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1. A BRIEF DESCRIPTION OF THESE NOTES

The goal is to prove a sharp bilinear restriction theorem by Tao [3]. These notes were written
as an exercise to better understand the material and no original work by the author is contained
in them. The version of the theorem that we prove here is the one done in a more general setting
by Lee [I]. This is because this level of generality is necessary to prove that bilinear restriction
estimates imply linear ones for the paraboloid. We follow the exposition of [2] closely.

Two tools are taken for granted here: the localization theory by Tao and Vargas [4] and the
wave packet decomposition (Lemma. Both can be found in Mattila’s book [2].

2. SETTING FOR THE BILINEAR RESTRICTION THEOREM

We have Cy, cg,e9 and Ry positive constants and we have for ;7 = 1,2, bounded open sets
V; ¢ R"1 C B(0, Ry), ‘7] is the eo-neighborhood of Vj, V* is the 4ep-neighborhood of f/j, C?-
functions ¢; : V;* — R satistying: the maps Vy; are diffeomorphisms such that for all v; € ‘7j,
det (D(Vip,)(v;)) # 0 and

(1) Vi (vj)] < Co,

(2) |D(Ve))(vj)(@)] = colz|, Vo e R

(3) |D(Veor)(v1) ™ (Vipa(v2) = Vi (v1)) - (Vipa(v2) = Veor (1)) = o,
(4) |D(Ve2)(v2) ™ (Vipr(v1) = Vipa(v2)) - (Vo (v1) = Vepa(v2))] 2 o,

S; ={(z,pj(x)) : x € V;}, j = 1,2, are the corresponding surfaces and ¢ > qo = nt2,
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Claim 2.1. The inequalities above yield that there is ¢1 > 0, depending only on Cy and cg, such
that

(5) V1 (v1) = Va(va)| = &1
for all vq € ‘71, vy € ‘72.
Proof. Observe that:

co < |D(Ver)(v1) " (Vepa(v2) = Vi1 (01))-(Vipa(v2) = Vi (v1)) < [|D(Vip1) ™ loo| Vo2 (v2)—Vior (v1)[?

and the claim follows. (I

Since n1 = (V1(v1),1) and ng = (Vea(v2),1) give the normal directions of the surfaces Sp
and S, we have |n; A na| > ¢; and the surfaces are transversal.

3. BILINEAR RESTRICTION THEOREM

For a function f; defined on V; we set

E]f] (x’ t) B / 62ﬂi(x'v+t@j(”))‘fj (’U)d’U, (l’, t) S Rn_l x R.
Vi
These are the Fourier extension operators. Our goal is to prove the following theorem of Tao

[3]:

Theorem 3.1. Suppose the assumptions of Section [ are satisfied. If w is a non-negative
weight with |wljeo < 1, then

IELfL - Bafollpawy < CllAllzllf2llz - for f; € L2(V;),5 =1,2.

Remark 3.2. The theorem above is stated in a more general setting than the original result of
Tao.

4. FROM LOCAL TO GLOBAL

In this section we state a localization theorem of Tao and Vargas [4]. Assume that for K; C V;
compact and @1, @2 : V; — R the surfaces

Sj=A{(z,9;(x)) : x € K;}
have non-vanishing Gaussian curvature. We do not need the transversality hypotheses here.
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Theorem 4.1 (Tao and Vargas). Let f; € L?(S;), j = 1,2. Suppose that w € L°°(R") with

w >0, ||w|]oo§1and1<p<%. Ifa>0,%<1+%)<%+n2—_ﬁ,]\/[a21and

(6) IE1f1 - E2fallpaqw,B,R)) < MaR*||f1ll2esi) I f2ll22(s0)
forz e R", R>1, f;j € L*(S;), j = 1,2, then
1E1f1 - B2 follew) < CMall fillLesy) 1 f2llz2(sy)
for f; € L*(S;), j = 1,2, where C depends only on the structure constants os Section @

5. FROM A LOCAL ESTIMATE TO ALL OF THEM: INDUCTION ON SCALES

This crucial step is an argument due to Wollff:

Proposition 5.1. Suppose that the assumptions of Section[3 are satisfied. Then there is a
constant ¢ > 0 such that the following holds. Assume that for some o > 0 it holds

(7) |E1f1 - BafollLaw,@,r)) < MaR|| fill 2oyl f2ll L2 va)
forz € R", R>1 and f; € L*(V;), j = 1,2. Then for all0 < §, € < 1,
(8) IBLf1 - Bafollpaqw.oary) < CROW=0b4e) #1110l foll 22 vy

fora € R", R>1 and f; € LZ(Sj), j = 1,2, where the constant C depends only on the
structure constants of Section[d and on My, 6 and e.

