NOTES ON THE KAKEYA MAXIMAL CONJECTURE
AND RELATED PROBLEMS

ITAMAR OLIVEIRA

ABSTRACT. We discuss the relation between the restriction conjecture,
the Kakeya maximal conjecture and the Kakeya conjecture. We follow
[4] and [5] very closely.
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1. INITIAL CONCEPTS

Definition 1.1 (Hausdorff measure). Let A C R", 0 < s < 00, 0 < J < 0.
We write

oo d C S (o]
H;(A) ;= inf Za(s) <1ar;13> A C U C'j,diam Cj <é,,
j=1 j=1
where .
T2
afs) = TG +1)
Define also:

H(A) := lim H3(A) = sup H5(A).
6—0 >0
We call H?® the s-dimensional Hausdorff measure on R™.
Definition 1.2. The Hausdorff dimension of A C R™ is
dim A :=inf{s: H*(A) = 0} = sup{s: H*(A) = oo}.

We also have the following characterization of the Hausdorff dimension:

dim A =inf ¢ s:Ve > 0,3Ey,Ey,--- CR": AC UEj and Z(diam E;)’ <e

J J
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2 ITAMAR OLIVEIRA
A detailed exposition of the properties of the Hausdorff measure can be
found in [I]. For A C R" define

As ={z e R": d(z,A) < ¢}

Definition 1.3. The lower Minkowski dimension of a bounded set A C R"
18

dimy A = inf{s : liminf §° "|As| = 0},
6—0
and the upper Minkowski dimension of A is

dimpr A := inf{s : limsup 6°7"| As| = 0}.
6—0

More about Minkowski dimension can be found in [3]. We conclude this
section with the following conjecture, which is one of the main objects of
study here.

Conjecture 1.4 (Kakeya conjecture). Every Besicovitch set in R™ has
Hausdorff dimension n.

2. KAKEYA MAXIMAL FUNCTION
Let us start with the following definition:

Definition 2.1. A Borel set B in R™, n > 2, is a Besicovitch set or Kakeya
set if it has Lebesgue measure zero and for every e € S"~! there is b € R"
such that {te +b: 0 < t < 1} C B. In other words, B contains a line
segment of unit length in every direction.

The existence of Besicovitch sets (even compact ones) is proved in [4] on
page 143.

Definition 2.2. For a € R?,e € S* ! and § > 0, define the tube Tf(a) by
Tf(a) ={zeR": |(z—a) e <1/2,|(x—a)— ((z —a)-e)e| < d}.
Observe that |T9(a)] = a(n — 1)0"!, where a(n — 1) is the Lebesgue
measure of the unit ball in R?~1.

Definition 2.3. The Kakeya mazimal function with width é of f € L}, (R™)
is the function Ksf : S*~! — [0, o] given by
1
Ksf(e) = sup —— |f(z)|dx.
ackn | T2(a)| Jrs(a)
The following proposition is immediate by the definition given above:

Proposition 2.4. For all 0 < § <1 and f € L} (R"),

loc

(1) I1Ks fll oo sn-1y < | fllLoo®ny and

(2) s fll oo (gn-1) < aln = )78 fll o gan)-
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Figure 1. Tube.

Remark 2.5. It is natural to look for inequalities like

(3) s fllLasn—1y < Cll fllo®nys

where C' does not depend on 6, p < oo and f € LP(R™). Let us use the
existence of Besicovitch sets to prove that such estimates are not possible.
Let B C R" be a compact Besicovitch set and let

35:{$€Rn:d($,B)<(5}, f:XB(;-

It is clear that Ks5f < 1. For each e € S*™! let a be the midpoint of some
line segment of length 1 on the direction of e. This way, Te‘s (a) C Bs and we
have

1
Ksf(e) = @] Jrsce [f(z)]dz =1,

so Ksf =1 and || Ksfl|Legn—1) = ]S”fl\%. On the other hand, || f|zr®n) =
|B5|% — 0 as § — 0, so there are no inequalities like .

Remark 2.6. A possible next step would be to prove estimates like

(4) I1Ks fllLesn-1y < C(pyn, )0 || fll o),

foralle > 0,0 <0 <1and f € LP(R™). However, this does not hold for
p < n. Indeed, take f = xp(o,4). Since B(0,0) C T9(0) for all e € S*!, we
have

Ksf(e) = =C = (6.
On the other hand,
1 n
1l omny = [B(0,0)[» = Cd7,
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SO would become § < Con/P—¢ , which is false for small § if p < n for
some ¢ such that n/p —e > 1. The Kakeya maximal conjecture wishes for
the next best thing.

