
NOTES ON THE KAKEYA MAXIMAL CONJECTURE

AND RELATED PROBLEMS

ITAMAR OLIVEIRA

Abstract. We discuss the relation between the restriction conjecture,
the Kakeya maximal conjecture and the Kakeya conjecture. We follow
[4] and [5] very closely.
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1. Initial concepts

Definition 1.1 (Hausdorff measure). Let A ⊂ Rn, 0 ≤ s <∞, 0 < δ ≤ ∞.
We write

Hsδ(A) := inf


∞∑
j=1

α(s)

(
diam Cj

2

)s
: A ⊂

∞⋃
j=1

Cj ,diam Cj ≤ δ

 ,

where

α(s) :=
π
s
2

Γ( s2 + 1)
.

Define also:
Hs(A) := lim

δ→0
Hsδ(A) = sup

δ>0
Hsδ(A).

We call Hs the s-dimensional Hausdorff measure on Rn.

Definition 1.2. The Hausdorff dimension of A ⊂ Rn is

dim A := inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

We also have the following characterization of the Hausdorff dimension:

dim A = inf

s : ∀ε > 0,∃E1, E2, · · · ⊂ Rn : A ⊂
⋃
j

Ej and
∑
j

(diam Ej)
s < ε

 .
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A detailed exposition of the properties of the Hausdorff measure can be
found in [1]. For A ⊂ Rn define

Aδ = {x ∈ Rn : d(x,A) < δ}.

Definition 1.3. The lower Minkowski dimension of a bounded set A ⊂ Rn
is

dimMA := inf{s : lim inf
δ→0

δs−n|Aδ| = 0},

and the upper Minkowski dimension of A is

dimMA := inf{s : lim sup
δ→0

δs−n|Aδ| = 0}.

More about Minkowski dimension can be found in [3]. We conclude this
section with the following conjecture, which is one of the main objects of
study here.

Conjecture 1.4 (Kakeya conjecture). Every Besicovitch set in Rn has
Hausdorff dimension n.

2. Kakeya maximal function

Let us start with the following definition:

Definition 2.1. A Borel set B in Rn, n ≥ 2, is a Besicovitch set or Kakeya
set if it has Lebesgue measure zero and for every e ∈ Sn−1 there is b ∈ Rn
such that {te + b : 0 < t < 1} ⊂ B. In other words, B contains a line
segment of unit length in every direction.

The existence of Besicovitch sets (even compact ones) is proved in [4] on
page 143.

Definition 2.2. For a ∈ Rn, e ∈ Sn−1 and δ > 0, define the tube T δe (a) by

T δe (a) = {x ∈ Rn : |(x− a) · e| ≤ 1/2, |(x− a)− ((x− a) · e)e| ≤ δ}.

Observe that |T δe (a)| = α(n − 1)δn−1, where α(n − 1) is the Lebesgue
measure of the unit ball in Rn−1.

Definition 2.3. The Kakeya maximal function with width δ of f ∈ L1
loc(Rn)

is the function Kδf : Sn−1 → [0,∞] given by

Kδf(e) = sup
a∈Rn

1

|T δe (a)|

∫
T δe (a)

|f(x)|dx.

The following proposition is immediate by the definition given above:

Proposition 2.4. For all 0 < δ < 1 and f ∈ L1
loc(Rn),

(1) ‖Kδf‖L∞(Sn−1) ≤ ‖f‖L∞(Rn) and

(2) ‖Kδf‖L∞(Sn−1) ≤ α(n− 1)−1δ1−n‖f‖L1(Rn).
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Figure 1. Tube.
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Remark 2.5. It is natural to look for inequalities like

(3) ‖Kδf‖Lq(Sn−1) ≤ C‖f‖Lp(Rn),

where C does not depend on δ, p < ∞ and f ∈ Lp(Rn). Let us use the
existence of Besicovitch sets to prove that such estimates are not possible.
Let B ⊂ Rn be a compact Besicovitch set and let

Bδ = {x ∈ Rn : d(x,B) < δ}, f = χBδ .

It is clear that Kδf ≤ 1. For each e ∈ Sn−1 let a be the midpoint of some
line segment of length 1 on the direction of e. This way, T δe (a) ⊂ Bδ and we
have

Kδf(e) ≥ 1

|T δe (a)|

∫
T δe (a)

|f(x)|dx = 1,

so Kδf = 1 and ‖Kδf‖Lq(Sn−1) = |Sn−1|
1
q . On the other hand, ‖f‖Lp(Rn) =

|Bδ|
1
p → 0 as δ → 0, so there are no inequalities like (3).

Remark 2.6. A possible next step would be to prove estimates like

(4) ‖Kδf‖Lp(Sn−1) ≤ C(p, n, ε)δ−ε‖f‖Lp(Rn),

for all ε > 0, 0 < δ < 1 and f ∈ Lp(Rn). However, this does not hold for
p < n. Indeed, take f = χB(0,δ). Since B(0, δ) ⊂ T δe (0) for all e ∈ Sn−1, we
have

Kδf(e) =
|B(0, δ)|
|T δe (0)|

= C
δn

δn−1
= Cδ.

On the other hand,

‖f‖Lp(Rn) = |B(0, δ)|
1
p = Cδ

n
p ,
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so (4) would become δ ≤ Cδn/p−ε, which is false for small δ if p < n for
some ε such that n/p − ε > 1. The Kakeya maximal conjecture wishes for
the next best thing.

Conjecture 2.7 (Kakeya maximal conjecture). (4) holds if p = n, that is,

(5) ‖Kδf‖Ln(Sn−1) ≤ C(n, ε)δ−ε‖f‖Ln(Rn),
for all ε > 0, 0 < δ < 1 and f ∈ Ln(Rn).

Remark 2.8. Interpolating (5) with (2) we get

‖Kδf‖Lq(Sn−1) ≤ (C(n, ε)δ−ε)1−θ(δ1−n)θ‖f‖Lp(Rn),
for all ε > 0, 0 < δ < 1 and f ∈ Lp(Rn), where

1

q
=

1− θ
n

and
1

p
=

1− θ
n
− θ

1
.

