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1. A brief description of these notes

The goal is to prove a sharp bilinear restriction theorem by Tao [3]. These notes were written
as an exercise to better understand the material and no original work by the author is contained
in them. The version of the theorem that we prove here is the one done in a more general setting
by Lee [1]. This is because this level of generality is necessary to prove that bilinear restriction
estimates imply linear ones for the paraboloid. We follow the exposition of [2] closely.

Two tools are taken for granted here: the localization theory by Tao and Vargas [4] and the
wave packet decomposition (Lemma 6.1). Both can be found in Mattila’s book [2].

2. Setting for the bilinear restriction theorem

We have C0, c0, ε0 and R0 positive constants and we have for j = 1, 2, bounded open sets
Vj ⊂ Rn−1 ⊂ B(0, R0), Ṽj is the ε0-neighborhood of Vj , V

∗
j is the 4ε0-neighborhood of Ṽj , C

2-

functions ϕj : V ∗j → R satisfying: the maps ∇ϕj are diffeomorphisms such that for all vj ∈ Ṽj ,
det (D(∇ϕj)(vj)) 6= 0 and

(1) |∇ϕj(vj)| ≤ C0,

(2) |D(∇ϕj)(vj)(x)| ≥ c0|x|, ∀x ∈ Rn−1,

(3) |D(∇ϕ1)(v1)−1(∇ϕ2(v2)−∇ϕ1(v1)) · (∇ϕ2(v2)−∇ϕ1(v1))| ≥ c0,

(4) |D(∇ϕ2)(v2)−1(∇ϕ1(v1)−∇ϕ2(v2)) · (∇ϕ1(v1)−∇ϕ2(v2))| ≥ c0,

Sj = {(x, ϕj(x)) : x ∈ Vj}, j = 1, 2, are the corresponding surfaces and q > q0 = n+2
n .
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Claim 2.1. The inequalities above yield that there is c1 > 0, depending only on C0 and c0, such
that

(5) |∇ϕ1(v1)−∇ϕ2(v2)| ≥ c1

for all v1 ∈ Ṽ1, v2 ∈ Ṽ2.

Proof. Observe that:

c0 ≤ |D(∇ϕ1)(v1)−1(∇ϕ2(v2)−∇ϕ1(v1))·(∇ϕ2(v2)−∇ϕ1(v1)) ≤ ‖D(∇ϕ1)−1‖∞|∇ϕ2(v2)−∇ϕ1(v1)|2

and the claim follows. �

Since n1 = (∇ϕ1(v1), 1) and n2 = (∇ϕ2(v2), 1) give the normal directions of the surfaces S1

and S2, we have |n1 ∧ n2| ≥ c1 and the surfaces are transversal.

3. Bilinear restriction theorem

For a function fj defined on Vj we set

Ejfj(x, t) =

∫
Vj

e2πi(x·v+tϕj(v))fj(v)dv, (x, t) ∈ Rn−1 × R.

These are the Fourier extension operators. Our goal is to prove the following theorem of Tao
[3]:

Theorem 3.1. Suppose the assumptions of Section 2 are satisfied. If ω is a non-negative
weight with ‖ω‖∞ ≤ 1, then

‖E1f1 · E2f2‖Lq(ω) ≤ C‖f1‖2‖f2‖2 for fj ∈ L2(Vj), j = 1, 2.

Remark 3.2. The theorem above is stated in a more general setting than the original result of
Tao.

4. From local to global

In this section we state a localization theorem of Tao and Vargas [4]. Assume that for Kj ⊂ Vj
compact and ϕ1, ϕ2 : Vj → R the surfaces

Sj = {(x, ϕj(x)) : x ∈ Kj}
have non-vanishing Gaussian curvature. We do not need the transversality hypotheses here.
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Theorem 4.1 (Tao and Vargas). Let fj ∈ L2(Sj), j = 1, 2. Suppose that ω ∈ L∞(Rn) with

ω ≥ 0, ‖ω‖∞ ≤ 1 and 1 < p < n+1
n−1 . If α > 0, 1

p

(
1 + 4α

n−1

)
< 1

q + 2α
n+1 , Mα ≥ 1 and

(6) ‖E1f1 · E2f2‖Lq(ω,B(x,R)) ≤MαR
α‖f1‖L2(S1)‖f2‖L2(S2)

for x ∈ Rn, R > 1, fj ∈ L2(Sj), j = 1, 2, then

‖E1f1 · E2f2‖Lp(ω) ≤ CMα‖f1‖L2(S1)‖f2‖L2(S2)

for fj ∈ L2(Sj), j = 1, 2, where C depends only on the structure constants os Section 2.

5. From a local estimate to all of them: induction on scales

This crucial step is an argument due to Wolff:

Proposition 5.1. Suppose that the assumptions of Section 2 are satisfied. Then there is a
constant c > 0 such that the following holds. Assume that for some α > 0 it holds

(7) ‖E1f1 · E2f2‖Lq(ω,Q(x,R)) ≤MαR
α‖f1‖L2(V1)‖f2‖L2(V2)

for x ∈ Rn, R > 1 and fj ∈ L2(Vj), j = 1, 2. Then for all 0 < δ, ε < 1,

(8) ‖E1f1 · E2f2‖Lq(ω,Q(a,R)) ≤ CRmax{α(1−δ),cδ}+ε‖f1‖L2(V1)‖f2‖L2(V2),

for a ∈ Rn, R > 1 and fj ∈ L2(Sj), j = 1, 2, where the constant C depends only on the
structure constants of Section 2 and on Mα, δ and ε.

Notice that localizing with cubes Q(x,R) (center x and side-length R) is equivalent to doing it
with balls. The point here is that once we have this proposition we can argue inductively to get
down to arbitrary small α.

Claim 5.2. (6) holds for α = α0 = n
q .

Proof. By Cauchy-Schwarz we get ‖Ejfj‖∞ . ‖fj‖L2(Vj). Hence by Hölder:

‖E1f1 · E2f2‖Lq(ω,B(x,R)) . ‖χB(x,R)‖Lq(Rn)‖f1‖L2(V1)‖f2‖L2(V2)

. R
n
q ‖f1‖L2(V1)‖f2‖L2(V2)

for x ∈ Rn, R > 1 and fj ∈ L2(Vj), j = 1, 2. �

Claim 5.3. Proposition 5.1 implies 6 for all α > 0.