Notice that localizing with cubes Q(x, R) (center z and side-length R) is equivalent to doing it
with balls. The point here is that once we have this proposition we can argue inductively to get
down to arbitrary small a.

Claim 5.2. @ holds for o = oy = %.
Proof. By Cauchy-Schwarz we get ||Ej fjlloo < || fjllz2(v;)- Hence by Holder:

IE1f1 - B2 fallpaqw,Ba,r)) S IXB@,r)llLa@m) I fill 2o 1 fall L2 (va)
< R fullan el 2y
forz € R", R>1and f; € L*(V;), j =1,2. O
Claim 5.3. Proposition [5.1] implies [ for all o > 0.
Proof. Fix € > 0 and define

CQj
aj+c¢
By the previous claim, we know that @ holds for some «. Apply Proposition with 6 = 0; =

% Then

aj+c’

Qi1 = +e, 3=0,1,2,...

COéj

max{a;(1 —9),cd} = PP
j

and it follows that @ holds for v = «j41. It is easy to check that if € is chosen small enough, the
sequence (a;) is decreasing and

(e + Ve? + 4dce)
5 :

a; —

Since we can choose ¢ arbitrarily small, [f] holds for all a > 0. O
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6. WAVE PACKET DECOMPOSITION

Set
Y =Rz !,
Y, = R 2210V,
Wj = y X Vj.

For each w; = (y;,v;) € W; define

T, = {(z,1) : [t < R, |z — (y; — tVp;(v)))| < R?}.

Then Ty, is a tube with center (y;,0) and direction (V;(v;),1). Notice that #V; < R"T and
for a fixed v; the tubes T}, ,;, y € Y, have bounded overlap.

Figure 1. Points in V;
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Lemma 6.1 (Wave-packet decomposition). Let Cy be as in Section @ Let f; € L*(V;). Then
there are functions py,, € L>(R") and non-negative constants Cy;, w; € Wy, j = 1,2, with the
following properties for (x,t) € R" 1 x R:
(a) Ejfj($7t) = ijewj ijpw]- (m,t).
(b) Pw; = Ej(pwj'l('a 0))
(¢) Iu,lloe S B
(d) spt(pu, (1)) C B(vj,2nR™7).
(¢) Pw, is a measure in M(R") with
spt(ﬁw\j) C Sin{(z,t): |z —vj| < 2nR*%} C B((vj, ¢(v5)),2n(1 + CO)R*%).

() Sy, 1Cuy 2 S 1513
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(g9) If L is a sufficiently large constant and |t| < R or |z — (y; — tV;(v;))| > LR_%|t|, then

1-n lz — (y; — tVe;(v;)]\
|pw, (z, )| SN R <1+ J\/E AN for all N € N.

In particular, if [t| < R and A > 1,
—10n sl
pw; (2, 1) S R if d((z,t),Tw,) > Rz,

pw, ()] S AR)Tif - d((2,1), Tw,) > AR.
(h) If |t| < R, then for any W C W,
2

D pu (50| SHW.

ijW 2

(i) The product py,pw, € L*(R™).

7. SEVERAL REDUCTIONS THROUGH DYADIC PIGEONHOLING

We now begin the proof of Proposition [5.11 By Claim we have a base case: there is a > 0
for which @ holds. Fix R > 1, which we can choose later as big as we want. To prove we
may assume a = 0, nR~2 < £ and fix f; € LA(V;) with || fjll2 =1 for j = 1,2.

By the Lemma [6.1] it suffices to prove that

(9) Z Z Cwch2pw1pw2 gRE(Ra(l—(S) +RCJ),
T e L9(w,Q(R))

for some positive constant ¢, where Q(R) is the cube in R™ with centre 0 and side-length R. Below
¢ will always depend on the setting described in Section [2| but we will often increase its value
while going on.

We are now going to describe several reductions that imply estimate @ These reductions
are of two kinds: we first get rid of many tubes in the left-hand side of @D that make irrelevant
contributions to the LY norm. The other kind is known as dyadic pigeonholing.

(1) First reduction: It is enough to consider w; for which To,; N 5Q(R) # 0 for j = 1,2.
Indeed, split the sum

Z Z = Z—FZ—FZ—FZ where
w €Wy w2 €Wy (A) (B) (C) (D)

° (A) {(wl,wg) € W1 X WQ;ij ﬂ5Q(R #+ @,] = 1,2}

e (B): {(w1,w2) € Wi X Wa; Ty, N5Q(R) = 0 and Ty, N5Q(R) # 0}

e (C): {(w1,w2) € Wi X Wa; Ty, NBQ(R) = 0 and T,,, N5Q(R) # 0}

e (D): {(wy,w2) € Wy x Wa; Ty N5Q(R) =0 and Ty, N 5Q(R) = 0}.