Conjecture 2.7 (Kakeya maximal conjecture). holds if p = n, that is,

(5) IKs fllLn(sn-1y < C(n,€)d™ || fllLn(rny
foralle >0,0<d<1 and f € L™(R").
Remark 2.8. Interpolating with we get
15 fll Lasn—1y < (C(n,€)6~) (8 ™) | o ),
foralle >0,0<d <1and f € LP(R"), where
1 1-6 1 1-6 6

= and —=—— ——.
q n P n 1

Solving this in 0, we get
1Ks fllLan1y < C(n,p,e)s~ /P 1Hen@=DRO=D| £ gy,

forall1 <p<n,q=(n—1)p'. Since € > 0 is arbitrary and the constant C'
above already depends on p and n, this is the same as saying

I1Cs £l zagsn-1) < C(n,p,€)6~P1H £l Lo ey,
foralle >0,0<d0<1, fe lP(R"),1<p<nandqg=(n—1)p.
Definition 2.9. We say that {e1,...,e,} C S"!is a §-separated subset of
S*Lif |ej —eg| > 6 for j # k. It is mazimal if in addition for every e € S*~*
there is some k for which |e—ey| < 0. We call 11, . .., T, d-separated §-tubes

if Ty, = Te‘sk (ar), 1 < k < m, for some d-separated subset {e1,...,en} C S*}
and some aq,...,a,; € R".

Remark 2.10. In the definition above, m < 61" for all §-separated sets.
Indeed, if m > C'¢ 1=n—¢ by partially covering S~ with m disjoint caps Ay
of area |Ag| > C6"~! centered at ej, we would have:

ISP7Y > m|Ay| > CotTECE T = CpoE,

but the right-hand side goes to infinity as § — 0, contradiction. By a similar
argument, if the d-separated set is maximal we have m ~ §1=".

Remark 2.11. If e,¢’ € S" ! and |e — €/| < 6, then
(6) Ksf(e) < C(n)Ksf(e).
Indeed, for a € R™ arbitrary, fix € T?(a). Let b the the projection of

on the main axis of T?(a) and b be the projection of b on the main axis of
T%(a). We have sin(bab’) < |e — €/| < ¢ and then:

|b—V'| = |a — b|sin(bab’) < 4.
By the triangle inequality,
[z =V < |z —bl+[b-V] <0,
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so there is a constant M such that € TM°(a) and we get T (a) C T2 (a).
Observe that we can cover T} (a) with C(n) := 2708 C1+1) (this is prob-
ably far from sharp) cylinders T (yj), where y; € R™. Finally,

1
_ d _ d
5@ Jrsw T = 180 Tm()‘f(x)‘ .
C(n)
Z |T5 (y) TS (yk)| (@)ld
( )IC(Sf( )7

and we get @ by taking the supremum over a on the left-hand side.

Figure 2. Remark

Proposition 2.12. Let 1 < p < oo, q:%:p’, 0<d<land < M <
0. Suppose that

m
Z tkXTy, <M
k=1 La(R™)
whenever Ty, ..., Ty, are §-separated §-tubes and t1,. .., t,, are positive num-
bers with
m
-1 q
MY <1
k=1
Then
IKs fllpsn—1y < Cn)M|| fl Lo rny-
Proof. Let {e1,...,en} be a maximal -separated subset of S"~1. Observe

that the collection {S"~! N B(ex,d)} covers S"~ 1. If e € S 1 N B(ey,d),
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then KCsf(e) < C(n)Ksf(er) by Remark Hence

m

15 f 1 pgn 1y < Z K5 f(e)Pdo(e)
k

=1 S lmB(ekv )

NERD

C(ny? / K f(en)Pdo(e)
St—1NB(e,d)

B
Il
—

C(n)?|Ks f(ex) P18~ N Ble, 0)]

NE

e
Il
—

Ms

(|Ksf(er)|5™ )P,

B
Il
—

By the duality of [P and 9, for any a,,, >0, k=1,...,m,

1
(Zai) ’ = maX{Zakbk;bk > 0 and qu = 1}.
k=1

k=1 k=1
This way,

m ot - m
IKsf o1y S > 1K f(er)|d 7 b =0""" " | Ky f(ex)lt.

