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Decisiveness

• Recall from last time: 

• A social choice function is decisive if it always chooses a 
unique winner, and nearly decisive if the only situation in 
which a tie can occur, is if both candidates receive the 
same number of votes. 

Proposition: The simple majority method is nearly decisive, 
but may fail to be decisive. 

• Why?
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Decisiveness (cont’d)

Proposition: The simple majority method is nearly decisive, but may fail 
to be decisive. 

Proof: The simple majority method fails to be decisive because it yields a 
tie when both candidates receive the same number of votes (which is 
possible with any even-sized electorate). Why is it nearly decisive? That is, 
why is a tie only possible when the candidates receive the same number 
of votes? 

Consider the two cases: Either one candidate receives more votes than 
the other, in which case that candidate is the unique winner, or both 
candidates receive the same number of votes and there is a tie. Since 
these are the only possibilities, we can conclude that the method is nearly 
decisive. 

QED
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The Big Question(s)

• Thus, the simple majority method is anonymous, neutral, 
monotone, and nearly decisive. 

• Are there other methods that satisfy all of these? 

• Can we find a social choice function that is anonymous, 
neutral, monotone, and decisive?
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May’s Theorem

• In 1952, mathematician Kenneth May 
proved that the only voting method for 
two candidates which is anonymous, 
neutral, monotone and nearly decisive  
is the simple majority method. That is: 

May’s Theorem: In an election with two  
candidates, a social choice function that is  
anonymous, neutral, monotone, and nearly decisive is 
(functionally equivalent to) the simple majority method.
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Kenneth May (1915-1977) in 1969 



May’s Theorem (cont’d)

May’s Theorem: In an election with two candidates, a social 
choice function that is anonymous, neutral, monotone, and 
nearly decisive is (functionally equivalent to) the simple 
majority method. 

• In other words, if we have any method which satisfies 
anonymity, neutrality, monotonicity and is nearly decisive, 
then it is the simple majority method in disguise. 

• Thus, the simple majority method is the only voting method 
having all of these properties, not just of the ones we have 
studied, but of all theoretically possible voting methods!
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An impossibility result

• Moreover, it tells us that our search for a decisive method 
satisfying these criteria is futile, since the simple majority 
method is not decisive (if the electorate is even). That is: 

Corollary: It is impossible for a social choice function with 
two candidates (and an even-sized electorate) to satisfy 
anonymity, neutrality, monotonicity and decisiveness.
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May’s Theorem (cont’d)

• Let’s prove May’s Theorem. 

• A word about proofs by contradiction: Often, in order 
to prove that some statement “___” is false, we will 
suppose that it is true, and then derive a contradiction. 
As long as our reasoning is valid, this contradiction tells 
us that our assumption, namely “___”, is false. 

• We will use this technique a few times during this proof.
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Proof of May’s Theorem

Proof (from class): Suppose that our social choice function is anonymous, neutral, 
monotone and nearly decisive. We must show that our method is functionally 
equivalent to the simple majority method, that is, the candidate with the most 
votes wins, and if both candidates receive the same number of votes, there is a tie. 
Observe that by anonymity, we need only consider tabulated profiles (i.e., the 
number of votes a candidate gets is all that matters).


Suppose we are given a profile. Let a be the number of votes for candidate A, and 
b the number of votes for candidate B, so that t=a+b is the total number of votes. 
We consider two cases:


Case 1: t is even.


If a=b=t/2, then we claim that there must be a tie. Why? If not, then there is a 
unique winner, so if we create a new profile by switching all A votes to B votes and 
vice-versa, we must switch winners, by neutrality. However, this new profile has the 
same tabulated profile, so the winner must be the same, by anonymity. This 
contradiction shows that there cannot be a unique winner, hence there is a tie.
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Proof of May’s Theorem (cont’d)

(Still considering t even)


Next suppose that A has a majority of that votes, that is, a ≥ t/2+1. We need 
to show that A must be the unique winner. By near decisiveness, we cannot 
have a tie in this scenario, so it remains to show that B cannot be the unique 
winner.


Suppose that B was the unique winner, with b = t-a ≤ t-(t/2+1) = t/2-1 < t/2 
votes. By monotonicity, B would also be the unique winner if he had t/2 votes, 
but we have already seen (on the previous slide) that this case results in a tie. 
This contradiction shows that B cannot be the unique winner.