Solving this in θ, we get

‖Kδf‖Lq(Sn−1) ≤ C(n, p, ε)δ−(n/p−1+εn(p−1)/p(n−1))‖f‖Lp(Rn),
for all 1 ≤ p ≤ n, q = (n− 1)p′. Since ε > 0 is arbitrary and the constant C
above already depends on p and n, this is the same as saying

‖Kδf‖Lq(Sn−1) ≤ C(n, p, ε)δ−(n/p−1+ε)‖f‖Lp(Rn),
for all ε > 0, 0 < δ < 1, f ∈ Lp(Rn), 1 ≤ p ≤ n and q = (n− 1)p′.

Definition 2.9. We say that {e1, . . . , em} ⊂ Sn−1 is a δ-separated subset of
Sn−1 if |ej−ek| ≥ δ for j 6= k. It is maximal if in addition for every e ∈ Sn−1
there is some k for which |e−ek| < δ. We call T1, . . . , Tm δ-separated δ-tubes
if Tk = T δek(ak), 1 ≤ k ≤ m, for some δ-separated subset {e1, . . . , em} ⊂ Sn−1
and some a1, . . . , am ∈ Rn.

Remark 2.10. In the definition above, m . δ1−n for all δ-separated sets.
Indeed, if m > Cδ1−n−ε, by partially covering Sn−1 with m disjoint caps Ak
of area |Ak| ≥ C̃δn−1 centered at ek we would have:

|Sn−1| ≥ m|Ak| ≥ Cδ1−n−εC̃δn−1 = C0δ
−ε,

but the right-hand side goes to infinity as δ → 0, contradiction. By a similar
argument, if the δ-separated set is maximal we have m ≈ δ1−n.

Remark 2.11. If e, e′ ∈ Sn−1 and |e− e′| ≤ δ, then

(6) Kδf(e) ≤ C(n)Kδf(e′).

Indeed, for a ∈ Rn arbitrary, fix x ∈ T δe (a). Let b the the projection of x
on the main axis of T δe (a) and b′ be the projection of b on the main axis of
T δe′(a). We have sin(bâb′) < |e− e′| ≤ δ and then:

|b− b′| = |a− b| sin(bâb′) . δ.

By the triangle inequality,

|x− b′| ≤ |x− b|+ |b− b′| . δ,
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so there is a constant M such that x ∈ TMδ
e′ (a) and we get T δe (a) ⊂ TMδ

e′ (a).

Observe that we can cover TMδ
e′ (a) with C(n) := 2n(dlogCe+1) (this is prob-

ably far from sharp) cylinders T δe′(yk), where yk ∈ Rn. Finally,

1

|T δe (a)|

∫
T δe (a)

|f(x)|dx ≤ 1

|T δe′(a)|

∫
TMδ
e (a)

|f(x)|dx

≤
C(n)∑
k=1

1

|T δe′(yk)|

∫
T δ
e′ (yk)

|f(x)|dx

≤ C(n)Kδf(e′),

and we get (6) by taking the supremum over a on the left-hand side.

Figure 2. Remark 2.11.
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Proposition 2.12. Let 1 < p <∞, q = p
p−1 = p′, 0 < δ < 1 and 0 < M <

∞. Suppose that ∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
Lq(Rn)

≤M

whenever T1, . . . , Tm are δ-separated δ-tubes and t1, . . . , tm are positive num-
bers with

δn−1
m∑
k=1

tqk ≤ 1.

Then

‖Kδf‖Lp(Sn−1) ≤ C(n)M‖f‖Lp(Rn).

Proof. Let {e1, . . . , em} be a maximal δ-separated subset of Sn−1. Observe
that the collection {Sn−1 ∩ B(ek, δ)} covers Sn−1. If e ∈ Sn−1 ∩ B(ek, δ),
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then Kδf(e) ≤ C(n)Kδf(ek) by Remark 2.11. Hence

‖Kδf‖pLp(Sn−1)
≤

m∑
k=1

∫
Sn−1∩B(ek,δ)

|Kδf(e)|pdσ(e)

≤
m∑
k=1

C(n)p
∫
Sn−1∩B(ek,δ)

|Kδf(ek)|pdσ(e)

≤
m∑
k=1

C(n)p|Kδf(ek)|p|Sn−1 ∩B(ek, δ)|

.
m∑
k=1

(|Kδf(ek)|δ
n−1
p )p.

By the duality of lp and lq, for any am ≥ 0, k = 1, . . . ,m,(
m∑
k=1

apk

) 1
p

= max

{
m∑
k=1

akbk; bk ≥ 0 and
m∑
k=1

bqk = 1

}
.

This way,

‖Kδf‖Lp(Sn−1) .
m∑
k=1

|Kδf(ek)|δ
n−1
p bk = δn−1

m∑
k=1

|Kδf(ek)|tk.

By choosing tk = δ(1−n)/qbk we get δn−1
∑m

k=1 t
q
k = 1. Let ε > 0 be small.

There are points ak ∈ Rn such that

|Kδf(ek)| − ε ≤
1

T δek(ak)

∫
T δek

(ak)
|f(x)|dx,

hence

‖Kδf‖Lp(Sn−1) . δ
n−1

m∑
k=1

(|Kδf(ek)| − ε+ ε)tk

≤ δn−1
m∑
k=1

tk
1

T δek(ak)

∫
T δek

(ak)
|f(x)|dx+ ε

=

m∑
k=1

tk

∫
T δek

(ak)
|f(x)|dx+ ε

=

∫
Rn

(
m∑
k=1

tkχT δek (ak)

)
|f(x)|dx+ ε

≤

∥∥∥∥∥
m∑
k=1

tkχT δek (ak)

∥∥∥∥∥
Lq(Rn)

‖f‖Lp(Rn) + ε

≤M‖f‖Lp(Rn) + ε.

By taking ε→ 0 we finish the proof. �
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Let us now prove a key lemma.

Lemma 2.13. For any pair of directions ek, el ∈ Sn−1 and any pair of points
a, b ∈ Rn, we have the estimates

(7) diam(T δek(a) ∩ T δel(b)) .
δ

|ek − el|
and

(8) |T δek(a) ∩ T δel(b)| .
δn

|ek − el|
.

Proof. Pick z ∈ T δek(a) ∩ T δel(b). For any y ∈ T δek(a) we have:

|(y − z) · ek| ≤ |(y − a) · ek|+ |(z − a) · ek| ≤ 1.