k=1 k=1

By choosing t;, = 6(=)/1b;, we get 671 Yo, ti = 1. Let € > 0 be small.
There are points ai € R" such that

1
Ksfen)] =< < s /T , 7N

hence

| KsfllLpn-—1y < 0" 12 (K5 f(er)| — e +e)ty
<o thkTg 1" CCEaT
—Ztk/ (x)|dx + €

Tek(ak)
=/ (ZthTg (ak)> |f(z)|dz + e
R~ k
=1
2 (ax) | fll Lo @ny + €
La(Rn)

< M| fllewn) + e
By taking € — 0 we finish the proof. O
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Let us now prove a key lemma.

Lemma 2.13. For any pair of directions ey, e; € S"™' and any pair of points
a,b € R™, we have the estimates

0
. ) 4 <
(7) diam(T¢, (a) N T5, (b)) S lex — e
and
671
8 4 D
(8) e (@) T O S

Proof. Pick z € Tfk ()N Tfl(b). For any y € Tgk(a) we have:
(v = 2) - ex] < [(y —a)-ex[ +](z—a)-ex] <1.
Also, for any unit vector v_Leg:
((y—2) -0 <[y —a)-v[+](z—a) v <20
Then z € 2T£k (z). We conclude z € 2T, fl (z) analogously, so
T2 (a) N T2 (b) C 217 (2) N 2T7 (2).

Combining this with the translation invariance of the Lebesgue measure, it
suffices to prove for a = b = 0. By switching the orientation of the tube
we can assume 6 < /2.

Figure 3. T2 (0) N7 (0).

/

Let z € Te‘sk(O) N Te‘sl (0) and let pi and p; be the projections of 0 on the
lines f(t) = = + tey and g(t) = x + tey, respectively. We can parametrize it
by © = pi + trer, where |tx| < 1/2, so |tg| = |x — pr|. By the law of sines.

: o
sin(0) _ sin(0") < 1 ol < ]pk — i < .25
Pk — pu |tk |tk sin(6) sin(6)
By basic plane geometry:

= sin <9> <sin(f) = sin(0) 2 |ex — €| = |tx] S L,
2 lex — e

lex — e
2
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by what we just did. Finally, by the triangle inequality we have:
4] < 4]

lz| < |pe| + [te] S0+ S :
lex — el ™ ler — e

Since x is arbitrary, this holds for every point in TC‘SIc (0)N Tgl (0). Finally,

0
dlam(T (0) ﬂT6 (0)) < sup 2z] < —,
z€T?, (0)NTY,(0) lex — e
which verifies the first part of this lemma. For the second part, observe that

Co

T\ek el (o
e —e] € (©).

T2 (0)NT2(0) C

In fact, for any z € chsk (0) N Tg(O) we have |z -v| < ¢ (for a unit vector
vley) and z € B(0,C6/|er — e|) for some C' by what we just proved. This
way,

co

7T|€k—el|(0) < g sn—1 — 0"
ler — e

T° (0 ﬂT6 0 P E— = —.
| ek( ) ( )‘ €L ~ |€k_€l| ‘ek‘_el|

O

Now we will use the proposition above to prove the Kakeya maximal
conjecture for n = 2.

Theorem 2.14. For all 0 < 6 < 1 and f € L*(R?),
1Ks fllL2sty < C/log(1/9)]|f w2,
with some absolute constant C.

Proof. Let T}, = Tfk (ar), k =1,...,m, be §-separated d-tubes and t1, ..., ¢,
positive numbers such that § > ;" t% < 1. By Proposition we need to
show that

log(1/4).

L2(R?)
Using the preceding lemma we obtain:

ZthTk = Z tita| T2, (ax) N T2 (@)

L2(R2) k,l=1

aln—1)8 Y 1} + Z e
k=1

kll

k—ez\

Z”’“(m—a) ‘f’”<|ek6—ez|>é‘

k=1
k£l
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By Cauchy-Schwarz,

ol
ol

2

Ui ) i )
< E — E ot ——
- — k|6k—el| — l\ek—el\
L2(R2) k,l=1 k,l=1

k£l k£l

m
Z te X,
k=1

<log(1/8) Y 82

k=1
= log(1/9),
where the second to last inequality follows from

0

Remark 2.15. If 0 < § < 1, for every £ > 0 there is a constant C. such
that log(1/6) < C:07¢, so the theorem above implies the Kakeya maximal
conjecture for n = 2.