We show that (B) is irrelevant (and so are (C) and (D) by the same kind of argument).
By (¢) and (f) of Lemma |Cw,Cuw,| < 1. The cardinality of wy € W, such that

Tw, N5Q(R) # 0 is roughly R™! since for we = (y,v) we have ~ — I — = R"% choices
R Z xR

NN NN

of y and R"T of v.
The number of w; € Wi such that 5*R < d(Ty,,Q(R)) < 5**'R is dominated by

~ R"7 x (5}“]%%)”*1 = (5*R)"~!. Thus using (g) of Lemmawe get
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tubes ignored

o Q(0,R)

k‘ 5Q(0, R)

3" Cur CuyPrun P SR > Pl o aer))
k=0

B = w1 EW
( ) Lq(UJ,Q(R)) 5kR<d(Twll,g(R1))S5k+1R

<SR {wr € Wi 5°R < d(Tw,, Q(R)) < 5FTRY (55 R) 71O (5FR)
k=0

Y PRI <2RT™
k=0

(2) Second reduction: We can assume that for some constant C,
R <o, <C.

Indeed, the number of pairs (wy,ws) € (A) is < R*"1 so

—8
E ||Cw1 Cw2pw1pw2HL‘1(w,Q(R)) S R™°".
(A)
|Cuun [<SR10 or |Gy | <R 10

From now on we replace the sets W; by their subsets which correspond to those w; for
which the conditions in these first two reductions are satisfied.
(3) Third reduction: We get rid of the Cy,, by dyadic pigeonholing. There are about log R

dyadic numbers in [R71%% (1], so by the triangle inequality
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Z Z Cwl ngpw1pw2 S Z Z Z Cwl Cw2pw1pw2

w1EW1 w2 EW2 k1,ke€[R10" C w1 EWL w2EWs
Li(w,Q(R)) 1’{127&2[ dyadic ] H1<Cw1§2f€1 H2<Cw2§2l$2 Li(w,Q(R))

SogR?( > > CuyCunPunPus
w1 EW1 w2 EWs

K1 <Cu11 <2x1 52<CU’2 <2h2 Li(w Q(R))

for some pair (K1, k2), namely the one that maximizes the inner norm in the first line of
Cuw..

the right-hand side above. Writing p,,, = (TJJ) pw,; and W for the set of w; € W; for

which x; < Cw]. < 2k; we have

Z Z C’1”1 Cw2pw1pw2 = Z Z Dw; Pws K1K2.

w1 EW1 w2 EW3 w1 EW weEWa
51<Cw1 <2kK1 H2<Cw2§21€2 L9(w,Q(R)) Li(w,Q(R))

Since by (f) of Lemma VHEW; S Hi and since the functions p,,; satisfy all the

conditions (b) — (e) and (g) — (i) (we will not use (a) or (f) anymore), it suffices to show

that

YD pubu < RE(RYT0) 4 REOY\/H W\ H# W,

w1 EW7 waeWo Lq(w Q(R))

for Wi C Wi, Wa C Wa, py, satistying all conditions but (a) and (f) from Lemma
=12

(4) Fourth reduction: We will use the induction hypotheses (7)) to reduce the estimate above
once more. Decompose Q(R) into Rz cubes P € P of side-length v/R (assuming that R
is too an integer). For P € P, set

W;(P) = {w; € W; : T,, N R°P # (}.

Observe that #W;(P) essentially counts how many of the tubes parametrized by W;
intersect P.
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Figure 2. In the picture below, the points of W;(P) represent 4 tubes.
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For dyadic integers 1 < k1, ko < R?™ set

Q(k1,k2) ={P € P: k1 < #Wi(P) < 2K1, k2 < #Wa(P) < 2ka},
and for w; € Wj,

)‘(wja K1, ”2) = #{P € Q(’{17’{2) : Tw]’ N RJP # Q}’
and for dyadic integers 1 < A < R?",

Wj()\,lil, Iig) = {wj € Wj A< )\(wj,lil,lig) < 2)\}

In other words, A(wj, K1, k2) essentially counts how many cubes in Q(k1, k2) intersect
the tube T, and W;(A, k1, k2) essentially represents the set of tubes that intersect ~ A
cubes of Q(k1, K2).