Also, for any unit vector v⊥ek:
|(y − z) · v| ≤ |(y − a) · v|+ |(z − a) · v| ≤ 2δ.

Then z ∈ 2T δek(z). We conclude z ∈ 2T δel(z) analogously, so

T δek(a) ∩ T δel(b) ⊂ 2T δek(z) ∩ 2T δel(z).

Combining this with the translation invariance of the Lebesgue measure, it
suffices to prove (7) for a = b = 0. By switching the orientation of the tube
we can assume θ ≤ π/2.

Figure 3. T δek(0) ∩ T δel(0).

b

bb

b
pl

pk x

0

θ ek

el

θ′

Let x ∈ T δek(0) ∩ T δel(0) and let pk and pl be the projections of 0 on the
lines f(t) = x+ tek and g(t) = x+ tel, respectively. We can parametrize it
by x = pk + tkek, where |tk| ≤ 1/2, so |tk| = |x− pk|. By the law of sines.

sin(θ)

|pk − pl|
=

sin(θ′)

|tk|
≤ 1

|tk|
⇒ |tk| ≤

|pk − pl|
sin(θ)

≤ 2δ

sin(θ)
.

By basic plane geometry:

|ek − el|
2

= sin

(
θ

2

)
≤ sin(θ)⇒ sin(θ) & |ek − el| ⇒ |tk| .

δ

|ek − el|
,
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by what we just did. Finally, by the triangle inequality we have:

|x| ≤ |pk|+ |tk| . δ +
δ

|ek − el|
.

δ

|ek − el|
.

Since x is arbitrary, this holds for every point in T δek(0) ∩ T δel(0). Finally,

diam(T δek(0) ∩ T δel(0)) ≤ sup
x∈T δek (0)∩T

δ
el
(0)

2|x| . δ

|ek − el|
,

which verifies the first part of this lemma. For the second part, observe that

T δek(0) ∩ T δel(0) ⊂ Cδ

|ek − el|
T |ek−el|ek

(0).

In fact, for any x ∈ T δek(0) ∩ T δel(0) we have |x · v| ≤ δ (for a unit vector
v⊥ek) and x ∈ B(0, Cδ/|ek − el|) for some C by what we just proved. This
way,

|T δek(0) ∩ T δel(0)| ≤
∣∣∣∣ Cδ

|ek − el|
T |ek−el|ek

(0)

∣∣∣∣ . δ

|ek − el|
δn−1 =

δn

|ek − el|
.

�

Now we will use the proposition above to prove the Kakeya maximal
conjecture for n = 2.

Theorem 2.14. For all 0 < δ < 1 and f ∈ L2(R2),

‖Kδf‖L2(S1) ≤ C
√

log(1/δ)‖f‖R2 ,

with some absolute constant C.

Proof. Let Tk = T δek(ak), k = 1, . . . ,m, be δ-separated δ-tubes and t1, . . . , tm
positive numbers such that δ

∑m
k=1 t

2
k ≤ 1. By Proposition 2.12, we need to

show that ∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
L2(R2)

.
√

log(1/δ).

Using the preceding lemma we obtain:∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
2

L2(R2)

=

m∑
k,l=1

tktl|T δek(ak) ∩ T δel(al)|

. α(n− 1)δ
m∑
k=1

t2k +
m∑

k,l=1
k 6=l

tktl
δ2

|ek − el|

.
m∑

k,l=1
k 6=l

√
δtk

(
δ

|ek − el|

) 1
2 √

δtl

(
δ

|ek − el|

) 1
2

.
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By Cauchy-Schwarz,

∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
2

L2(R2)

≤

 m∑
k,l=1
k 6=l

δt2k
δ

|ek − el|


1
2
 m∑
k,l=1
k 6=l

δt2l
δ

|ek − el|


1
2

=

m∑
k,l=1
k 6=l

δt2k
δ

|ek − el|

. log(1/δ)
m∑
k=1

δt2k

= log(1/δ),

where the second to last inequality follows from
m∑

k,l=1
k 6=l

δ

|ek − el|
.
∑

1≤l≤ 1
δ

δ

lδ
=
∑

1≤l≤ 1
δ

1

l
≈ 1

δ
.

�

Remark 2.15. If 0 < δ < 1, for every ε > 0 there is a constant Cε such
that log(1/δ) ≤ Cεδ

−ε, so the theorem above implies the Kakeya maximal
conjecture for n = 2.

We are ready to obtain a discrete characterization of the Kakeya maximal
inequalities.

Proposition 2.16. Let 1 < p < ∞, q = p
p−1 = p′, 1 ≤ M < ∞ and

0 < δ < 1. Then

(9) ‖Kδf‖Lq(Sn−1) .n,p,ε Mδ−ε‖f‖Lp(Rn)
for all f ∈ Lp(Rn) and ε > 0 if and only if

(10)

∥∥∥∥∥
m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

.n,q,ε Mδ−ε(mδn−1)
1
q

for all ε > 0 and all δ-separated δ-tubes T1, . . . , Tm.

Proof. Assume first (10), let T1, . . . , Tm be δ-separated δ-tubes and t1, . . . , tm
be positive numbers such that δn−1

∑m
k=1 t

q
k ≤ 1. By Proposition 2.12 it

suffices to prove that ∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
Lq(Rn)

.n,q,ε Mδ−ε.

By Remark 2.10, mδn−1 . 1. By multiplying (10) by δn−1 and picking
ε0small such that δn−1−ε0 < 1, we get

∥∥∑m
k=1 δ

n−1χTk
∥∥
Lq(Rn) ≤ C, where
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C is a universal constant. Also, tk ≤ δ
(1−n)
q for all 1 ≤ k ≤ m, so it is

enough to prove the inequality above for the sum over those k for which

δn−1 ≤ tk ≤ δ
(1−n)
q . We can break this sum into ≈ log(1/δ) sums over

Ij = {k : 2j−1 ≤ tk < 2j} and let mj be the cardinality of Ij . Observe that
for each Ij we have 2jq ≤ (2tk)

q for all tk ∈ Ij , so mj2
jq ≤

∑
Ij

(2tk)
q ≤∑m

k=1(2tk)
q ≤ 2qδ1−n. Applying this and (10) with ε/2 we obtain:∥∥∥∥∥∥

∑
2j−1≤tk<2j

tkχTk

∥∥∥∥∥∥
Lq(Rn)