We are ready to obtain a discrete characterization of the Kakeya maximal
inequalities.

Proposition 2.16. Let 1 < p < 00, q = 1% =9p,1< M < oo and
0<d<1. Then

9) I1Ks fllasn-1) Snpe MO fllLo@n)
for all f € LP(R™) and € > 0 if and only if

m
> X,
k=1 La(R™)

for all e > 0 and all §-separated d-tubes Ty, ..., Tp,.

Proof. Assume first , let 11, ..., T, be §-separated d-tubes and t1, ..., t,;,
be positive numbers such that 67! Yoy t% < 1. By Proposition it
suffices to prove that

(10) Snge M6 (mom1)a

Snge M6 °.

m
Z tkXT;,
k=1 La(R")

By Remark mdé™ 1 < 1. By multiplying by 6"~! and picking
gosmall such that 6”17 < 1, we get HZZLl 5”_1kaHLq(Rn) < C, where
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C is a universal constant. Also, t; < (5 for all 1 < k < m, so it is

enough to prove the inequality above for the sum over those k for which
(1=n)

Sl <ty < 6 ¢ . We can break this sum into ~ log(1/§) sums over

I; = {k: 2771 <t} < 27} and let m; be the cardinality of I;. Observe that

for each I; we have 279 < (2t;)? for all t; € I;, so m;279 < ZI]-(th)q <

S (2t5)7 < 29517, Applying this and with /2 we obtain:

)RIACY IS o] h oL
20-1<t) <2i La(Rm) J o ||kel; L4 (Rm)
-X¥ T

Sna.e Z sz(s_a/Q (mj(sn_l)é
J
Snge MO™9/23 1
J
qu,a Mlog(1/5)5_6/2
§n7Q75 M(SiE’
where we used Remark for €/2 in the last inequality.

Conversely, assume [9 holds and let 71, . .., T, be d-separated J-tubes with
directions ey, ..., en. Let g € LP(S"~1) with g/l p(sn—1y < 1. Then,

/ > xn9= Z/ 95> Ksgler)s™™
" =1 k=1 Tk k=1

< Ksg(er)do™ (e
;/S" 1N B(ey,) (ex) (©)

/ Ksg(e)do™ (e)
Ui (S*~1NB(ek,0))

1
q

L™ N Bler, )

k
ppe M3 (ms"1)s.

< IKsgllpp(sn—1

Observe that we used Remark above. The proposition follows by taking
the supremum over all g € LP(S"~!) with 9l p(sn-1) = 1. O
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The next proposition improves the last one by considering only maximal
sets of d-separated 6-tubes. Observe that in this case we have mdé™ 1 ~ 1.

Proposition 2.17. Let 1 <g< oo, 1 < M <oo and 0< d < 1. Then

m

Z XTy,

k=1

(11) Snge M6~ (mom1)a

La(Rn)

for all € > 0 and for all §-separated d-tubes Ty, ...,T,, provided
Snyge M6 ¢

m
D>,
k=1 La(R™)

for all e > 0 and for all 0-separated §-tubes T4, ..., Ty.

(12)

Proof. Let mg be the maximal cardinality of é-separated d-tubes in S?~ 1,
so mg ~ 6'~" by Remark For every 1 < m < mg let ¢(m) denote the
smallest constant such that

< ¢(m)

m
Z XTy,
k=1

for all §-separated d-tubes T1,...,Ty,. Set ¢(t) = 0 for t < 1, ¢(t) = ¢(m)
form <t <m+1if 1 <m and ¢(m) = ¢(mp) for m > mg. Condition
gives

(13) c(m) < Mo—*

La(R™)

and we need to prove
(14) c(m) < M6~ (ms"~ )i,

For m < my fixed, there is a §-separated subset S C S"~! of cardinality m
such that the corresponding tubes T, e € S, satisfy

> Xz

eeS

= c¢(m).
La(R™)

Indeed, consider the function h : (S*~1)™ — R given by h(e1,...,em) =
HZZLI X6 LoRn)’ h is continuous and defined on a compact, so it attains
ex || La(R™

a maximum at some m-tuple (eq, ..., e,,) of unit vectors. The identity above
clearly holds for S = {e1, - ,en}.