Since there must be some outcome, it must be the case that A is the unique 
winner, as desired.


The same holds if B has a majority of vote, by neutrality. Thus, provided t is 
even, our method is functionally equivalent to the simple majority method.
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Proof of May’s Theorem (cont’d)

Case 1: t is odd.


In this case, it’s impossible for A and B to have the same number of votes (since t/2 is 
not a whole number), so by near decisiveness, there cannot be a tie.


Suppose that A has a = t/2+1/2 many votes, the smallest possible majority. We want 
to show that A must be the unique winner (then monotonicity will imply that A will be 
the unique winner with more votes as well). Note that B gets b = t-a = t-(t/2+1/2) =  
t/2-1/2 = a-1 many votes. We’ve already seen that there cannot be a tie.


Suppose that B was the unique winner, with his a-1 many votes. By neutrality, A would 
also win with a-1 votes, and by monotonicity, with a many votes. But that is exactly the 
scenario in which B has a-1 votes, so this is a contradiction.


Thus B cannot be the unique winner, so A must the unique winner. So, A is the unique 
winner if she gets the majority of the vote. Again, by neutrality, the same would hold of 
B, showing that our method is functionally equivalent to the simple majority method.


QED
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A generalization of May’s Theorem

• By imitating the proof of May’s Theorem, we can also 
obtain the following related result. Recall that the all ties 
method is the social choice function that declares a tie 
regardless of the input profile. 

Generalized May’s Theorem: In an election with two 
candidates, a voting method that is anonymous, neutral 
and monotone must be (functionally equivalent to) either the 
simple majority method, super-majority method, or the all 
ties method.
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An example

• Example (Exercise 1.3 in R&U): Suppose you favor one 
(and only one) of two alternatives but only 10% of the 
electorate agrees with your position. Is there a voting 
method that leads to victory for your position that is: 

A. Anonymous? 

B. Anonymous and neutral? 

C. Anonymous, neutral and monotone?
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An example (cont’d)

A. Yes, for example, the monarchy method with your 
preference as the “monarch” candidate. 

B. Yes, for example, the simple minority method (winner is 
candidate with least number of votes, otherwise tie). 

C. No, the Generalized May’s Theorem tells us that the only 
such methods are simple majority, super majority or all 
ties, and none of these will let your preference win in this 
scenario.
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Voting  
and Social Choice Multiple candidates
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An example

• Suppose there are 3 candidates, B, G and N, in an election 
with… 5,922,531 voters. 

• The tabulated preferences of the voters are as follows: 

• Note: the sum of the 1st and 2nd columns is 2,912,790,  
and the sum of the 3rd and 4th columns is 2,912,253. 

• Who should be declared the winner?
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1,893,313 1,019,477 2,329,802 582,451 97,488
B B G G N
N G N B G
G N B N B



An example (cont’d)

• Observe that candidate B receives the plurality of first 
place votes, but not a majority. 

• However, a majority of voters (3,009,741) prefer (that is, 
rank higher) candidate G over candidate B.
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1,893,313 1,019,477 2,329,802 582,451 97,488
B B G G N
N G N B G
G N B N B



An example (cont’d)

• This fictional example is based on the outcome of the 2000 US Presidential 
Election in the state of Florida (we have invented the preference orders, and 
removed other minor candidates, but the first place totals are factual) 

• Bush received a plurality of votes, resulting in Florida (and thus the country) 
selecting Bush as the winner. 

• However, it is reasonable to assume that Nader’s supporters preferred Gore 
to Bush, meaning a majority preferred Gore to Bush. 

• This “plurality method” cannot reflect this fact.
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George W. Bush (R) Albert Gore Jr. (D) Ralph Nader (G)

https://en.wikipedia.org/wiki/United_States_presidential_election_in_Florida,_2000


A second example

• Consider the tabulated preferences below, based (from real 
data and an example in T&P) on the results of the 1980 US 
Senate race in New York between Alfonse D’Amato (R), 
Elizabeth Holtzman (D), and Jacob Javits (I). 

• D’Amato receive a plurality (45%) of the vote and won, while 
Holtzman and Javits received 44% and 11% respectively.  