≤
∑
j

∥∥∥∥∥∥
∑
k∈Ij

2jχTk

∥∥∥∥∥∥
Lq(Rn)

=
∑
j

2j

∥∥∥∥∥∥
∑
k∈Ij

χTk

∥∥∥∥∥∥
Lq(Rn)

.n,q,ε
∑
j

2jMδ−ε/2(mjδ
n−1)

1
q

.n,q,ε Mδ−ε/2
∑
j

1

.n,q,ε M log(1/δ)δ−ε/2

.n,q,ε Mδ−ε,

where we used Remark 2.15 for ε/2 in the last inequality.
Conversely, assume 9 holds and let T1, . . . , Tm be δ-separated δ-tubes with

directions e1, . . . , em. Let g ∈ Lp(Sn−1) with ‖g‖Lp(Sn−1) ≤ 1. Then,∫
Sn−1

m∑
k=1

χTkg =
m∑
k=1

∫
Tk

g .
m∑
k=1

Kδg(ek)δ
n−1

.
m∑
k=1

∫
Sn−1∩B(ek,δ)

Kδg(ek)dσ
n−1(e)

.
m∑
k=1

∫
Sn−1∩B(ek,δ)

Kδg(e)dσn−1(e)

=

∫
⋃
k(Sn−1∩B(ek,δ))

Kδg(e)dσn−1(e)

≤ ‖Kδg‖Lp(Sn−1)

∣∣∣∣∣⋃
k

(Sn−1 ∩B(ek, δ))

∣∣∣∣∣
1
q

.n,p,ε Mδ−ε(mδn−1)
1
q .

Observe that we used Remark 2.11 above. The proposition follows by taking
the supremum over all g ∈ Lp(Sn−1) with ‖g‖Lp(Sn−1) = 1. �
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The next proposition improves the last one by considering only maximal
sets of δ-separated δ-tubes. Observe that in this case we have mδn−1 ≈ 1.

Proposition 2.17. Let 1 < q <∞, 1 ≤M <∞ and 0 < δ < 1. Then

(11)

∥∥∥∥∥
m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

.n,q,ε Mδ−ε(mδn−1)
1
q

for all ε > 0 and for all δ-separated δ-tubes T1, . . . , Tm provided

(12)

∥∥∥∥∥
m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

.n,q,ε Mδ−ε

for all ε > 0 and for all δ-separated δ-tubes T1, . . . , Tm.

Proof. Let m0 be the maximal cardinality of δ-separated δ-tubes in Sn−1,
so m0 ≈ δ1−n by Remark 2.10. For every 1 ≤ m ≤ m0 let c(m) denote the
smallest constant such that∥∥∥∥∥

m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

≤ c(m)

for all δ-separated δ-tubes T1, . . . , Tm. Set c(t) = 0 for t < 1, c(t) = c(m)
for m ≤ t < m + 1 if 1 ≤ m and c(m) = c(m0) for m > m0. Condition 12
gives

(13) c(m) .Mδ−ε

and we need to prove

(14) c(m) .Mδ−ε(mδn−1)
1
q .

For m ≤ m0 fixed, there is a δ-separated subset S ⊂ Sn−1 of cardinality m
such that the corresponding tubes Te, e ∈ S, satisfy∥∥∥∥∥∑

e∈S
χTe

∥∥∥∥∥
Lq(Rn)

= c(m).

Indeed, consider the function h : (Sn−1)m → R given by h(e1, . . . , em) =∥∥∥∑m
k=1 χT δek

∥∥∥
Lq(Rn)

. h is continuous and defined on a compact, so it attains

a maximum at some m-tuple (e1, . . . , em) of unit vectors. The identity above
clearly holds for S = {e1, · · · , em}.

Consider now rotations g ∈ O(n) of S such that S and g(S) are disjoint,
which happens for almost all g ∈ O(n). Denote by Tg(e) the rotated tube
g(Te). Then we also have:∥∥∥∥∥∑

e∈S
χTg(e)

∥∥∥∥∥
Lq(Rn)

= c(m).
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From the inequality ‖f + g‖qq ≥ ‖f‖qq + ‖g‖qq for non-negative functions we
get:
(15)∥∥∥∥∥∥

∑
e∈S∪g(S)

χTe

∥∥∥∥∥∥
Lq(Rn)

≥

∥∥∥∥∥∑
e∈S

χTe

∥∥∥∥∥
q

Lq(Rn)

+

∥∥∥∥∥∥
∑
e∈g(S)

χTe

∥∥∥∥∥∥
q

Lq(Rn)


1
q

= 2
1
q c(m).

Define

a(S, g) := #{(e, e′) ∈ S × g(S) : |e− e′| ≤ δ}.
We can also write this as

a(S, g) =
∑
e∈S

∑
e′∈S

χB(0,δ)(e− g(e′)).

By letting g range over O(n) and using the normalized Haar measure dO(n)
we get

(16)

∫
O(n)

a(S, g)dO(n) =
∑
e∈S

∑
e′∈S

f(e, e′),

where

f(e, e′) =

∫
O(n)

χB(0,δ)(e− g(e′))dO(n).

Given ω ∈ Sn−1, there is some g′ ∈ O(n) such that ω = g′(e′). Denote
F (g) = χB(0,δ)(e− g(e′)). By right-invariance of the Haar measure on O(n),∫

O(n)
F (gg′)dO(n) =

∫
O(n)

F (g)dO(n)⇒ f(e, ω) = f(e, e′),

so f is constant in the second entry. By integrating both sides of (16) on
Sn−1 and using Fubini we obtain

(17) f(e, e′) =
1

|Sn−1|

∫
O(n)

∫
Sn−1

χB(0,δ)(e− g(ω))dσ(ω)dO(n).

The inner integral can be estimated as follows:∫
Sn−1

χB(0,δ)(e− g(ω))dσ(ω) =

∫
Sn−1

χB(0,δ)(e− ω)dσ(ω)

= |{ω ∈ Sn−1 : |e− ω| ≤ δ}|
. δn−1.

Looking back to (17) we conclude that f(e, e′) . δn−1 uniformly, so (16)
becomes ∫

O(n)
a(S, g)dO(n) . m2δn−1.