Consider now rotations g € O(n) of S such that S and ¢(S) are disjoint,
which happens for almost all g € O(n). Denote by Ty the rotated tube
g(T). Then we also have:

Z XTy(e)

eeS

= c(m).

La(R™)
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From the inequality || f + glld > || f117 + ||lg||& for non-negative functions we
get:

(15) 1
q q q
> oxn > 1D X +1 ) xn — 2uc¢(m).
e€SUg(S) La(R™) ecS La(R™) e€g(S) La(Rn)
Define

a(S,9) == ##{(e,€') € S x g(S) : |e — €'| < 0}

We can also write this as
=3 XpBosle—gle)).
ecSeeS

By letting g range over O(n) and using the normalized Haar measure dO(n)
we get

(16) /0() a(S,9)dO(n) =YY " f(e€),

ecSe'es

where
fle.e') = /O X0~ g0

Given w € S"7!, there is some g’ € O(n) such that w = ¢/(¢/). Denote
F(g) = XB(0,5)(e — g(€')). By right-invariance of the Haar measure on O(n),

F(gg/)dO(n) = /O FGO() = (0.0 = f(e,€),

O(n)

so f is constant in the second entry. By integrating both sides of on
S"~! and using Fubini we obtain

1
a0 S =g [ [ xwese - gw)do(w)dolm).
’ ‘ O(n) JSn—1
The inner integral can be estimated as follows:

| xmoste=g)io@) = [ xaosle —w)dole)
=H{wesS":le—wl <6}
S 5n71.

Looking back to (17) we conclude that f(e,e’) < 6"~ uniformly, so (16))
becomes

/ a(S, 9)dO(n) < m2"~L.
O(n)

That means that we can find g € O(n) such that a(S,g) < bm?6"~! for
some universal constant C'.
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Write S U g(S) = S1 U S, where
Sy ={e € S:3e € g(S) such that |e — €| < §},

S1=(5\52) Ug(9).

Observe that ¢ is non-decreasing on natural numbers. Indeed, for any m +1
collection of §-separated d-tubes we have:
m—+1

m
Z XTk Z XTk
k=1 k=1

Since any collection of m dé-separated d-tubes can be put in a collection of
m+1 of these (for m < myg), ¢(m) < ¢(m+1) by definition. By the extension
we defined in the beginning of the proof, ¢ is non-decreasing. For S we have
the trivial bound #5; < 2m and for Sy we have #S, < bm?6" 1. By the
triangle inequality,

< <c(m+1).

La(Rm)

La(R™)

(18) Z XT, < ¢(2m) + c(bm?6™ 1),
e€SUg(9) La(R™)

Combining with we get
2%c(m) < c(2m) + c(bm?6™ ).

Up to multiplying by a constant less than 2, we can consider b6" 1 = 2%
for some k£ € N. It is enough to prove form=2""% k=1,...,N. In
fact, we know that for 2/ with [ > N this inequality reduces to , and for
the other integers we can just use the monotonicity of ¢ to compare ¢(m) to
c(2") where 2!71 < m < 2L,

We have m = 27kp=151=". Set

= 21¢(27 151", k=1,...,N.

Then the last inequality becomes

 (k+1)
(19) e <cp—1+2 ¢ cop.

Inequality now becomes ¢y Spge M. If k > Blog(1/6" 1) for B
big enough, m < 1/2 and ¢(m) = 0. Thus it suffices to restrict ourselves to
k < log(1/d). Define a new sequence dj by

k
(20) drp, = (14 Co2 a)cy,
for some constant Cy to be chosen later. We claim that if A > 1 then

_k
(21) di, < dg—1+2 1 (A(dak, — di) + (dg—1 — dy))



14 ITAMAR OLIVEIRA

for all k& > ko, where kg is some fixed constant. To verify this, multiply (19))
k
by (14 Cp2" <) to find that

di < cpor(1+Co27 1) + 2 T epp(1 + Cp270)
(22) 14 Cp2 x 14+Cp2 4
= dk_l 1 + C?2 qdzk %=1 |-
1+ Cp2 14 Co2 ™o