Proof. Fix ε > 0 and define

αj+1 =
cαj
αj + c

+ ε, j = 0, 1, 2, . . .

By the previous claim, we know that (6) holds for some α. Apply Proposition 5.1 with δ = δj =
αj

αj+c . Then

max{αj(1− δ), cδ} =
cαj
αj + c

,

and it follows that 5.1 holds for α = αj+1. It is easy to check that if ε is chosen small enough, the
sequence (αj) is decreasing and

αj →
(ε+

√
ε2 + 4cε)

2
.

Since we can choose ε arbitrarily small, 6 holds for all α > 0. �
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6. Wave packet decomposition

Set

Y = R
1
2Zn−1,

Vj = R−
1
2Zn−1 ∩ Ṽj ,

Wj = Y × Vj .
For each wj = (yj , vj) ∈ Wj define

Twj = {(x, t) : |t| ≤ R, |x− (yj − t∇ϕj(vj))| ≤ R
1
2 }.

Then Twj is a tube with center (yj , 0) and direction (∇ϕj(vj), 1). Notice that #Vj . R
n−1
2 and

for a fixed vj the tubes Ty,vj , y ∈ Y, have bounded overlap.

Figure 1. Points in Vj

~

*

Lemma 6.1 (Wave-packet decomposition). Let C0 be as in Section 2. Let fj ∈ L2(Vj). Then
there are functions pwj ∈ L∞(Rn) and non-negative constants Cwj , wj ∈ Wj, j = 1, 2, with the

following properties for (x, t) ∈ Rn−1 × R:

(a) Ejfj(x, t) =
∑

wj∈Wj
Cwjpwj (x, t).

(b) pwj = Ej( ̂pwj (·, 0)).

(c) ‖pwj‖∞ . R
1−n
4 .

(d) spt( ̂pwj (·, t)) ⊂ B(vj , 2nR
− 1

2 ).
(e) p̂wj is a measure in M(Rn) with

spt(p̂wj ) ⊂ Sj ∩ {(x, t) : |x− vj | ≤ 2nR−
1
2 } ⊂ B((vj , ϕ(vj)), 2n(1 + C0)R−

1
2 ).

(f)
∑

wj∈Wj
|Cwj |2 . ‖fj‖22.
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(g) If L is a sufficiently large constant and |t| ≤ R or |x− (yj − t∇ϕj(vj))| > LR−
1
2 |t|, then

|pwj (x, t)| .N R
1−n
4

(
1 +
|x− (yj − t∇ϕj(vj))|√

R

)−N
for all N ∈ N.

In particular, if |t| ≤ R and λ ≥ 1,

|pwj (x, t)| .δ R−10n if d((x, t), Twj ) ≥ Rδ+
1
2 ,

|pwj (x, t)| . (λR)−10n if d((x, t), Twj ) ≥ λR.

(h) If |t| ≤ R, then for any W ⊂ Wj,∥∥∥∥∥∥
∑
wj∈W

pwj (·, t)

∥∥∥∥∥∥
2

2

. #W.

(i) The product pw1pw2 ∈ L2(Rn).

7. Several reductions through dyadic pigeonholing

We now begin the proof of Proposition 5.1. By Claim 5.2, we have a base case: there is α > 0
for which (6) holds. Fix R > 1, which we can choose later as big as we want. To prove (8) we

may assume a = 0, nR−
1
2 < ε0 and fix fj ∈ L2(Vj) with ‖fj‖2 = 1 for j = 1, 2.

By the Lemma 6.1, it suffices to prove that

(9)

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

Cw1Cw2pw1pw2

∥∥∥∥∥∥
Lq(ω,Q(R))

. Rε(Rα(1−δ) +Rcδ),

for some positive constant c, where Q(R) is the cube in Rn with centre 0 and side-length R. Below
c will always depend on the setting described in Section 2, but we will often increase its value
while going on.

We are now going to describe several reductions that imply estimate (9). These reductions
are of two kinds: we first get rid of many tubes in the left-hand side of (9) that make irrelevant
contributions to the Lq norm. The other kind is known as dyadic pigeonholing.

(1) First reduction: It is enough to consider wj for which Twj ∩ 5Q(R) 6= ∅ for j = 1, 2.
Indeed, split the sum∑

w1∈W1

∑
w2∈W2

=
∑
(A)

+
∑
(B)

+
∑
(C)

+
∑
(D)

where

• (A): {(w1, w2) ∈ W1 ×W2;Twj ∩ 5Q(R) 6= ∅, j = 1, 2}
• (B): {(w1, w2) ∈ W1 ×W2;Tw1 ∩ 5Q(R) = ∅ and Tw2 ∩ 5Q(R) 6= ∅}
• (C): {(w1, w2) ∈ W1 ×W2;Tw2 ∩ 5Q(R) = ∅ and Tw1 ∩ 5Q(R) 6= ∅}
• (D): {(w1, w2) ∈ W1 ×W2;Tw1 ∩ 5Q(R) = ∅ and Tw2 ∩ 5Q(R) = ∅}.
We show that (B) is irrelevant (and so are (C) and (D) by the same kind of argument).

By (c) and (f) of Lemma 6.1, |Cw1Cw2 | . 1. The cardinality of w2 ∈ W2 such that

Tw2 ∩ 5Q(R) 6= ∅ is roughly Rn−1 since for w2 = (y, v) we have ≈ Rn

R
n−1
2 ×R

= R
n−1
2 choices

of y and R
n−1
2 of v.

The number of w1 ∈ W1 such that 5kR < d(Tw1 , Q(R)) ≤ 5k+1R is dominated by

≈ R
n−1
2 × (5kR

1
2 )n−1 = (5kR)n−1. Thus using (g) of Lemma 6.1 we get
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∥∥∥∥∥∥
∑
(B)

Cw1Cw2pw1pw2

∥∥∥∥∥∥
Lq(ω,Q(R))

. Rn−1
∞∑
k=0

∑
w1∈W1

5kR<d(Tw1 ,Q(R))≤5k+1R

‖pw1‖Lq(ω,Q(R))

.
∞∑
k=0

Rn#{w1 ∈ W1 : 5kR < d(Tw1 , Q(R)) ≤ 5k+1R}(5kR)−10n(5kR)
n
q

.
∞∑
k=0

5−kR−7n < 2R−7n.