That means that we can find g ∈ O(n) such that a(S, g) ≤ bm2δn−1 for
some universal constant C.
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Write S ∪ g(S) = S1 ∪ S2, where

S2 = {e ∈ S : ∃e′ ∈ g(S) such that |e− e′| ≤ δ},

S1 = (S\S2) ∪ g(S).

Observe that c is non-decreasing on natural numbers. Indeed, for any m+ 1
collection of δ-separated δ-tubes we have:∥∥∥∥∥

m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

≤

∥∥∥∥∥
m+1∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

≤ c(m+ 1).

Since any collection of m δ-separated δ-tubes can be put in a collection of
m+1 of these (for m < m0), c(m) ≤ c(m+1) by definition. By the extension
we defined in the beginning of the proof, c is non-decreasing. For S1 we have
the trivial bound #S1 ≤ 2m and for S2 we have #S2 ≤ bm2δn−1. By the
triangle inequality,

(18)

∥∥∥∥∥∥
∑

e∈S∪g(S)

χTe

∥∥∥∥∥∥
Lq(Rn)

≤ c(2m) + c(bm2δn−1).

Combining (18) with (15) we get

2
1
q c(m) ≤ c(2m) + c(bm2δn−1).

Up to multiplying by a constant less than 2, we can consider bδn−1 = 2−k

for some k ∈ N. It is enough to prove (14) for m = 2N−k, k = 1, . . . , N . In
fact, we know that for 2l with l ≥ N this inequality reduces to (13), and for
the other integers we can just use the monotonicity of c to compare c(m) to
c(2l) where 2l−1 < m < 2l.

We have m = 2−kb−1δ1−n. Set

ck = 2
k
q c(2−kb−1δ1−n), k = 1, . . . , N.

Then the last inequality becomes

(19) ck ≤ ck−1 + 2
− (k+1)

q c2k.

Inequality (14) now becomes ck .n,q,ε Mδ−ε. If k ≥ B log(1/δn−1) for B
big enough, m ≤ 1/2 and c(m) = 0. Thus it suffices to restrict ourselves to
k . log(1/δ). Define a new sequence dk by

(20) dk = (1 + C02
− k
q )ck,

for some constant C0 to be chosen later. We claim that if A > 1 then

(21) dk < dk−1 + 2
− k
q (A(d2k − dk) + (dk−1 − dk))
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for all k ≥ k0, where k0 is some fixed constant. To verify this, multiply (19)

by (1 + C02
− k
q ) to find that

(22)

dk ≤ ck−1(1 + C02
− k
q ) + 2

− k
q c2k(1 + C02

− k
q )

= dk−1

(
1 + C02

− k
q

1 + C02
− k−1

q

)
+ C2

− k
q d2k

(
1 + C02

− k
q

1 + C02
− k−1

q

)
.

Subtracting (20) from (22) and rearranging we see that we have to show
that

(A+1)2
− k
q dk < dk−1

(
1 + 2

− k
q − 1 + C02

− k
q

1 + C02
− k−1

q

)
+d2k

(
A− 1 + C02

− k
q

1 + C02
− k−1

q

)
.

By substituting in for ck we conclude that our goal is to show that

ck < ck−1

1 + C0(2
1
q − 1) + C02

− (k−1)
q

(A+ 1)(1 + C02
− k
q )

+2
− k
q

[
(A− 1)2

k
q − C0 +AC02

− k
q

(A+ 1)(1 + C02
− k
q )

]
.

Since we know that (19) holds, it is enough to show that each term in the
brackets above is greater than 1. For the first term, notice that for all large
k we have

1 + C0(2
1
q − 1) + C02

− (k−1)
q

(A+ 1)(1 + C02
− k
q )

>
1 + C0(2

1
q − 1)

2(A+ 1)
,

and this can be made greater than 1 by choosing C0 big enough. For the
second term we have

(A− 1)2
k
q − C0 +AC02

− k
q

(A+ 1)(1 + C02
− k
q )

>
(A− 1)2

k
q − C0

2(A+ 1)
.

Since A > 1, this can also be made greater than 1 by choosing k big enough,
so choose k0 such that both bounds hold for all k ≥ k0 and the claim
is proved. Let dkmax be the maximal of dk in the range [k0, B log(1/δ)].
Applying (21) we have:

dkmax < dkmax−1 + 2
− kmax

q (A(d2kmax − dkmax) + (dkmax−1 − dkmax)).

By the maximality of dkmax , the second summand on the right-hand side is
negative, so dkmax < dkmax−1, which forces kmax = k0. Therefore ck . ck0
for all k ≥ k0. Notice that we trivially have ck . ck0 for all k < k0. Since

ck0 = 2
k0
q c(2−kb−1δ1−n) . c(δ1−n) ≈ c0 / 1 by hypothesis, we have ck / 1

for all 0 ≤ k . log(1/δ), and this concludes the proof of this proposition. �

Combining these last two propositions we have:

Corollary 2.18. Let 1 < p < ∞, q = p
p−1 , 0 < β < ∞ and 0 < δ < 1.

Then
‖Kδf‖Lp(Sn−1) .n,p,ε δ

−β−ε‖f‖Lp(Sn−1)
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for all f ∈ Lp(Sn−1), ε > 0, if and only if∥∥∥∥∥
m∑
k=1

χTk

∥∥∥∥∥
Lq(Rn)

.n,p,ε δ
−β−ε

for all ε > 0 and for all δ-separated δ-tubes T1, . . . , Tm. In particular, the
Kakeya maximal conjecture 2.7 holds if and only if∥∥∥∥∥

m∑
k=1

χTk

∥∥∥∥∥
L

n
n−1 (Rn)

.n,p,ε δ
−ε

for all ε > 0 and for all δ-separated δ-tubes T1, . . . , Tm.

3. Kakeya maximal implies Kakeya

Theorem 3.1. Suppose that 0 < δ < 1, β > 0 and n− βp > 0. If

‖Kδf‖Lp(Sn−1) ≤ C(n, p, β)δ−β‖f‖Lp(Rn)
for all 0 < δ < 1 and f ∈ Lp(Rn), then the Hausdorff dimension of every
Besicovitch set in Rn is at least n− βp. In particular, if (4) holds for some
p, then the Hausdorff dimension of every Besicovitch set in Rn is n. Thus
Conjecture 2.7 implies the Kakeya conjecture 1.4.