Subtracting from and rearranging we see that we have to show
that

k k

e e 142 1+Cp2
(A+1)2 v dy < dis (1 970 - +°kq1> o (A - Hﬂ) :

14+ Cp2 1+Cp2 «

By substituting in for ¢; we conclude that our goal is to show that

(k—1)
14+ Co(20 — 1)+ Co2 7 ot (A= 1)24 — Cy + AC2 4
k k
(A+1)(1+Cp2 q) (A+1)(1+Cp2 )

Since we know that holds, it is enough to show that each term in the
brackets above is greater than 1. For the first term, notice that for all large
k we have

Cr < Ck—1

(k—1)
14Co(20 —1)+Co2 7 1+Co(24 —1)
T T oA+
(A+1)(1+Co2 ) (A+1)
and this can be made greater than 1 by choosing Cj big enough. For the
second term we have
(A—1)27 — o+ AC2 s (A—1)21 — Cy
5T A+l
(A+1)(1+Co2 1) (A+1)
Since A > 1, this can also be made greater than 1 by choosing k big enough,

so choose kg such that both bounds hold for all k¥ > ky and the claim
is proved. Let dj_.. be the maximal of dj in the range [ko, Blog(1/4)].

Applying we have:
_ kmax

By the maximality of dj,, , the second summand on the right-hand side is
negative, so dy, .. < dg,. —1, which forces kmax = ko. Therefore ¢ < ¢,
for all & > ko. Notice that we trivially have ¢, < cg, for all k¥ < kg. Since

k
Chy = 2700(2_1%_151_") < ¢(817™) & ¢g S 1 by hypothesis, we have ¢ S 1
for all 0 < k£ < log(1/6), and this concludes the proof of this proposition. [

Combining these last two propositions we have:
Corollary 2.18. Let1<p<oo,q:p%1,0<ﬁ<oo and 0 < 6 < 1.
Then
I s fllpo(sn-1) Snpe 67N 1l po(sn-1)
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for all f € LP(S™™1), € > 0, if and only if
ZXTk
k=1

for all € > 0 and for all d-separated 6-tubes T, ..., Ty,. In particular, the
Kakeya maximal conjecture holds if and only if
§n7p78 5

m
DX,
k=1 Lﬁ(Rn)

for all e > 0 and for all §-separated d-tubes Ty, ..., Ty,.

5P

Snapvs
La(Rm)

—&

3. KAKEYA MAXIMAL IMPLIES KAKEYA
Theorem 3.1. Suppose that 0 < § <1, >0 andn— pBp > 0. If

1Ksfllogn-1y < C(n,p, B)6 P fll 2o @y

for all0 <6 <1 and f € LP(R"), then the Hausdorff dimension of every
Besicovitch set in R™ is at least n — Bp. In particular, if holds for some
p, then the Hausdorff dimension of every Besicovitch set in R™ is n. Thus
Conjecture implies the Kakeya conjecture [1.4)

Proof. Let B C R™ be a Besicovitch set. Let 0 < o < n — fBp and B; =
B(zj,rj) be a collection of balls such that B C U;B; and r; < 1. By the
equivalent characterization of Hausdorff dimension we stated in section
it suffices to show that >,y 2 1. For e € S"~1 let I, be a unit segment
parallel to e. For k=1,2,..., set

Jpo={j:27F <rj < 217F),

and
1
o -1 . 941 .
Sk;.— eecS" H IeﬂUBj ZTkQ
Jje€Jk
We claim that
(23) s = Sk
k

Indeed, if there was e € S"~1\ Uy Sk, then H! (I. N (Ujes, Bj)) < 1/2k? for
all k, so

1

1 )

E’H Ieﬂ'IB] <§2k2<1.
k JEJL k

On the other hand,

L<H' (L) <Y #H' | L.n | B |,
k
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contradiction. So holds. Let

Jj€Jk
For e € S, let a. be the midpoint of I.. We claim that
—k ]. —k
(24) T2 (ac) N Fy| Z @\Tf (ac)l-

To prove this, we first show that Vy € Ujc, B(z;,7;) := M}, we have F}, D
B(y,27%). To verify this pick such y, so y € B(x;,r;) for some j € Jj. Let
z € B(y,27%). Then