(2) Second reduction: We can assume that for some constant C,

R−10n ≤ Cwj ≤ C.

Indeed, the number of pairs (w1, w2) ∈ (A) is . R2(n−1), so

∑
(A)

|Cw1 |≤R
−10n or |Cw2 |≤R

−10n

‖Cw1Cw2pw1pw2‖Lq(w,Q(R)) . R
−8n.

From now on we replace the sets Wj by their subsets which correspond to those wj for
which the conditions in these first two reductions are satisfied.

(3) Third reduction: We get rid of the Cwj by dyadic pigeonholing. There are about logR

dyadic numbers in [R−10n, C], so by the triangle inequality
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∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

Cw1Cw2pw1pw2

∥∥∥∥∥∥
Lq(w,Q(R))

≤
∑

κ1,κ2∈[R−10n,C]
κ1,κ2 dyadic

∥∥∥∥∥∥∥∥
∑

w1∈W1
κ1<Cw1≤2κ1

∑
w2∈W2

κ2<Cw2≤2κ2

Cw1Cw2pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q(R))

. (logR)2

∥∥∥∥∥∥∥∥
∑

w1∈W1
κ1<Cw1≤2κ1

∑
w2∈W2

κ2<Cw2≤2κ2

Cw1Cw2pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q(R))

for some pair (κ1, κ2), namely the one that maximizes the inner norm in the first line of

the right-hand side above. Writing p̃wj =
(
Cwj

κj

)
pwj and Wj for the set of wj ∈ Wj for

which κj ≤ Cwj ≤ 2κj we have

∥∥∥∥∥∥∥∥
∑

w1∈W1
κ1<Cw1≤2κ1

∑
w2∈W2

κ2<Cw2≤2κ2

Cw1Cw2pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q(R))

=

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

p̃w1 p̃w2

∥∥∥∥∥∥
Lq(w,Q(R))

κ1κ2.

Since by (f) of Lemma 6.1
√

#Wj . 1
κj

and since the functions p̃wj satisfy all the

conditions (b)− (e) and (g)− (i) (we will not use (a) or (f) anymore), it suffices to show
that

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

pw1pw2

∥∥∥∥∥∥
Lq(w,Q(R))

. Rε(Rα(1−δ) +Rcδ)
√

#W1#W2,

for W1 ⊂ W1, W2 ⊂ W2, pwj satisfying all conditions but (a) and (f) from Lemma 6.1,
j = 1, 2.

(4) Fourth reduction: We will use the induction hypotheses (7) to reduce the estimate above

once more. Decompose Q(R) into R
n
2 cubes P ∈ P of side-length

√
R (assuming that

√
R

is too an integer). For P ∈ P, set

Wj(P ) = {wj ∈Wj : Twj ∩RδP 6= ∅}.

Observe that #Wj(P ) essentially counts how many of the tubes parametrized by Wj

intersect P .
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Figure 2. In the picture below, the points of Wj(P ) represent 4 tubes.

For dyadic integers 1 ≤ κ1, κ2 ≤ R2n set

Q(κ1, κ2) = {P ∈ P : κ1 < #W1(P ) ≤ 2κ1, κ2 < #W2(P ) ≤ 2κ2},
and for wj ∈Wj ,

λ(wj , κ1, κ2) = #{P ∈ Q(κ1, κ2) : Twj ∩RδP 6= ∅},
and for dyadic integers 1 ≤ λ ≤ R2n,

Wj(λ, κ1, κ2) = {wj ∈Wj : λ < λ(wj , κ1, κ2) ≤ 2λ}.
In other words, λ(wj , κ1, κ2) essentially counts how many cubes in Q(κ1, κ2) intersect

the tube Twj , and Wj(λ, κ1, κ2) essentially represents the set of tubes that intersect ≈ λ
cubes of Q(κ1, κ2).

Decompose Q(R) once more (this decomposition is independent of the one we just did)
into Rδn cubes Q ∈ Q of side-length R1−δ (assume Rδ integer without loss of generality).
Then

(10)

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

pw1pw2

∥∥∥∥∥∥
Lq(w,Q(R))

.
∑
Q∈Q

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

pw1pw2

∥∥∥∥∥∥
Lq(w,Q)

.

For dyadic integers 1 ≤ λ, κ1, κ2 ≤ R2n and wj ∈ Wj(λ, κ1, κ2) we choose a cube
Q(wj , λ, κ1, κ2) ∈ Q which maximizes the quantity

#{P ∈ Q(κ1, κ2) : Twj ∩RδP 6= ∅, P ∩Q 6= ∅}
among the cubes Q ∈ Q. In other words, we choose the cube Q ∈ Q that intersects
the tube Twj and intersects (contains) the biggest number of cubes in Q(κ1, κ2).
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Figure 3. The cubes of Q(κ1, κ2) are in red. Four cubes P ∈ Q(κ1, κ2) in the
yellow cube of side length R1−δ satisfy Twj ∩RδP 6= ∅, and this is the maximum
possible in the picture. Therefore, if wj ∈Wj(λ, κ1, κ2), the yellow cube is
Q(wj , λ, κ1, κ2).

δ
δ

Since #Q = Rnδ, it follows that

(11) #{P ∈ Q(κ1, κ2) : Twj ∩RδP 6= ∅, P ∩Q(wj , λ, κ1, κ2) 6= ∅} ≥ λR−nδ.
Indeed, if had < instead of ≥ in the inequality above, then summing both sides over Q ∈ Q
would imply λ(wj , κ1, κ2) < λ, which contradicts wj ∈Wj(λ, κ1, κ2).

We define for wj ∈Wj and Q ∈ Q:

wj ∼ Q⇐⇒ Q∩10Q(wj , λ, κ1, κ2) 6= ∅ for some dyadic integers λ, κ1, κ2 ∈ [1, R2n].