Proof. Let B ⊂ Rn be a Besicovitch set. Let 0 < α < n − βp and Bj =
B(xj , rj) be a collection of balls such that B ⊂ ∪jBj and rj < 1. By the
equivalent characterization of Hausdorff dimension we stated in section 1,
it suffices to show that

∑
j r

α
j & 1. For e ∈ Sn−1 let Ie be a unit segment

parallel to e. For k = 1, 2, . . . , set

Jk := {j : 2−k ≤ rj < 21−k},
and

Sk :=

e ∈ Sn−1 : H1

Ie ∩ ⋃
j∈Jk

Bj

 ≥ 1

2k2

 .

We claim that

(23) Sn−1 =
⋃
k

Sk.

Indeed, if there was e ∈ Sn−1\ ∪k Sk, then H1 (Ie ∩ (∪j∈JkBj)) < 1/2k2 for
all k, so ∑

k

H1

Ie ∩ ⋃
j∈Jk

Bj

 <
∑
k

1

2k2
< 1.

On the other hand,

1 ≤ H1(Ie) ≤
∑
k

H1

Ie ∩ ⋃
j∈Jk

Bj

 ,
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contradiction. So (23) holds. Let

fk = χFk with Fk =
⋃
j∈Jk

B(xj , 2rj).

For e ∈ Sk, let ae be the midpoint of Ie. We claim that

(24) |T 2−k
e (ae) ∩ Fk| &

1

k2
|T 2−k
e (ae)|.

To prove this, we first show that ∀y ∈ ∪j∈JkB(xj , rj) := Mk we have Fk ⊇
B(y, 2−k). To verify this pick such y, so y ∈ B(xj , rj) for some j ∈ Jk. Let

z ∈ B(y, 2−k). Then

|xj − z| ≤ |xj − y|+ |y − z| ≤ rj + 2−k ≤ 2rj ,

so z ∈ B(xj , 2rj) ⊂ Fk. This way,

T 2−k
e (ae) ∩ Fk ⊇

⋃
y∈Mk

(
T 2−k
e (ae) ∩B(y, 2−k)

)
= T 2−k

e (ae) ∩
⋃
y∈Mk

B(y, 2−k)

⊇ T 2−k
e (ae) ∩

⋃
y∈Ie∩Mk

B(y, 2−k).

Observe that T 2−k
e (ae)∩

⋃
y∈Ie∩Mk

B(y, 2−k) is exactly the portion of T 2−k
e (ae)

that shadows Ie ∩ Mk, so it has measure at least & |Ie ∩ Mk|2−k(n−1) &
|T 2−k
e (ae)|/k2. This shows (24), which implies K2−kfk(e) & 1/k2 for all

e ∈ Sk. This and the Kakeya maximal conjecture imply:

σn−1(Sk) . k
2p

∫
Sk

|K2−kfk(e)|pdσ(e) ≤ k2p
∫
Sn−1

|K2−kfk(e)|pdσ(e)

≤ k2pCpn,p,β2kβp
∫
Rn
|fk(x)|pdx

= k2pCpn,p,β2kβp|Fk|.

On the other hand, |Fk| ≤ #Jkα(n)(2rj)
n < #Jkα(n)2(2−k)n, so

σn−1(Sk) . k
2p2kβp2−kn22n#Jk = k2p2k[α−(n−βp)]2−kα#Jk . 2−kα#Jk,

since limk→∞ k
2p2k[α−(n−βp)] = 0. Finally,∑

j

rαj &
∑
k

#Jk2
−kα &

∑
k

σn−1(Sk) & 1.

This concludes the proof. �

Now we give a different proof of Theorem 2.14. The proof is general
enough to provide sharp L2 estimates in Rn. For this we will need the
following lemma:
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Lemma 3.2 (Bourgain). Let C ≥ 1 be some constant and suppose 0 < δ <
1. For any fixed ξ ∈ Rn one has the bound

(25) |{e ∈ Sn−1 : ξ ∈ C · T 1/δ
e (0)}| . 1

1 + |ξ|
.

Proof. First suppose that |ξ| < 10C so that 1
1+10C < 1

1+|ξ| . It follows that

|{e ∈ Sn−1 : ξ ∈ C · T 1/δ
e (0)}| ≤ |Sn−1| . 1

1 + 10C
<

1

1 + |ξ|
.

If |ξ| > C
δ , then ξ /∈ C ·T 1/δ

e (0) for all e ∈ Sn−1 by definition and the estimate
above is trivial.

It remains to prove it now for 10C ≤ |ξ| ≤ C
δ . By definition, we have:

C · T 1/δ
e (0) := {η ∈ Rn : |η · e| ≤ C/2, |η · v| ≤ C/δ ∀ unit v⊥e}.

We may rotate the coordinate axes so that ξ = (ξ1, 0, . . . , 0). Notice that

|{e ∈ Sn−1 :ξ ∈ C · T 1/δ
e (0)}|

= |{e ∈ Sn−1 : |ξ · e| ≤ C/2, |ξ · v| ≤ C/δ ∀ unit v⊥e}|

=

∣∣∣∣{e ∈ Sn−1 :

∣∣∣∣ ξ|ξ| · e
∣∣∣∣ ≤ C

2|ξ|
,

∣∣∣∣ ξ|ξ| · v
∣∣∣∣ ≤ C

δ|ξ|
∀ unit v⊥e

}∣∣∣∣
=

∣∣∣∣{e ∈ Sn−1 :

∣∣∣∣ ξ|ξ| · e
∣∣∣∣ ≤ C

2|ξ|

}∣∣∣∣ ,
since ∣∣∣∣ ξ|ξ| · e

∣∣∣∣ ≤ C

2|ξ|
⇒
∣∣∣∣ ξ|ξ| · v

∣∣∣∣ ≤ ∣∣∣∣ ξ|ξ|
∣∣∣∣ |v| = 1 ≤ C

δ|ξ|
,

for all v⊥e since |ξ| ≤ C
δ .

Now
∣∣∣ ξ|ξ| · e∣∣∣ = |e1| where e = (e1, e2, . . . , en), so

|{e ∈ Sn−1 : ξ ∈ C · T 1/δ
e (0)}| =

∣∣∣∣{e ∈ Sn−1 : |e1| ≤
C

2|ξ|

}∣∣∣∣ .
This defines a subset of Sn−1 that looks like a ring of thickness ≈ 1

|ξ| in the

e1 direction. Thus the size of this ring is bounded by 1
|ξ| .