Decompose QQ(R) once more (this decomposition is independent of the one we just did)

into R cubes Q € Q of side-length R'~° (assume R’ integer without loss of generality).
Then

S D pubu SY D D pubws

w1 €W waeWo L4(w,Q(R)) QEQ ||w1 W1 waeW, L9 (w,Q)

For dyadic integers 1 < X, k1,k2 < R?" and w; € Wj(X, k1,k2) we choose a cube
Q(wj, A\, k1, k2) € Q which maximizes the quantity

#{P € Q(r1,K2) : T, NR'P # 0,PNQ # 0}

among the cubes @ € Q. In other words, we choose the cube () € Q that intersects
the tube T,,, and intersects (contains) the biggest number of cubes in Q(k1, K2).
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Figure 3. The cubes of Q(k1, k2) are in red. Four cubes P € Q(k1, k2) in the
yellow cube of side length R'~9 satisfy T}, ;N RIP # (), and this is the maximum

possible in the picture. Therefore, if w; € W;(A, k1, k2), the yellow cube is
Q(wja )\7 K1, /4'2)‘

T

7

HE

Rl»é

Since #Q = R™_ it follows that

#{P € Q(k1,K2) : Ty, NR'P # 0, PN Q(wj, \, k1, k2) # 0} > AR™™.

Indeed, if had < instead of > in the inequality above, then summing both sides over @ € Q
would imply A(wj, k1, k2) < A, which contradicts w; € W;(\, k1, k2).
We define for w; € W, and Q € Q:

wj ~ Q <= QN10Q(wj, A, k1, k2) # 0 for some dyadic integers A, k1, k2 € [1, R

The cubes of radius R'~° that are painted in the picture above (yellow and
green) are all related by ~ to w;. For the picture to be more precise, we would
have to have painted in green more squares around the yellow one. However,
this one gives the right intuition: we have a special Q(wj, A\, k1,k2) and in a
small neighborhood of it we have O(1) other R'~°-sided cubes there are also
related to w;.

There are roughly (log R)? dyadic triples (A, k1, k2) € [1, R?")3, so for all w; € W},

#{QeQ w~Q} < R
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Thus by (b) and (h) of Lemma the induction hypotheses (7)) (recall that @ is an
R'° cube), Plancherel’s theorem and Cauchy-Schwarz:

Z Z Z Pwq Pw, < Z El Z pw1('7 0) E2 Z pr('v 0)
QEeQ ||w1 W waeW, QeQ w1 €W w2 EWa
wi~vQ w2~Q Li(w,Q) w1~Q wa~Q L9(w,Q)
S Ra(l_(s) Z Z P, ('7 0) Z Pws ('7 O)
QeQ [|lwieWn waEWs
w1~Q 9 || w2~@Q 2
1 1
SR N " (#{wr € Wit wy ~ Q)2 (#{wz € Wy 1wy ~ Q})2
QeQ

|
[

SR N #{QeQ:w ~Q) > #{QeQiw~qQ}

w1 EWq wo €Wo

< RERO(0) ()3 (#W2)? .

Recalling , it is enough to prove

1 1
> > DPunPus S RO(#W1)2 (#Wa)2.
QEQ || wi EWr,waeWo

w1#Q or wekQ L4 (w,Q)

Since #Q = R™, it suffices to show that for all Q € Q,

=

(12) > pubu < RO(#W7) 7 (#Wa)2.

w1 EWp, ,weeWo
w1#Q or wakQ Li(w,Q)

In other words, each tube ij is allowed to exclude < R cubes of Q that
intersect it. In the literature this is described as a “local” estimate, in the
sense that for a given w; the cubes () with w; ~ () are contained in some cube
with side length ~ R'~°, and to deal with it we use the induction hypothesis.

8. AN L? REDUCTION

Claim 8.1. It suffices to prove

N

_(n=2) 1
(13) Z PwiPws S RO~ 3 (#W1)2 (#W2)=.
w1 EW1,wae€Wo
w17Q or waAQ L2(Q)

Proof. We show that implies . Decompose the sum into the parts wy # Q and wq % Q,
wy ~ Q and wo ¥ Q, and w1 £ Q and wy ~ Q. They can all be treated in the same way and we
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consider only the first one. By Cauchy-Schwarz and (h) of Lemma

Z DPwy Pws 5 Z DPun Z Pws

w1 EW w2 eWo w1 €Wy wo EWo
w1#Q and waAQ LY(Q) w1#Q L2(Q) w2k Q L2(Q)
2 3
< / / Puy (2, t)| dadt / / Z Py (2, 1) dadt
-1 Rn—1
w1 €W1 wo EWa
’LU17(/Q ’LU27(/Q
1 1
R(#Wh)2 (#W2)?=.
Thus we have the L' estimate
1 1
> Pubus S R(#W) 2 (#W7)2.
w1 EW1,waeWo
w1#Q or w2tQ LY(Q)
q—1) (2—q)

9la—1)
This estimate and the inequality [|gllq < llgll, ¢ lgll; ¢ yields (12).

