Worksheet For 10.7 and 10.8

1. Find the interval of convergence. Determine the behavior at the endpoint if exists. **a.** $\sum_{1}^{\infty} \frac{4^n x^{2n}}{n}$.

b. $\sum_{1}^{\infty} \frac{n! x^n}{3.6.9...3n}$

- 2. Find Taylor Polynomial of order n generated at a **a.** $f(x) = \ln(1+x), a = 0, n = 3$
- **b.** $f(x) = \tan x, a = \frac{\pi}{4}, n = 2$
- 3. Find Taylor series generated at a $f(x) = \frac{-1}{x}, a = -1$

4. Given that the series $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$ converges to $\sin x$ for all x a. Find the first 4 terms of a series for $\cos x$. For what values of x should the series converge?

b. By replacing x by 2x in the series for $\sin x$, find a series that converges to $\sin 2x$ for all x.

c. Using the result of part (a) and series multiplication, calculate the first 4 terms of a series for $\sin x \cos x$. Compare with part (b).

d. Finding the first 2 nonzero terms of a Maclaurin series for f(x) = $\sin(2x^{10})$