• Again, a majority (51%) preferred Holtzman to D’Amato.
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1,319,830 1,379,822 892,725 1,725,936 422,891 241,653

D’Amato D’Amato Holtzman Holtzman Javits Javits

Holtzman Javits D’Amato Javits Holtzman D’Amato

Javits Holtzman Javits D’Amato D’Amato Holtzman

https://newcatalog.library.cornell.edu/catalog/8724455
https://en.wikipedia.org/wiki/United_States_Senate_election_in_New_York,_1980


A second example (cont’d)

• However, there is more: 

• Notice that in a one-on-one challenge Holtzman would defeat Javits 
nearly 2 to 1 (3,938,491 to 2,044,366): we see this by removing 
D’Amato in the above, and tallying up the new first-place votes for 
Holtzman and Javits. 

• Moreover, in a one-on-one challenge, Holtzman would also defeat 
D’Amato, (3,041,552 to 2,941,305) (!)
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1,319,830 1,379,822 892,725 1,725,936 422,891 241,653

D’Amato D’Amato Holtzman Holtzman Javits Javits

Holtzman Javits D’Amato Javits Holtzman D’Amato

Javits Holtzman Javits D’Amato D’Amato Holtzman



Social choice and multiple candidates

• These examples highlight some of the difficulties that we 
encounter in elections with more than 2 candidates. 

• We will now consider such elections, with an arbitrary (finite) 
set of candidates (called the slate), usually A, B, C,… 
• Again, candidates need not be people, but we will focus on examples of 

electing public officials


• We will assume that there are 2 or more voters, and 2 or more candidates


• An immediate question: What sort of ballot should be used?
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Preference ballots

• We will assume that each voter will submit a preference 
ballot, on which he or she lists the candidate in descending 
order of preference (their preference order). 

• Every voter must rank all of the candidates, cannot express equal preference 
or indifference among candidates, and no write-ins, blank ballots, etc.


• This may be slightly unrealistic, but it is an idealized situation (or a 
mathematical model) which allows us to develop a richer theory
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A

D

B

C

preference ballot with  
A as first choice,  
D as second choice 
B as third choice,  
and C as fourth choice



Preference ballots (cont’d)

• We will also assume that voters are rational in the 
following sense: if a voter prefers candidate A to B and B 
to C, then she must also prefer to A to C. That is, she 
holds transitive preferences. 

• Note: we can still consider elections which use the usual 
“vote-for-one” ballots simply by ignoring lower ordered 
preferences. 

• Our ballots for two-candidate elections can be thought of 
as preference ballots.
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Profiles

• The collection of all preference ballots cast by a fixed a 
electorate is called a profile.
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A B A C A B C

B C B A B C A

C A C B C A B

Profile

Preference ballot of Voter 3



Social choice functions — Multiple candidates

• A social choice function (or voting method) is a function 
with domain the set of all possible profiles from a fixed 
electorate, and codomain every nonempty subset of the slate 
of candidates. 
• The candidates in the resulting output set are called the winners, while the 

candidates not in that set are the losers.


• We ensure that the social choice function must output some winner by only 
allowing nonempty sets of candidates.


• We allow all possible combinations of candidates as ties.


• For example: If the candidates are A, B and C, what are the 
possible outputs of a social choice function?
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Social choice functions (cont’d)

• An aside: How many social choice functions are there? 

• Consider the case of 3 candidates, and only 4 voters. 
There are 6 possible preference ballots: 

• Since each voter must chose a preference ballot, there are 64=1296 
possible input profiles.


• For each of those 1296 profiles, a social choice function must chose one of 
7 possible sets of winners.


• There are 71296 (a number with 1096 digits!) ways to do this…
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A
B
C

A
C
B

B
A
C

B
C
A

C
A
B

C
B
A



• Recommended reading: Sections 1.5 and 2.1 in R&U. 

• Optional exercise: Try to prove the Generalized May’s 
Theorem by replicating the proof of May’s Theorem. 

• Optional reading: May’s original paper*: “A Set of 
Independent Necessary and Sufficient Conditions for 
Simple Majority Decision”, Econometrica, Vol. 20, No. 
4 (Oct., 1952), pp. 680-684. 

*If you are not on a Cornell network, you can use this link instead and 
access the paper with your NetID. Adding “.proxy.library.cornell.edu” to the 
first part of a URL behind a paywall works for most scientific journals and 
other publications (the New York Times, etc).
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http://www.jstor.org/stable/1907651
http://www.jstor.org.proxy.library.cornell.edu/stable/1907651