For it is enough to show that

_
> pur| SR

PeP,PC2Q w1€W1 wo EWo
w1#Q or weAQ

If wj ¢ W;(P) for j =1 or j = 2, then |py, puw,| S R71%" on P by parts (c) and (g) of Lemma
Since #(W1 x W) < R?", we have on P,

> [PurPus| S R

w1 EW7,,wa€Wo
w1 W1 (P) or wagWa(P)

Writing

Z PuwiPw, = 9 + h,
w1 €Wy ,waeWs
w12Q or watQ

where ¢ consists of the terms for which w; € W;(P) for j =1 and j = 2 and h consists of the rest,
we have |g| < R*", |h| < R7%" on P and

/ g+ hP? < / g2 +2 / lgh] + / hp? < / g2 + R,
P P P P P

There are < R™ cubes P € P with P C 2@Q), so it suffices to show that

2

_(n=2)
Z / PwiPws 5 RC6 2 #Wl#WQ
PeP,PC2Q w1 €W ( P),wQEWQ(P)
w1#£Q or wakQ

N|=
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Pigeonholing as before we can reduce to sum over P € Q(k1,k2), P C 2Q, for some dyadic
integers k1, Ko € [1, R*"]. By further pigeonholing we can replace W;(P) by W;(P)NW; ()}, k1, k2)
for some dyadic integers A1, A2 € [1, R?"]. Let us put

W]%Q(P,/\,h}l,ﬂg) = {wj € W](P) N Wj()\,lﬂ,lig) D wj 76 Q},

Figure 4. For wq,w; € W;(P) N Wj(\, k1, k2) we painted the corresponding cubes
Q(w1, A\, K1, K2) and Q(iy, A, K1, K2) for some dyadic numbers A, £, K. Roughly
speaking, in the definition of Wf6 Q (P, \, k1, k2) we are collecting all tubes in
W;(P) N W;(\, k1, #2) such that there are no dyadic numbers X, K1, K2 for which
the “special” squares associated to the tubes and to these parameters intersect Q.

Q(w1, A, K1,Kz)
Rl—5 <
i
Ty,
Rl-5
. P
Q(U)l,}\,Kl,KQ)\ \.
> Q
r3

=
ol

and for U; C Wj,

Uj(P) = {w; € U; : T,,, N R°P # 0}.

Breaking the sum over wi ¢ Q) or ws ¢ @) into three sums over wy ¢ @ and wy % Q, wi £ Q
and wy ~ @, and w1 ~ Q and wsy ¥ Q, it is enough to show that for all Q € O, any Us C W5 and
any dyadic integers 1 < A\, k1, kg < R2",

2

(14 > [ X X b sE

PEQ(k1,k2),Pc2Q” T w1 €W (P en iz) w2EU2(P)

(n—

2)
T #FWiH#Ws.
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9. EXPLOITING THE GEOMETRY OF THE PARABOLOID

Before we proceed, let us discuss some heuristics of the particular case where the
surfaces are disjoint caps on the paraboloid y = |z|?>. Suppose that we wish to estimate
a quantity of the form

2

(15) Z Z PwiPws

w1 EW1 waeWa 9

Ignore for now the region of spacetime we are integrating over. We can expand
this expression as

Z Z Z Z <pw1pw27pw’1pw’2>-

w1 €W waeW2 w) €Wy wheWs

By (e) of Lemma 6.1, p,, is supported near (vi,|v1|?) (similarly for Tb, T] and T}).
From Parseval’s formula, we thus expect the above inner product to be very small
unless v1 + vy is close to v + vl and |vi|? + |ve|? is close to |v}|* + |vh|?.

Suppose that we fix two of the directions, say v and v|. Then the relation v; +vy =
v] + vy will correlate vy and v, in the sense that either of these two wvelocities will
determine the other. By exploiting these two constraints in a very fine way, Tao was
able to finish the proof.

Just to sketch what is coming up, define

Q={veR":|v—e|<1},

Qg = {UER"_1:|U—|—€1]§1},

and supose that the lifts of these regions to the paraboloid are slightly larger than
the original caps. For any v € Q, v}, € Qa, let

I, o = {v] € Qo1 +vp = 0] +0h, [v1]? + |val> = [0]* + [vh]* for some vy € Do}

One can interpret this set as being equivalent to the set of all parallelograms with
two vertices in (a slight enlargement of) each one of the original caps. A little
algebra shows that vaé is contained in the n — 2-dimensional hyperplane of R"~!
which contains v; and is orthogonal to vy —v; (develop |vi + vs|? = [v] +v|? to conclude
that). In other words,

<U’1 — 1,05 — v1> = 0 whenever v} € Iy, -
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(01 4 va, [01]* + [0a]*) = (v + va, [01|* + [va?)

(v2,v2]?)

This orthogonality is not absolutely essential to the argument; what is important
ts that the set Hvl,v; is contained in a hypersurface with is transverse to v}, — vy, or
indeed to any vector in Qo — ;.