1
1+|ξ| since |ξ| & 1

and the lemma follows. �

Theorem 3.3. For all 0 < δ < 1 and f ∈ L2(R2),

‖Kδf‖L2(S1) ≤ C
√

log(1/δ)‖f‖L2(R2),

with some absolute constant C. In Rn, n ≥ 3, we have for all 0 < δ < 1 and
f ∈ L2(Rn):

‖Kδf‖L2(Sn−1) ≤ C(n)δ(2−n)/2‖f‖L2(Rn),

where the exponent (2− n)/2 is the best possible.
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Proof. We may assume f to be non-negative since Kδf = Kδ|f |. We can also
assume f ∈ C∞c (Rn) since this is dense in L2. Let ϕδe(x) := 1

α(n−1)δn−1χT δe (0)(x).

Then, by a change of variables and by the symmetry of T δe (0) we have

Kδf(e) = sup
a∈Rn

1

α(n− 1)δn−1

∫
T δe (a)

f(y)dy

= sup
a∈Rn

1

α(n− 1)δn−1

∫
T δe (0)

f(y − a)dy

= sup
a∈Rn

1

α(n− 1)δn−1

∫
Rn
χT δe (0)(y)f(a− y)dy

= sup
a∈Rn

(ϕδe ∗ f)(a).

Let φ ∈ S(R) such that φ ≥ 0, supp(φ̂) ⊂ [−C
2 ,

C
2 ] and φ(x) ≥ 1 when

|x| ≤ 1
2 . Define ψ : Rn → R by

ψ(x) = φ(x1)
1

δn−1

n∏
j=2

φ
(xj
δ

)
, x = (x1, . . . , xn).

Let e1 = (1, 0, . . . , 0) ∈ Rn. Observe that ϕδe1 ≤ ψ. Indeed, if x /∈ T δe1(0)

then ϕδe1(x) = 0 ≤ ψ(x). If x ∈ T δe1(0) then φ(x1) ≥ 1 and φ(xj/δ) ≥ 1 and
we are also done. This way,

Kδf(e1) ≤ sup
a∈Rn

(ψ ∗ f)(a)

Let ρe be a rotation that takes e to e1. Define ψe = ψ ◦ ρe. As before,
ϕδe ≤ ψe, so

ϕδe ∗ f ≤ ψe ∗ f ⇒ Kδf(e) = sup
a∈Rn

(ϕδe ∗ f) ≤ sup
a∈Rn

(ψe ∗ f) = ‖ψe ∗ f‖∞.

By Fourier inversion, since ψe ∗ f and ψ̂e ∗ f are in L1(Rn),

‖ψe ∗ f‖∞ ≤ ‖ψ̂e ∗ f‖L1(Rn) = ‖ψ̂ef̂‖L1(Rn) =

∫
Rn
|ψ̂e(ξ)| · |f̂(ξ)|dξ.

Thus by Cauchy-Schwarz we have

(26)

Kδf(e) ≤
∫
Rn
|f̂(ξ)|

√
|ψ̂e(ξ)|(1 + |ξ|)

√
|ψ̂e(ξ)|
1 + |ξ|

dξ

≤
(∫

Rn
|f̂(ξ)|2|ψ̂e(ξ)|(1 + |ξ|)dξ

) 1
2

(∫
Rn

|ψ̂e(ξ)|
1 + |ξ|

dξ

) 1
2

︸ ︷︷ ︸
(∗)
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Let us estimate (∗) now. We know that ψ̂e = ψ̂◦ρe. By a direct computation
we get:

ψ̂(ξ) = φ̂(ξ1)
n∏
j=2

φ̂(δξj).

By our assumptions on φ̂ we see that ψ̂ is supported on a tube of size

C(1× 1/δ × . . . 1/δ) oriented in the direction of e1. It then follows that ψ̂e
is bounded and supported on a tube of size C(1× 1/δ× . . . 1/δ) oriented in

the direction of e, i.e. ψ̂e is supported on C · T 1/δ
e (0). This way,∫

Rn

|ψ̂e(ξ)|
1 + |ξ|

dξ .
∫
C·T 1/δ

e (0)

1

1 + |ξ|
dξ =

∫
C·T 1/δ

e1
(0)

1

1 + |ξ|
dξ

by performing a rotation on the region of integration. Denote ξ = (ξ1, ξ
′).

If n = 2 we have:

(27)

∫
|ξ1|≤C,|ξ′|≤Cδ

1

1 + |ξ|
dξ1dξ

′ .
∫
|ξ′|≤C

δ

1

1 + |ξ′|
dξ

.
∫
|η|≤ 1

δ

1

1 + |η|
dη

. log(1/δ).

Combining (26) with (27) we obtain:

‖Kδf‖2L2(S1) .
√

log(1/δ)

∫
Rn
|f̂(ξ)|2(1 + |ξ|)

(∫
S1
|ψ̂e(ξ)|de

)
dξ.

Applying Lemma 3.2:∫
S1
|ψ̂e(ξ)|de . |supp(ψ̂e(ξ))| ≤ |{e ∈ Sn−1 : ξ ∈ C · T 1/δ

e (0)}| . 1

1 + |ξ|
,

so

‖Kδf‖2L2(S1) . log(1/δ)

∫
Rn
|f̂(ξ)|2(1 + |ξ|) 1

(1 + |ξ|)
dξ = log(1/δ)‖f‖2L2(R2)

by Plancherel.
If n ≥ 3, by polar coordinates we get

(28)

∫
|ξ1|≤C,|ξ′|≤Cδ

1

1 + |ξ|
dξ1dξ

′ .
∫
|ξ′|≤C

δ

1

1 + |ξ′|
dξ

.
∫ C

δ

−C
δ

rn−2

r
dr

. δ−(n−2).

Combining (26) with (28) and using again Lemma 3.2 we obtain

‖Kδf‖2L2(Sn−1) . δ
−(n−2)

∫
Rn
|f̂(ξ)|2(1 + |ξ|) 1

(1 + |ξ|)
dξ = δ−(n−2)‖f‖2L2(Rn).
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Taking square roots, we are done. The power δ(2−n)/2 is the best possible
by Remark 2.6. �

Combining Theorems 3.1 and 3.3 we conclude the following:

Corollary 3.4. All Besicovitch sets in Rn, n ≥ 2, have Hausdorff dimension
at least 2.