The cubes of radius R1−δ that are painted in the picture above (yellow and
green) are all related by ∼ to wj. For the picture to be more precise, we would
have to have painted in green more squares around the yellow one. However,
this one gives the right intuition: we have a special Q(wj , λ, κ1, κ2) and in a
small neighborhood of it we have O(1) other R1−δ-sided cubes there are also
related to wj.

There are roughly (logR)3 dyadic triples (λ, κ1, κ2) ∈ [1, R2n]3, so for all wj ∈Wj ,

#{Q ∈ Q : wj ∼ Q} . Rε.
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Thus by (b) and (h) of Lemma 6.1, the induction hypotheses (7) (recall that Q is an
R1−δ cube), Plancherel’s theorem and Cauchy-Schwarz:

∑
Q∈Q

∥∥∥∥∥∥∥∥
∑

w1∈W1
w1∼Q

∑
w2∈W2
w2∼Q

pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q)

≤
∑
Q∈Q

∥∥∥∥∥∥∥∥E1

 ∑
w1∈W1
w1∼Q

̂pw1(·, 0)

E2

 ∑
w2∈W2
w2∼Q

̂pw2(·, 0)


∥∥∥∥∥∥∥∥
Lq(w,Q)

. Rα(1−δ)
∑
Q∈Q

∥∥∥∥∥∥∥∥
∑

w1∈W1
w1∼Q

pw1(·, 0)

∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥
∑

w2∈W2
w2∼Q

pw2(·, 0)

∥∥∥∥∥∥∥∥
2

. Rα(1−δ)
∑
Q∈Q

(#{w1 ∈W1 : w1 ∼ Q})
1
2 (#{w2 ∈W2 : w2 ∼ Q})

1
2

. Rα(1−δ)

 ∑
w1∈W1

#{Q ∈ Q : w1 ∼ Q}

 1
2
 ∑
w2∈W2

#{Q ∈ Q : w2 ∼ Q}

 1
2

. RεRα(1−δ)(#W1)
1
2 (#W2)

1
2 .

Recalling (10), it is enough to prove

∑
Q∈Q

∥∥∥∥∥∥∥∥
∑

w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q)

. Rcδ(#W1)
1
2 (#W2)

1
2 .

Since #Q = Rnδ, it suffices to show that for all Q ∈ Q,

(12)

∥∥∥∥∥∥∥∥
∑

w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2

∥∥∥∥∥∥∥∥
Lq(w,Q)

. Rcδ(#W1)
1
2 (#W2)

1
2 .

In other words, each tube Twj is allowed to exclude . Rε cubes of Q that
intersect it. In the literature this is described as a “local” estimate, in the
sense that for a given wj the cubes Q with wj ∼ Q are contained in some cube
with side length ≈ R1−δ, and to deal with it we use the induction hypothesis.

8. An L2 reduction

Claim 8.1. It suffices to prove

(13)

∥∥∥∥∥∥∥∥
∑

w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2

∥∥∥∥∥∥∥∥
L2(Q)

. Rcδ−
(n−2)

4 (#W1)
1
2 (#W2)

1
2 .

Proof. We show that (13) implies (12). Decompose the sum into the parts w1 6∼ Q and w2 6∼ Q,
w1 ∼ Q and w2 6∼ Q, and w1 6∼ Q and w2 ∼ Q. They can all be treated in the same way and we
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consider only the first one. By Cauchy-Schwarz and (h) of Lemma 6.1,∥∥∥∥∥∥∥∥
∑

w1∈W1,w2∈W2
w1 6∼Q and w2 6∼Q

pw1pw2

∥∥∥∥∥∥∥∥
L1(Q)

.

∥∥∥∥∥∥∥∥
∑

w1∈W1
w1 6∼Q

pw1

∥∥∥∥∥∥∥∥
L2(Q)

∥∥∥∥∥∥∥∥
∑

w2∈W2
w2 6∼Q

pw2

∥∥∥∥∥∥∥∥
L2(Q)

.

∫ R

−R

∫
Rn−1

∣∣∣∣∣∣∣∣
∑

w1∈W1
w1 6∼Q

pw1(x, t)

∣∣∣∣∣∣∣∣
2

dxdt


1
2
∫ R

−R

∫
Rn−1

∣∣∣∣∣∣∣∣
∑

w2∈W2
w2 6∼Q

pw2(x, t)

∣∣∣∣∣∣∣∣
2

dxdt


1
2

. R(#W1)
1
2 (#W2)

1
2 .

Thus we have the L1 estimate∥∥∥∥∥∥∥∥
∑

w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2

∥∥∥∥∥∥∥∥
L1(Q)

. R(#W1)
1
2 (#W2)

1
2 .

This estimate and the inequality ‖g‖q ≤ ‖g‖
2
(q−1)

q

2 ‖g‖
(2−q)

q

1 yields (12).
�

For (13) it is enough to show that

∑
P∈P,P⊂2Q

∫
P

∣∣∣∣∣∣∣∣
∑

w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2

∣∣∣∣∣∣∣∣
2

. Rcδ−
(n−2)

2 #W1#W2.

If wj /∈ Wj(P ) for j = 1 or j = 2, then |pw1pw2 | . R−10n on P by parts (c) and (g) of Lemma
6.1. Since #(W1 ×W2) . R2n, we have on P ,∑

w1∈W1,w2∈W2

w1 6∈W1(P ) or w2 6∈W2(P )

|pw1pw2 | . R−8n.

Writing ∑
w1∈W1,w2∈W2
w1 6∼Q or w2 6∼Q

pw1pw2 = g + h,

where g consists of the terms for which wj ∈Wj(P ) for j = 1 and j = 2 and h consists of the rest,
we have |g| . R2n, |h| . R−8n on P and∫

P
|g + h|2 ≤

∫
P
|g|2 + 2

∫
P
|gh|+

∫
P
|h|2 .

∫
P
|g|2 +R−5n.