Now we go back to the more general setting with (1 and @9 instead of the paraboloid. Covering
V; with finitely many small cubes of diameter at most €9, we may assume that V; is such a cube
(write E7f1Esfs as a finite sum of similar expressions where the input functions are defined on
such cubes). In this new setting we have:

v] +vh—v1 € VY  whenever wp,v] € Vi and vh € Va,
and vice versa with respect to V; and V5. Moreover, when these cubes are sufficiently small

(16) [V;(v}) — Vj(vj)] <er whenever vj,vj € Vi,

where €1 is a small constant that will be specified later. Define for v, € f/l, vh € f/z,

(I)vl,vé V1 = R, (I)vl,vé (’Ui) = 901(”1) + 902(’”1 + 1}/2 - vl) - 901(03) - 902(,05)7
and

Hvl,vé = {Ull S ‘71 : q)vl,vé(vll) = 0}
By the setting of Section

V@4, 0, (V1)) = [Vipa(v1 + v —v1) = Veor (v)] = ¢1 > 0.



Set for U; C Wh,
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NU)= sup #{w)elU:ve vaé(clR*%)},

v1€‘~/1,U'2€\~/2
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where A(r) denotes the r—neighborhood of the set A. In other words, N'(U;) is the maximum num-
ber of green points in all possible pictures like the next one. The constant C; will be determined

below.

Figure 5. The curve represents the set 11

V1,V

2 and the region around it is its

C’leé neighborhood. In black we plotted the points of V; that are in this
neighborhood, and for some U; C Wy, the points in green are the first
components of the points of U; that are in this neighborhood.
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Lemma 9.1. For P € P and U; C W;(P), j =1,2,

(17)

Z Pw1Pws

w1 €U, w2€Us

2
< RO N (U U #Us.

2

Proof. Recall first that py,, pw, € L?(R™) by Lemma (7). We write

where

Now,

Z PwqPws

w1 €U, wa€U3

/ /=
le,wl,w2

2

= E le,w’l,wév

’ ’
2 wl,w1€U1,’w2,w2€U2

Z / Pwi Pwe P, Puwty -

wa W2

/ PuosPuon T T, = / PorbsBarba = / (o *5o) Gy *Bag).

By Lemma (e), the p,, are measures for which, with Cy = 2n(1 + Cp),

. 1

SPt(Duwy * Pws) C B((v1 + v2, p1(v1) + 2(v2)),2CR™2),
. 1

Spt(pw’l *pwé) - B((Ui + Uéa (pl(vll) + 902(1/2))7 202R 2)'

R
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Hence f Pwi Pwo P, Pty = 0 unless
’1)1 + vy — (Ui + vé)\ < 4CQR7%
and

1
o1(v1) + p2(v2) = (p1(v]) + @2(vh))| < 4C2R72.
If Loy o # 0, there is vy such that the two inequalities above hold. Thus,

Dy, 0 (V)] = [1(01) + @2(v] + 05 — v1) — (91(v]) + @2(v3))]
< le1(v1) + @2(v2) — (p1(v]) + @2(v5))] + [p2(v2) — @a(v] + v5 — v1))]
< (402 +4C2 || Vepu|o) B2
< 8C2ZR 2.

2
Claim 9.2. v is contained in 11, ., (C1 R~ ) where Cy = 552

C1
To prove the claim, suppose w.l.o.g. that @Ul’vé(vi) > 0 and that there is no point of II,, ,; in
2
B ( 1 80 R ) Since [V®,, ;| > 0, the minimum value of ® in B(vj, %R_%) occurs at some b

17 c1
2
with [v] —b] = %R‘f and @,, s (b) > 0 by the intermediate value theorem. This way for some
c € [v],b]:

_1
8022R 2= q)vl,vg (b) > <bv1,v§ (Ull) - (I)m,vé (b)
= [ Doy 05 (V1) = Py 5 ()]
= ‘V@UI vl (C)Hvll —b|

which implies @, ,,(b) = 0 and this is a contradiction. Use this constant C to define N'(U)
above. Hence the left hand side of is

Z Z Z Z pwlpwzpwipwé .

w1€U1 wheUs w) €Uy wa€U2
”’161—11;1 o / (C1R™ g)vzeB(v1+v2 v1,4Co R~ 2)

Given wy, wh, w}, there are boundedly many points vy in the above sum. Since all the tubes T,
meet R5P, there are at most O(RC‘S) points wy if ve is fixed because yo € ) are \/T-'i—separated.
By transversality between the tubes T3, and T,,, the measure of their intersection is < R3.
By parts (g) and (¢) of Lemma the product puw, pu,Puw) Puy, decays very fast off this intersection

and it is uniformly < R'=". These give

_(n=2)

’/pwlpwzpw’lpu/2 S R 2

Therefore for fixed wy, wh, wi,
5— (n 2)
Z DPwy Pwo P! Pty 1 Dwly, S S R° .
wo €U )
va€B(v]+vh—v1,4C2R™2)

The lemma follows from this. O

The proof of the theorem will be finished by the following lemma.
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Lemma 9.3. For any dyadic integers 1 < k1, ko, A < R*™, Q € Q, P € Q(k1,K2), P C 2Q,
#Wo
)\FLQ '

Let us first see why this lemma implies (14). For any P € Q(k1, k2), #Ua(P) < #Wo(P) < 2ka.
Using this, the previous lemma and the definitions we gave throughout these notes,

NWZC(P, A, k1, k2)) < R?