4. Restriction implies Kakeya

We start this section by stating the restriction conjecture for the sphere:

Conjecture 4.1 (Restriction). For q > 2n
n−1 we have

‖f̂‖Lq(Rn) .n,q ‖f‖Lq(Sn−1)

for f ∈ Lq(Sn−1).

Theorem 4.2. Suppose 2n
n−1 < q <∞ and

(29) ‖f̂‖Lq(Rn) .n,q ‖f‖Lq(Sn−1)

for f ∈ Lq(Sn−1). Then with p = q
q−2 ,

(30) ‖Kδf‖Lp(Sn−1) .n,q δ
4n
q
−2(n−1)‖f‖Lp(Rn)

for all 0 < δ < 1 and f ∈ Lp(Rn). In particular, the restriction conjecture
4.1 implies the Kakeya maximal conjecture 2.7.

Proof. Let us prove the second statement assuming the first one is true.
Observe that 2(n − 1) − 4n

q → 0 as q → 2n
n−1 . Hence for any ε > 0 there is

q > 2n
n−1 such that 2(n− 1)− 4n

q < ε. Then p = q
q−2 < n and

‖Kδf‖Lp(Sn−1) .n,q δ
−ε‖f‖Lp(Rn)

for all f ∈ Lp(Rn). Interpolating this with the trivial inequality (1) we get

‖Kδf‖Ln(Sn−1) .n,q δ
−ε‖f‖Ln(Rn)

for all 0 < δ < 1 and f ∈ Lp(Rn), as required.
To prove the first part, let p′ = p

p−1 = q
2 , {e1, . . . , em} ⊂ Sn−1 be a

δ-separated subset, a1, . . . , am ∈ Rn and t1, . . . , tm > 0 with

δn−1
m∑
k=1

tp
′

k ≤ 1,

and let Tk = T δek(ak). We shall show that

(31)

∥∥∥∥∥
m∑
k=1

tkχTk

∥∥∥∥∥
Lp′ (Rn)

. δ
4n
q
−2(n−1)

.

By Proposition 2.12 this implies (30).
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Let τk be the δ−2 dilation of Tk: it is centered at δ−2ak, it has length δ−2

and cross-section radius δ−1. Let

Sk := {e ∈ Sn−1 : 1− e · ek ≤ C−2δ2}.

Then Sk is a spherical cap of radius ≈ C−1δ and centre ek. Here C is chosen
big enough to guarantee that the Sk are disjoint. Define fk by

fk(x) = e2πiδ
−2ak·xχSk(x).

Then ‖fk‖∞ = 1, supp(fk) ⊂ Sk and f̂k(ξ) = χ̂Sk(ξ− δ−2ak). Provided that
C is large enough, but still depending only on n, Knapp’s example gives

|f̂k(ξ)| & δn−1

for ξ ∈ τk.
Fix sk ≥ 0, k = 1, . . . ,m. For ω ∈ {−1, 1}m let

fω =

m∑
k=1

ωkskfk.

We shall consider the ωk as independent random variables taking values 1
and −1 with equal probability. Since the functions fk have disjoint supports,

(32) ‖fω‖qLq(Sn−1)
=

m∑
k=1

‖skfk‖qLq(Sn−1)
≈

m∑
k=1

sqkδ
n−1.

By Fubini’s theorem and Khintchine’s inequality,

(33)

E
(
‖f̂ω‖qLq(Rn)

)
=

∫
E(|f̂ω(ξ)|q)dξ ≈

∫ ( m∑
k=1

s2k|f̂k(ξ)|2
) q

2

dξ

& δq(n−1)
∫ ( m∑

k=1

s2kχτk(ξ)

) q
2

dξ,

since |f̂k| & δn−1χτk .
By assumption, (29) holds and we have

(34) ‖f̂ω‖Lq(Rn) .n,q ‖fω‖Lq(Sn−1).
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Combining (32), (33) and (34) we obtain:

(35)

δq(n−1)
∫ ( m∑

k=1

s2kχTk(ξ)

) q
2

dξ . E
(
‖f̂ω‖qLq(Rn)

)
. E

(
‖fω‖qLq(Sn−1)

)
. E

(
m∑
k=1

sqkδ
n−1

)

.
m∑
k=1

sqkδ
n−1.

Now we choose sk =
√
tk and have

δn−1
m∑
k=1

sqk = δn−1
m∑
k=1

tp
′

k ≤ 1.

Thus going back to (35) and making the change y = δ2x, τk goes to Tk and

δq(n−1)δ−2n
∫ ( m∑

k=1

tkχTk

)p′
. 1,

which is precisely (31), as required. �

Since the Kakeya maximal conjecture implies the Kakeya conjecture, we
have:

Corollary 4.3. The restriction conjecture 4.1 implies the Kakeya conjecture
1.4.

Combining Theorems 3.1 and 4.2, we obtain:

Corollary 4.4. If 2n
n−1 < q <∞ and

‖f̂‖Lq(Rn) ≤ C(n, q)‖f‖Lq(Sn−1)

for f ∈ Lq(Sn−1), then dim B ≥ 2n−(n−2)q
q−2 for every Besicovitch set B in

Rn.

5. Nikodym maximal function

Definition 5.1. A Nikodym set is a Borel subset N ⊂ Rn of measure zero
such that for every x ∈ Rn there is a L containing x such that L∩N contains
a unit line segment.

More about Nikodym can be found in [4] on page 147. The related max-
imal function of a locally integrable function f is the Nikodym maximal
function:
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Definition 5.2. For 0 < δ < 1 define:

Nδf(x) = sup
T3x

1

|T |

∫
T
|f(y)|dy, x ∈ Rn.

where the supremum is taken over all tubes T = T δe (a) containing x.

Conjecture 5.3 (Nikodym maximal conjecture). For all ε > 0, 0 < δ < 1:

‖Nδf‖Ln(Rn) ≤ C(n, ε)δ−ε‖f‖Ln(Rn).

Theorem 5.4 (Tao). The Kakeya maximal conjecture 2.7 and the Nikodym
maximal conjecture 5.3 are equivalent.

Proof. See [2]. �
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