There are . Rn cubes P ∈ P with P ⊂ 2Q, so it suffices to show that

∑
P∈P,P⊂2Q

∫
P

∣∣∣∣∣∣∣∣
∑

w1∈W1(P ),w2∈W2(P )
w1 6∼Q or w2 6∼Q

pw1pw2

∣∣∣∣∣∣∣∣
2

. Rcδ−
(n−2)

2 #W1#W2.
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Pigeonholing as before we can reduce to sum over P ∈ Q(κ1, κ2), P ⊂ 2Q, for some dyadic
integers κ1, κ2 ∈ [1, R2n]. By further pigeonholing we can replace Wj(P ) by Wj(P )∩Wj(λj , κ1, κ2)
for some dyadic integers λ1, λ2 ∈ [1, R2n]. Let us put

W 6∼Qj (P, λ, κ1, κ2) = {wj ∈Wj(P ) ∩Wj(λ, κ1, κ2) : wj 6∼ Q},

Figure 4. For w1, w̃1 ∈Wj(P ) ∩Wj(λ, κ1, κ2) we painted the corresponding cubes

Q(w1, λ̃, κ̃1, κ̃2) and Q(w̃1, λ̃, κ̃1, κ̃2) for some dyadic numbers λ̃, κ̃1, κ̃2. Roughly

speaking, in the definition of W 6∼Q1 (P, λ, κ1, κ2) we are collecting all tubes in

Wj(P ) ∩Wj(λ, κ1, κ2) such that there are no dyadic numbers λ̃, κ̃1, κ̃2 for which
the “special” squares associated to the tubes and to these parameters intersect Q.

~
λ κ κ~ ~ ~

λ κ κ~ ~ ~~

and for Uj ⊂Wj ,

Uj(P ) = {wj ∈ Uj : Twj ∩RδP 6= ∅}.

Breaking the sum over w1 6∼ Q or w2 6∼ Q into three sums over w1 6∼ Q and w2 6∼ Q, w1 6∼ Q
and w2 ∼ Q, and w1 ∼ Q and w2 6∼ Q, it is enough to show that for all Q ∈ Q, any U2 ⊂W2 and
any dyadic integers 1 ≤ λ, κ1, κ2 ≤ R2n,

(14)
∑

P∈Q(κ1,κ2),P⊂2Q

∫
P

∣∣∣∣∣∣∣
∑

w1∈W 6∼Q
1 (P,λ,κ1,κ2)

∑
w2∈U2(P )

pw1pw2

∣∣∣∣∣∣∣
2

. Rcδ−
(n−2)

2 #W1#W2.
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9. Exploiting the geometry of the paraboloid

Before we proceed, let us discuss some heuristics of the particular case where the
surfaces are disjoint caps on the paraboloid y = |x|2. Suppose that we wish to estimate
a quantity of the form

(15)

∥∥∥∥∥∥
∑

w1∈W1

∑
w2∈W2

pw1pw2

∥∥∥∥∥∥
2

2

.

Ignore for now the region of spacetime we are integrating over. We can expand
this expression as

∑
w1∈W1

∑
w2∈W2

∑
w′1∈W1

∑
w′2∈W2

〈pw1pw2 , pw′1pw′2〉.

.
By (e) of Lemma 6.1, pw1 is supported near (v1, |v1|2) (similarly for T2, T ′1 and T ′2).

From Parseval’s formula, we thus expect the above inner product to be very small
unless v1 + v2 is close to v′1 + v′2 and |v1|2 + |v2|2 is close to |v′1|2 + |v′2|2.

Suppose that we fix two of the directions, say v1 and v′1. Then the relation v1 + v2 =
v′1 + v′2 will correlate v2 and v′2, in the sense that either of these two velocities will
determine the other. By exploiting these two constraints in a very fine way, Tao was
able to finish the proof.

Just to sketch what is coming up, define

Ω1 :=
{
v ∈ Rn−1 : |v − e1| . 1

}
,

Ω2 :=
{
v ∈ Rn−1 : |v + e1| . 1

}
,

and supose that the lifts of these regions to the paraboloid are slightly larger than
the original caps. For any v1 ∈ Ω1, v′2 ∈ Ω2, let

Πv1,v′2
:= {v′1 ∈ Ω1 : v1 + v2 = v′1 + v′2, |v1|2 + |v2|2 = |v′1|2 + |v′2|2 for some v2 ∈ Ω2}.

One can interpret this set as being equivalent to the set of all parallelograms with
two vertices in (a slight enlargement of) each one of the original caps. A little
algebra shows that Πv1,v′2

is contained in the n − 2-dimensional hyperplane of Rn−1

which contains v1 and is orthogonal to v′2− v1 (develop |v1 + v2|2 = |v′1 + v′2|2 to conclude
that). In other words,

〈
v′1 − v1, v

′
2 − v1

〉
= 0 whenever v′1 ∈ Πv1,v′2

.
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This orthogonality is not absolutely essential to the argument; what is important
is that the set Πv1,v′2

is contained in a hypersurface with is transverse to v′2 − v1, or
indeed to any vector in Ω2 − Ω1.

Now we go back to the more general setting with ϕ1 and ϕ2 instead of the paraboloid. Covering
Vj with finitely many small cubes of diameter at most ε0, we may assume that Vj is such a cube
(write E1f1E2f2 as a finite sum of similar expressions where the input functions are defined on
such cubes). In this new setting we have:

v′1 + v′2 − v1 ∈ V ∗2 whenever v1, v
′
1 ∈ Ṽ1 and v′2 ∈ Ṽ2,

and vice versa with respect to V1 and V2. Moreover, when these cubes are sufficiently small

(16) |∇ϕj(v′j)−∇ϕj(vj)| < ε1 whenever vj , v
′
j ∈ Ṽj ,

where ε1 is a small constant that will be specified later. Define for v1 ∈ Ṽ1, v′2 ∈ Ṽ2,

Φv1,v′2
: V1 → R, Φv1,v′2

(v′1) = ϕ1(v1) + ϕ2(v′1 + v′2 − v1)− ϕ1(v′1)− ϕ2(v′2),

and

Πv1,v′2
= {v′1 ∈ Ṽ1 : Φv1,v′2

(v′1) = 0}.
By the setting of Section 2,

|∇Φv1,v′2
(v′1)| = |∇ϕ2(v′1 + v′2 − v1)−∇ϕ1(v′1)| ≥ c1 > 0.
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Set for U1 ⊂W1,

N (U1) = sup
v1∈Ṽ1,v′2∈Ṽ2

#{w′1 ∈ U1 : v′1 ∈ Πv1,v′2
(C1R

− 1
2 )},

where A(r) denotes the r−neighborhood of the set A. In other words, N (U1) is the maximum num-
ber of green points in all possible pictures like the next one. The constant C1 will be determined
below.