2

> > > Punbus

PEQ(r1,62),PC2Q 1w eW D (P k1 ,k2) W2EU2(P) L2(P)

_(n—2)
< RO ST NP,k k) #WT QP A, ki, 1)U (P)
PEQ(Hl,NQ),PCQQ

< proo- 52 #W S H#WIC (PN, k1, ko) #Us(P)
K9
PEQ(H17H2),PC2Q

o5 (n=2) 2H#HW.
< g IR S WP A k)
PGQ(Hl,Hg),PCQQ

(n—2) 24#W-
< RO # y #{P € Q(k1,k2) : Ty, NR°P # 0}
w1 €W (A,k1,K2)

(n—

2)
T H#WLH#Ws.

< AR
Proof of Lemma[9.3. We need to show that for any vy € Vi, v} € Vo and Py € Q(k1, k2), Py C 2Q,

#Wo

#{w) € WPy, A k1, k2) v} €11, 0 (C1R™2)} S R? T
2

Set

=

WféQ(HUhvé) = {’LU/1 € chQ(Po, A, K1, Hg) : U/1 € Hvl’vé(ClR_ )}

Let w] € WféQ(vaé). Then by definition T,y N ROPy # ) and Q N 10Q(wh, \, k1, ko) = 0.
Since Py C 2Q),
d(Po,2Q(w), A, k1, K2)) > R,
so by

#{P € Q(r1,k2) : Ty NR'P #0,d(P,Py) > R"°} > AR™™,
because
{P € Q(k1,k2) : Tu,NR'P # 0, PNQ(wj, A, ki1, ki2) # B} C {P € Q(k1, ka) : Ty NR'P # 0,d(P, Py) > R'~°}.
Since kg < #Wa(P) < 2ky for P € Q(k1, k2), we get
(18)
#{(P,wi, w2) € Q(k1, k2) X W] ?(IL,, 1) x Wa: Ty NROP # 0, T, N ROP # 0,d(P, Py) > R}
2 ARTOHWIO(IL,, 4 ko,

We shall prove Lemma by finding an upper bound for the left hand side of this inequality.
This is accomplished by
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Lemma 9.4. Let wy € Wy and set
S= {(P, ’U)/1> € Q(Hla 52) X WFLQ(Hvl,vé) : Tw& N R(SP 7é @7Tw2 N R(SP 7é @,d(P, PO) > Rl_é}

(observe that this is a slice of the set we dealt with previously). Then #S < R,

This lemma finishes the proof since the left hand side of is < #S-#Wo < ROH4W,. Hence,

(c+ms #W2

ARTHWT P, o )ro S ROHW, <= #W] (10, ) S R fvs

~

Proof of Lemma[9.4 Define the conical set

Cop o, = {5(u, 1) e R*™ x R:u € Vi (Il ), |s| < 2R}.

For w) € W{U(IL,,, ), we have v} € I, ,, (C1R™2) and T,y N R°Py # 0.

V1,V

Claim 9.5.

1
U Tw/l - Cv1,v’2 (C3R§+6) + POa

w/IEWféQ(Hvl,vé)

for some constant C3 > 1.

Indeed, let y € Ty N R°Py and consider Tw, — Y. This is a tube that crosses the origin,
but also has orientation (V1 (v]),1). Since v} € vaé(C'lR*%), there is o7 € II,, .4 such that

_ _1
|v] — 1] < C1R™2, hence

[5(Ver (1)) = s(Veer (31))] < [Veor o RCIRT2 <) R2.

Since T,y — y has radius R%, it follows that we can fit it in a C3R2T? neighborhood of C, .y
and the claim follows.
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Figure 6. The surface with “thick” boundary is the conical set C',Ul’vxz. Here we

represented a CQR%M—neighborhood of it, and also the tube Ty —y that is
contained in it.

Claim 9.6. If (P,w}) € S, then

P C Cvl,vé (C4R%+5) + P.

Indeed, in particular we have w} € Wfé @ (ILy; 1), 80 Ty C Copp (CgR%—HS) + Py by the previous
lemma. We also have T, N RIP #£0. Let T, w, be a “dilated” version of T,y with length 2 R and
radius 2 R> just so that P C T, w,- Then we can find a constant C4 for which

P C Ty CCyy (C4R2T) + Py

5
and this claim follows.