;= 2| < laj =yl +ly—z| <rj+27F <2ry,
so z € B(xj,2r;) C Fi. This way,

—k —k —
17 ) n k2 |J (127 @) N By.2™)
yEMjy

_k -
=12 (a)n |J By.27™")
yEMy,

—k _
217 (@) |J B2,
yEleNMjy

Observe that Tffk (ae)ﬂUyeleka B(y,27%) is exactly the portion of Tgik (ae)
that shadows I, N My, so it has measure at least > |I, N M[2~*(—1D >
|T3_k(ae)\/k2. This shows (24)), which implies Ky« fix(e) 2 1/k? for all
e € Si. This and the Kakeya maximal conjecture imply:

U"_I(Sk)Skgp/ Iszkfk(e)lde(e)Sk?”/ [Ko-r fr(e)[Pdo(e)
Sk Sn—1

<wcy, 20 [ fia)pds
— KCP 2P|
On the other hand, |Fj| < #Jra(n)(2r;)" < #Jpa(n)22-F)7 50
O_nfl(sk) S k2p2k,8p2fkn22n#l]k — k2p2k[a7(n7,8p)]27ka#t]k S kaa#!]k’

since limg_, o k2poklo—(n=5p)] — (. Finally,

S ort 2> gn2Re 2N o (S 2 1
k k

J

This concludes the proof. ([l

Now we give a different proof of Theorem The proof is general
enough to provide sharp L? estimates in R™. For this we will need the
following lemma:;:
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Lemma 3.2 (Bourgain). Let C' > 1 be some constant and suppose 0 < § <
1. For any fixed € € R™ one has the bound

1

25 esliceC TM(0)} < :

(25) {e 3 e ()HN1+|€’

Proof. First suppose that |[¢| < 10C so that 1+1OC < 1+\§| It follows that
1 1

{ees™:ceC TM0)} < IS <

< .
1+10C 1+ [¢]

If |¢] > &, then € ¢ C- Tl/‘S(O) for all e € S"~! by definition and the estimate
above is trivial.
It remains to prove it now for 10C' < [¢| < %. By definition, we have:

C-TM0):={neR":|n-e| < C/2,|n-v| < C/§V unit vLe}.
We may rotate the coordinate axes so that £ = (£1,0,...,0). Notice that

{ees e - T/ 0)
={ecS" 1 |¢-e| <C/2,|€-v| < C/5 VY unit vLle}

§ C ¢ ‘ C }
=HeesS" |2 el<—, |2 v <— Vunit vle
H €] 2¢1" | I€] d[¢|
§ C }
={eecs™t: el < — ¢,
H el 2|¢|
since
C £ C
>~ S — | |V :1S77
e <z gl < el =1 < o
for all vLle since || < %.
Now ‘lg—'wB‘ = |e1| where e = (e1,€2,...,€,), SO

HeeSl.ceC-TV0) = Heegn—l er| < 2%}'

This defines a subset of S*~! that looks like a ring of thickness R~ % in the

e1 direction. Thus the size of this ring is bounded by I?l\ <1 +| g since 13
and the lemma follows. D

Theorem 3.3. For all 0 < § < 1 and f € L*(R?),
1KsfllL2(s1) < CV/1og(1/0)|[ fll L2 m2),

with some absolute constant C. In R™ n > 3, we have for all0 < 6 < 1 and
f e L3(R"):

1Ko 2y < C)2 | aqery,
where the exponent (2 —n)/2 is the best possible.
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Proof. We may assume f to be non-negative since K5 f = ICs| f|. We can also
assume f € C°(R") since this is dense in L2. Let ¢3(x) := WXTE?(O) ().
Then, by a change of variables and by the symmetry of 72(0) we have

1
Ksf(e) = SUD = 1)en 1 /Tg(a) f(y)dy

1
= Ssup —/—mm———~ —a d
wciin a(n — 1)571 /Tg(o) fly = a)dy

1
= sup 5T /Rn X3 (0)(y) fla—y)dy

acrn a(n — 1
= sup (o) = f)(a).
a€R™

-~

Let ¢ € S(R) such that ¢ > 0, supp(¢) C [-5,$] and ¢(x) > 1 when
|z| < 5. Define ¢ : R" — R by

o). et
j=2

Let e; = (1,0,...,0) € R". Observe that ¢0 < 1. Indeed, if = ¢ T? (0)
then ¢ (z) =0 < 1(z). If 2 € T2 (0) then ¢(z1) > 1 and ¢(x;/5) > 1 and
we are also done. This way,

Ksf(e1) < sup (¢ * f)(a)

aeR”

Y(z) = d(z1)

Let p. be a rotation that takes e to e;. Define 1, = 9 o p.. As before,
902 < ¢ea 50

@2 x f <bek f = Ksfle) = sup (¢ + f) < sup (e * f) = [[te * floc-

acR” acR”

. . . . - % . 1
By Fourier inversion, since 1, * f and 1. * f are in L*(R"),

e * Flloo < 11 * Fllian) = eIl = /R [9e(©)1 - 1F(©)1de.