Figure 5. The curve represents the set Πv1,v′2
and the region around it is its

C1R
− 1

2 neighborhood. In black we plotted the points of V1 that are in this
neighborhood, and for some U1 ⊂W1, the points in green are the first
components of the points of U1 that are in this neighborhood.

Lemma 9.1. For P ∈ P and Uj ⊂Wj(P ), j = 1, 2,

(17)

∥∥∥∥∥∥
∑

w1∈U1,w2∈U2

pw1pw2

∥∥∥∥∥∥
2

2

. Rcδ−
(n−2)

2 N (U1)#U1#U2.

Proof. Recall first that pw1 , pw2 ∈ L2(Rn) by Lemma 6.1 (i). We write∥∥∥∥∥∥
∑

w1∈U1,w2∈U2

pw1pw2

∥∥∥∥∥∥
2

2

=
∑

w1,w′1∈U1,w2,w′2∈U2

Iw1,w′1,w
′
2
,

where

Iw1,w′1,w
′
2

=
∑

w2∈W2

∫
pw1pw2pw′1pw′2 .

Now, ∫
pw1pw2pw′1pw′2 =

∫
p̂w1pw2 p̂w′1pw′2 =

∫
(p̂w1 ∗ p̂w2)(p̂w′1 ∗ p̂w′2).

By Lemma 6.1 (e), the p̂wj are measures for which, with C2 = 2n(1 + C0),

spt(p̂w1 ∗ p̂w2) ⊂ B((v1 + v2, ϕ1(v1) + ϕ2(v2)), 2C2R
− 1

2 ),

spt(p̂w′1 ∗ p̂w′2) ⊂ B((v′1 + v′2, ϕ1(v′1) + ϕ2(v′2)), 2C2R
− 1

2 ).
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Hence
∫
pw1pw2pw′1pw′2 = 0 unless

|v1 + v2 − (v′1 + v′2)| ≤ 4C2R
− 1

2

and

|ϕ1(v1) + ϕ2(v2)− (ϕ1(v′1) + ϕ2(v′2))| ≤ 4C2R
− 1

2 .

If Iw1,w′1,w
′
2
6= 0, there is v2 such that the two inequalities above hold. Thus,

|Φv1,v′2
(v′1)| = |ϕ1(v1) + ϕ2(v′1 + v′2 − v1)− (ϕ1(v′1) + ϕ2(v′2))|

≤ |ϕ1(v1) + ϕ2(v2)− (ϕ1(v′1) + ϕ2(v′2))|+ |ϕ2(v2)− ϕ2(v′1 + v′2 − v1)|

≤ (4C2 + 4C2‖∇ϕ2‖∞)R−
1
2

≤ 8C2
2R
− 1

2 .

Claim 9.2. v′1 is contained in Πv1,v′2
(C1R

− 1
2 ) where C1 =

8C2
2

c1
.

To prove the claim, suppose w.l.o.g. that Φv1,v′2
(v′1) > 0 and that there is no point of Πv1,v′2

in

B
(
v′1,

8C2
2

c1
R−

1
2

)
. Since |∇Φv1,v′2

| > 0, the minimum value of Φ in B(v′1,
8C2

2
c1
R−

1
2 ) occurs at some b

with |v′1 − b| =
8C2

2
c1
R−

1
2 , and Φv1,v′2

(b) > 0 by the intermediate value theorem. This way for some

c ∈ [v′1, b]:

8C2
2R
− 1

2 − Φv1,v′2
(b) ≥ Φv1,v′2

(v′1)− Φv1,v′2
(b)

= |Φv1,v′2
(v′1)− Φv1,v′2

(b)|
= |∇Φv1,v′2

(c)||v′1 − b|

≥ c1
8C2

2

c1
R−

1
2 ,

which implies Φv1,v′2
(b) = 0 and this is a contradiction. Use this constant C1 to define N (U1)

above. Hence the left hand side of (17) is∑
w1∈U1

∑
w′2∈U2

∑
w′1∈U1

v′1∈Πv1,v
′
2
(C1R

− 1
2 )

∑
w2∈U2

v2∈B(v′1+v′2−v1,4C2R
− 1

2 )

pw1pw2pw′1pw′2 .

Given w1, w
′
2, w

′
1, there are boundedly many points v2 in the above sum. Since all the tubes Tw2

meet RδP , there are at most O(Rcδ) points w2 if v2 is fixed because y2 ∈ Y are
√
R−separated.

By transversality between the tubes Tw1 and Tw2 , the measure of their intersection is . R
n
2 .

By parts (g) and (c) of Lemma 6.1 the product pw1pw2pw′1pw′2 decays very fast off this intersection

and it is uniformly . R1−n. These give∣∣∣∣∫ pw1pw2pw′1pw′2

∣∣∣∣ . R− (n−2)
2 .

Therefore for fixed w1, w
′
2, w

′
1, ∑
w2∈U2

v2∈B(v′1+v′2−v1,4C2R
− 1

2 )

pw1pw2pw′1pw′2 . R
cδ− (n−2)

2 .

The lemma follows from this. �

The proof of the theorem will be finished by the following lemma.
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Lemma 9.3. For any dyadic integers 1 ≤ κ1, κ2, λ ≤ R2n, Q ∈ Q, P ∈ Q(κ1, κ2), P ⊂ 2Q,

N (W 6∼Q1 (P, λ, κ1, κ2)) . Rcδ
#W2

λκ2
.