Figure 7. Tube T, intersecting both R°P and R°Pp.

5

\

Py
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Claim 9.7. If (P,w}) € S, then
P C G, (R3* R R, Ry),
where for a suitable constant co > 0,
Cop (R2%0 R0 R, Py)) = Cvl,vé(cm%ﬂi) N{(z,t) : aR*° < |t| < R} + Py.

This follows from d(P, Py) > R'~% and the previous claim.
Furthermore, T, N R°P # § if (P,w}) € S, so

U P C R'Tyy NG,y (RZT, R7° R, Ry),

(P,w})€S for some w]

where

BTy, = {(w,1) : t| < R |z — (92— tVipa(w2))] < 2+ Co)R2 ™),

with Cj as in Section [2l We claim that

(19) ROTy, NG,y o (REY, R0, R, By) C B(yo, RZ )

for some y € R™ and some positive constant ¢. This is a consequence of the fact that the tube
T, intersects transversally the surface C,, ,; due to our basic assumptions on the functions ¢;,

and we will prove it in the next Lemma. From ((19)) it follows that for each w) there are O(R%)
cubes P with (P,w}) € S. Since d(P, Py) > R'~ the number of possible w} for which T,y meets

both ROP and R°P, is also O(R®). Lemma [9.4] follows from this. O

For a smooth hypersurface S C R™ we denote by Tan(.S, p) the tangent space of S at p considered
as an (n—1)—dimensional linear subspace of R”. Then the geometric tangent space is Tan(.S, p)+p.

Lemma 9.8. Let ¢ > 0 and let II be a smooth hypersurface in R"~! with II C B(0,1) such that
= {veR"!: &) =0} where ® is of class C* and |V®(v)| > ¢ for all v € B(0,1). Set

C(M) = {s(z,1) eER" ' xR:0< s < 1,0 €}
For any y,v € R"Y v #£0, let I, be the line in the direction (v,1) through (y,0), that is,
lyw = {(z,t) ER" I xR :x =y + vt}
Suppose for some v € B(0,1),
d(v, Tan(Il, z) + z) > ¢ for all x € II.
Then for anyy € R" L and 0 < 6 < 1,
(20) ly»(6) N C(T)(6) € B(yo, C9)

for some yg € R™, where C depends only on ¢ and n.
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Figure 8. Pictorial description of Lemma

B(0,1)

Proof. We claim that for all p € C(II),

d((v,1), Tan(C(11), p)) > 3.

This means that [, meets transversally C'(II) if it meets it at all. This gives and proves
the lemma. To check this inequality, let p = s(z, 1) € C(II), = € II. Note that

Tan(C(II),p) = Tan(Il, z) x {0} + {t(z,1) : t € R}.

Suppose d((v,1), Tan(C(II),p)) < §. Then there are v € Tan(Il,z) and ¢ € R such that
|(v,1) = (u + tx,t)| < 5. This gives v —u —tz| < § and |1 —¢| < §. Thus [v — (u + )| < ¢
(because |z| < 1) and so d(v, Tan(Il, z) + z) < ¢ giving a contradiction. This completes the proof
of the lemma. O

Let us finish the proof by showing that Lemma implies (19). Recall that the maps V;,
j =1,2, are diffeomorphisms. Define

U(v) = @1(v1) + 92((Veor) " (0) + vy — v1) = @1((Vier) "1 (0) = 2(v5)
when v € Vgi(V1). Then
V(I ) C {v e R": ¥(v) = 0}.

By a straightforward computation,

VI(Ver(v))) = D(Ver) (v]) ™ (Vepz(v] + vy — v1) — Vipr (v])).
The normal vector to the surface Vi (Il,, ;) at Vii(v]) is parallel to this gradient, so the
tangent space is

Tan(Vey (Hm,vé)’ vspl(rull)) ={z:2- V\II(U/I) = 0}.
Let wy = (y2,v2) € Wy. Using the inequalities in the setting of Section
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(VU (Vpr(v))) - (Vea(v2) = Vi (vh))]
= [D(Ve1)(v]) " (Vipa(v2) — Veor (1)) - (Vipa(v2) — Vpr (v1)))]
— [D(Ver)(v1) 7 (Vepa(v1 + v — v1) = Voa(v2)) - (Vipa(v2) — Vipr (v1)))|

>
-2
Then

d(Vp2(va), Tan(Vr1 (1L, 4 ), Vi (v1)) + V1 (1)) = [VE(Ver(v])) - (Vz(v2) — Ver (v1))] > %0

We now apply Lemma 9.8 to the surface Il = V1 (I1,, ;) with v = Vis(v2) and § replaced by
RO-3. Scaling by R follows and the theorem is proven.
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