for the case $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ convergent.

Again this example shows the hierarchy:

 $\ln <<$ polynomial functions << exponential functions