Let us first see why this lemma implies (14). For any P ∈ Q(κ1, κ2), #U2(P ) ≤ #W2(P ) ≤ 2κ2.
Using this, the previous lemma and the definitions we gave throughout these notes,

∑
P∈Q(κ1,κ2),P⊂2Q

∥∥∥∥∥∥∥
∑

w1∈W 6∼Q
1 (P,λ,κ1,κ2)

∑
w2∈U2(P )

pw1pw2

∥∥∥∥∥∥∥
2

L2(P )

. Rcδ−
(n−2)

2

∑
P∈Q(κ1,κ2),P⊂2Q

N (W 6∼Q1 (P, λ, κ1, κ2))#W 6∼Q1 (P, λ, κ1, κ2)#U2(P )

. R2cδ− (n−2)
2

#W2

λκ2

∑
P∈Q(κ1,κ2),P⊂2Q

#W 6∼Q1 (P, λ, κ1, κ2)#U2(P )

≤ R2cδ− (n−2)
2

2#W2

λ

∑
P∈Q(κ1,κ2),P⊂2Q

#W 6∼Q1 (P, λ, κ1, κ2)

≤ R2cδ− (n−2)
2

2#W2

λ

∑
w1∈W1(λ,κ1,κ2)

#{P ∈ Q(κ1, κ2) : Tw1 ∩RδP 6= ∅}

≤ 4R2cδ− (n−2)
2 #W1#W2.

Proof of Lemma 9.3. We need to show that for any v1 ∈ Ṽ1, v
′
2 ∈ Ṽ2 and P0 ∈ Q(κ1, κ2), P0 ⊂ 2Q,

#{w′1 ∈W
6∼Q
1 (P0, λ, κ1, κ2) : v′1 ∈ Πv1,v′2

(C1R
− 1

2 )} . Rcδ#W2

λκ2
.

Set

W 6∼Q1 (Πv1,v′2
) := {w′1 ∈W

6∼Q
1 (P0, λ, κ1, κ2) : v′1 ∈ Πv1,v′2

(C1R
− 1

2 )}.

Let w′1 ∈ W 6∼Q1 (Πv1,v′2
). Then by definition Tw′1 ∩ R

δP0 6= ∅ and Q ∩ 10Q(w′1, λ, κ1, κ2) = ∅.
Since P0 ⊂ 2Q,

d(P0, 2Q(w′1, λ, κ1, κ2)) ≥ R1−δ,

so by (11)

#{P ∈ Q(κ1, κ2) : Tw′1 ∩R
δP 6= ∅, d(P, P0) ≥ R1−δ} ≥ λR−nδ,

because

{P ∈ Q(κ1, κ2) : Twj∩RδP 6= ∅, P∩Q(wj , λ, κ1, κ2) 6= ∅} ⊂ {P ∈ Q(κ1, κ2) : Tw′1∩R
δP 6= ∅, d(P, P0) ≥ R1−δ}.

Since κ2 ≤ #W2(P ) ≤ 2κ2 for P ∈ Q(κ1, κ2), we get

(18)

#{(P,w′1, w2) ∈ Q(κ1, κ2)×W 6∼Q1 (Πv1,v′2
)×W2 : Tw′1 ∩R

δP 6= ∅, Tw2 ∩RδP 6= ∅, d(P, P0) ≥ R1−δ}

& λR−nδ#W 6∼Q1 (Πv1,v′2
)κ2.

We shall prove Lemma 9.3 by finding an upper bound for the left hand side of this inequality.
This is accomplished by
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Lemma 9.4. Let w2 ∈W2 and set

S = {(P,w′1) ∈ Q(κ1, κ2)×W 6∼Q1 (Πv1,v′2
) : Tw′1 ∩R

δP 6= ∅, Tw2 ∩RδP 6= ∅, d(P, P0) ≥ R1−δ}

(observe that this is a slice of the set we dealt with previously). Then #S . Rcδ.

This lemma finishes the proof since the left hand side of (18) is ≤ #S ·#W2 . Rcδ#W2. Hence,

λR−nδ#W 6∼Q1 (Πv1,v′2
)κ2 . R

cδ#W2 ⇐⇒ #W 6∼Q1 (Πv1,v′2
) . R(c+n)δ#W2

λκ2
.

�

Proof of Lemma 9.4. Define the conical set

Cv1,v′2 = {s(u, 1) ∈ Rn−1 × R : u ∈ ∇ϕ1(Πv1,v′2
), |s| < 2R}.

For w′1 ∈W
6∼Q
1 (Πv1,v′2

), we have v′1 ∈ Πv1,v′2
(C1R

− 1
2 ) and Tw′1 ∩R

δP0 6= ∅.

Claim 9.5.

⋃
w′1∈W

6∼Q
1 (Πv1,v

′
2
)

Tw′1 ⊂ Cv1,v′2(C3R
1
2

+δ) + P0,

for some constant C3 ≥ 1.

Indeed, let y ∈ Tw′1 ∩ R
δP0 and consider Tw′1 − y. This is a tube that crosses the origin,

but also has orientation (∇ϕ1(v′1), 1). Since v′1 ∈ Πv1,v′2
(C1R

− 1
2 ), there is ṽ′1 ∈ Πv1,v′2

such that

|v′1 − ṽ′1| ≤ C1R
− 1

2 , hence

|s(∇ϕ1(v′1))− s(∇ϕ1(ṽ′1))| ≤ ‖∇ϕ1‖∞RC1R
− 1

2 .ϕ1 R
1
2 .

Since Tw′1 − y has radius R
1
2 , it follows that we can fit it in a C3R

1
2

+δ neighborhood of Cv1,v′2
and the claim follows.
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Figure 6. The surface with “thick” boundary is the conical set Cv1,v′2 . Here we

represented a C2R
1
2

+δ−neighborhood of it, and also the tube Tw′1 − y that is
contained in it.

Claim 9.6. If (P,w′1) ∈ S, then

P ⊂ Cv1,v′2(C4R
1
2

+δ) + P0.

Indeed, in particular we have w′1 ∈W
6∼Q
1 (Πv1,v′2

), so Tw′1 ⊂ Cv1,v′2(C3R
1
2

+δ)+P0 by the previous

lemma. We also have Tw′1 ∩R
δP 6= ∅. Let T̃w′1 be a “dilated” version of Tw′1 with length & R and

radius & R
1
2 just so that P ⊂ T̃w′1 . Then we can find a constant C4 for which

P ⊂ T̃w′1 ⊂ Cv1,v′2(C4R
1
2

+δ) + P0

and this claim follows.

