Warmup4 Week of Sep 17th

1. When considering $\int \sin^m x \cos^n x \, dx$, does n being odd make things easier or harder?

- 1. Harder since for the even case, you just need to remember one formula, the double angle one.
- 2. It doesn't really matter the answer is $\frac{\sin^{m+1}x}{m+1} \frac{\cos^{n+1}x}{n+1}$ anyway
- 3. Yes, because then $u = \sin x$ combined with $\cos^2 x = 1 \sin^2 x$ will convert the integral to the integral of a polynomial
- 4. Yes, because integration by parts will now easily give the answer

2. What would happen if the integrand in example 4 of section 8.2 changed from $\sqrt{1 + \cos 4x}$ to $\sqrt{2 + \cos 4x}$?

- 1. After a substitution u = 4x one could use the same method.
- 2. Similar difficulty. You'd start by simplifying the square root.
- 3. Much harder since the half angle formula would not let you quickly get rid of the square root.
- 4. Similar in difficulty. All examples in the text are examples of general methods.
- **3.** The substitution $x = \sin u$ would be useful for
 - 1. $\int \sqrt{x^2 1} \, dx$ since $\sin^2 u = 1 \cos^2 u$.
 - 2. $\int \sqrt{x^2 + 1} \, dx$ using $1 + \tan^2 u = \sec^2 u$.
 - 3. $\int \sqrt{-x^2+1} \, dx$ using $\cos^2 u = 1 \sin^2 u$.

4. Suppose we used the substitution $x = \sec u$ with x < 0 and $\frac{\pi}{2} < u < \pi$ even though our textbook prefers not to. Then

- 1. $\sqrt{x^2 1}$ would simplify to $\tan u$ as usual.
- 2. $\sqrt{x^2-1}$ would simplify to the square root of a negative number.
- 3. $\sqrt{x^2-1}$ would simplify to $-\tan u$ and we'd be stuck.
- 4. $\sqrt{x^2-1}$ would simplify to $-\tan u$ and there'd be no further problem.

5. Is there anything wrong with using the (Heaviside) "cover up" method to find B in $\frac{x^3}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$?

- 1. No, just cover up the (x+1) on the left and plug in x = -1 to get B = 4.
- 2. Yes, because we haven't divided out x^3 by $x^2 1$ first.
- 3. Yes you need to cover up the (x + 1) on the left and plug in x = 1 instead of x = -1.