Warmup 1 Week of Sep 5th

- 1. What is the relationship between the disk method and the washer method?
 - 1. The disk method is the washer method with inner radius equal to zero
 - 2. The disk method computes areas, the washer method computes volumes
 - 3. The washer method often leads to integrals that are easier to evaluate than those from the disk method
 - 4. The disk method deals with solids obtained by rotating around the x-axis, while the washer method deals with solids obtained by rotating around the y-axis
 - 5. They are not related

2. The shell formula calls for integrating 2π times the shell radius times the shell height. What is the explanation for the 2π factor?

- 1. 2π times the shell height represents the area of the shell
- 2. 2π times the shell radius represents the circumference of the cylindrical shell base
- 3. 2π times the shell radius represents the area of the cylindrical shell base
- 4. 2π represents the thickness of the shell
- 5. There is always a factor of 2π in integral formulas

3. One parametric representation of a circle of radius r is $x = r \cos t$, $y = r \sin t$ for $0 \le t \le 2\pi$, but an alternate parametric representation is $x = r \cos 2t$, $y = r \sin 2t$ for $0 \le t \le \pi$. Why should we expect $\int_0^{\pi} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$ for the second parameterization to give the same value for the circumference as the first parameterization gave?

- 1. It traverses the circle at twice the speed in half the time
- 2. It traverses the circle at half the speed in twice the time
- 3. The book says so, and the book is always right!
- 4. It goes around the circle twice, so it should not give the same value
- 5. It only goes around half the circle, so it should not give the same value

4. To calculate $A = \int 2\sin x \cos x dx$, 3 students come up with 3 different answers

1. Using the sub $u = \sin x$, $A = \int 2u du = u^2 + C_1 = \sin^2 x + C_1$

2. Using the sub $u = \cos x$, $A = \int -2u du = -u^2 + C_2 = -\cos^2 x + C_2$

3. Using the trig identity $\sin 2x = 2 \sin x \cos x$, $A = \int \sin 2x dx = -\frac{\cos 2x}{2} + C_3$

Which one is correct?