Figure 7. Tube Tw′1 intersecting both RδP and RδP0.
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Claim 9.7. If (P,w′1) ∈ S, then

P ⊂ Cv1,v′2(R
1
2

+δ, R1−δ, R, P0),

where for a suitable constant c2 > 0,

Cv1,v′2(R
1
2

+δ, R1−δ, R, P0) = Cv1,v′2(C4R
1
2

+δ) ∩ {(x, t) : c2R
1−δ ≤ |t| ≤ R}+ P0.

This follows from d(P, P0) ≥ R1−δ and the previous claim.
Furthermore, Tw2 ∩RδP 6= ∅ if (P,w′1) ∈ S, so

⋃
(P,w′1)∈S for some w′1

P ⊂ RδTw2 ∩ Cv1,v′2(R
1
2

+δ, R1−δ, R, P0),

where

RδTw2 = {(x, t) : |t| ≤ R, |x− (y2 − t∇ϕ2(v2))| ≤ (2 + C0)R
1
2

+δ},

with C0 as in Section 2. We claim that

(19) RδTw2 ∩ Cv1,v′2(R
1
2

+δ, R1−δ, R, P0) ⊂ B(y0, R
1
2

+cδ)

for some y ∈ Rn and some positive constant c. This is a consequence of the fact that the tube
Tw2 intersects transversally the surface Cv1,v′2 due to our basic assumptions on the functions ϕj ,

and we will prove it in the next Lemma. From (19) it follows that for each w′1 there are O(Rcδ)
cubes P with (P,w′1) ∈ S. Since d(P, P0) ≥ R1−δ the number of possible w′1 for which Tw′1 meets

both RδP and RδP0 is also O(Rcδ). Lemma 9.4 follows from this. �

For a smooth hypersurface S ⊂ Rn we denote by Tan(S, p) the tangent space of S at p considered
as an (n−1)−dimensional linear subspace of Rn. Then the geometric tangent space is Tan(S, p)+p.

Lemma 9.8. Let c > 0 and let Π be a smooth hypersurface in Rn−1 with Π ⊂ B(0, 1) such that
Π = {v ∈ Rn−1 : Φ(v) = 0} where Φ is of class C2 and |∇Φ(v)| ≥ c for all v ∈ B(0, 1). Set

C(Π) = {s(x, 1) ∈ Rn−1 × R : 0 ≤ s ≤ 1, x ∈ Π}.

For any y, v ∈ Rn−1, v 6= 0, let ly,v be the line in the direction (v, 1) through (y, 0), that is,

ly,v = {(x, t) ∈ Rn−1 × R : x = y + vt}.

Suppose for some v ∈ B(0, 1),

d(v,Tan(Π, x) + x) ≥ c for all x ∈ Π.

Then for any y ∈ Rn−1 and 0 < δ < 1,

(20) ly,v(δ) ∩ C(Π)(δ) ⊂ B(y0, Cδ)

for some y0 ∈ Rn, where C depends only on c and n.
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Figure 8. Pictorial description of Lemma 9.8.
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Proof. We claim that for all p ∈ C(Π),

d((v, 1),Tan(C(Π), p)) ≥ c

2
.

This means that ly,v meets transversally C(Π) if it meets it at all. This gives (20) and proves
the lemma. To check this inequality, let p = s(x, 1) ∈ C(Π), x ∈ Π. Note that

Tan(C(Π), p) = Tan(Π, x)× {0}+ {t(x, 1) : t ∈ R}.
Suppose d((v, 1),Tan(C(Π), p)) < c

2 . Then there are u ∈ Tan(Π, x) and t ∈ R such that
|(v, 1) − (u + tx, t)| < c

2 . This gives |v − u − tx| < c
2 and |1 − t| < c

2 . Thus |v − (u + x)| < c
(because |x| < 1) and so d(v,Tan(Π, x) + x) < c giving a contradiction. This completes the proof
of the lemma. �

Let us finish the proof by showing that Lemma 9.8 implies (19). Recall that the maps ∇ϕj ,
j = 1, 2, are diffeomorphisms. Define

Ψ(v) = ϕ1(v1) + ϕ2((∇ϕ1)−1(v) + v′2 − v1)− ϕ1((∇ϕ1)−1(v))− ϕ2(v′2)

when v ∈ ∇ϕ1(V1). Then

∇ϕ1(Πv1,v′2
) ⊂ {v ∈ Rn−1 : Ψ(v) = 0}.

By a straightforward computation,

∇Ψ(∇ϕ1(v′1)) = D(∇ϕ1)(v′1)−1(∇ϕ2(v′1 + v′2 − v1)−∇ϕ1(v′1)).

The normal vector to the surface ∇ϕ1(Πv1,v′2
) at ∇ϕ1(v′1) is parallel to this gradient, so the

tangent space is

Tan(∇ϕ1(Πv1,v′2
),∇ϕ1(v′1)) = {x : x · ∇Ψ(v′1) = 0}.

Let w2 = (y2, v2) ∈W2. Using the inequalities in the setting of Section 2
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|∇Ψ(∇ϕ1(v′1)) · (∇ϕ2(v2)−∇ϕ1(v′1))|
= |D(∇ϕ1)(v′1)−1(∇ϕ2(v2)−∇ϕ1(v′1)) · (∇ϕ2(v2)−∇ϕ1(v′1))|
− |D(∇ϕ1)(v′1)−1(∇ϕ2(v′1 + v′2 − v1)−∇ϕ2(v2)) · (∇ϕ2(v2)−∇ϕ1(v′1))|

≥ c0

2
.

Then

d(∇ϕ2(v2),Tan(∇ϕ1(Πv1,v′2
),∇ϕ1(v′1)) +∇ϕ1(v′1)) ≈ |∇Ψ(∇ϕ1(v′1)) · (∇ϕ2(v2)−∇ϕ1(v′1))| ≥ c0

2
.

We now apply Lemma 9.8 to the surface Π = ∇ϕ1(Πv1,v′2
) with v = ∇ϕ2(v2) and δ replaced by

Rδ−
1
2 . Scaling by R (19) follows and the theorem is proven.
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