Thus by Cauchy-Schwarz we have

Kaf(e) < [ RO Tu@la+ iy elag

(26) o o %
< </Rn IF 1P e(6)I(1 + |§|)d§> (/Rn |1¢i(%|df>

(*)
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Let us estimate (*) now. We know that @ = {D\ ope. By a direct computation

we get:
H (6&)-

By our assumptions on gb we see that 1[) is supported on a tube of size
C(1x1/6x...1/0) oriented in the direction of e;. It then follows that .

is bounded and supported on a tube of size C(1 x 1/ x ...1/d) oriented in

the direction of e, i.e. ¢, is supported on C - Tl/é( 0).

!we( )|, 1 1
—dé = —d
/R" 1+ [¢] K= o) 1+ [€] : /c-T;{‘s(o) 1+ [¢] .

by performing a rotation on the region of integration. Denote £ = (&,&).
If n = 2 we have:

1
&éw/ ¢
/|51|<c e)<g 1+ \5\ 1< 1+ [¢]

(27) </ 1 i
~ i<t 1 )
S log(1/6).

This way,

Combining with @ we obtain:
K31 Ve < VioR070) [ 1RO -+16D ([ 17u(elae ) ae
Applying Lemma [3.2}

/ B(©)lde < supp(De(€)] < {e €S -6 € C-TYHO)} € —
st 1+ [¢]

SO

IKaf Iy <108 (1/5) | IFOR-+1¢D;

1
deg = 1og(1/8) ]| f 1172 gz

by Plancherel.
If n > 3, by polar coordinates we get

dad' 5 [ e

Al|<c er1<g 1+ \§|

< 1+[¢|
< n-2
2 S
_c r
o
5 §—(n=2)
Combining ([26]) with ( and using again Lemma we obtain

152 n 1) < 62 / 1+ ) dé = 6~ D||F2, .

b
(1 +1€])
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Taking square roots, we are done. The power §(2=™/2 is the best possible
by Remark O

Combining Theorems [3.1] and [3.3] we conclude the following:
Corollary 3.4. All Besicovitch sets in R™, n > 2, have Hausdorff dimension
at least 2.
4. RESTRICTION IMPLIES KAKEYA

We start this section by stating the restriction conjecture for the sphere:

2n

— we have

Conjecture 4.1 (Restriction). For g >

Hﬂ’Lq(Rn) Snag 1 fllLasn—1y
for f € LI(S"71).

Theorem 4.2. Suppose 2% < q < 0o and

n—1

(29) 17l zo@n) S 1 llzann)
for f € LY(S"Y). Then with p = q%’w

in o0y
(30) s fllosn1) S 07 0D Fll o )

forall0 <6 <1 and f € LP(R™). In particular, the restriction conjecture
implies the Kakeya mazimal conjecture [2.7

Proof. Let us prove the second statement assuming the first one is true.
Observe that 2(n — 1) — %” — 0 as ¢ — 2. Hence for any ¢ > 0 there is

q > -2 such that 2(n—1)—47” <e. Thenp:qfq2 < n and
IKs fllLrsn—1y Sng 6 1 fllLowny
for all f € LP(R™). Interpolating this with the trivial inequality we get

IKs fllLn(sr—1) Sng 0“1 fllLn @)

for all 0 < 0 < 1 and f € LP(R™), as required.

To prove the first part, let p’ = p%l =4 {er,....,e;} C S"! be a
d-separated subset, a1,...,a,, € R® and tq,...,t, > 0 with

m
N <,
k=1
and let Ty, = Tgk(ak). We shall show that
m
Z LXT,
k=1 Ly (R™)

By Proposition this implies .

(31) < §a 2=,
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Let 73, be the 672 dilation of Tj: it is centered at 6 2az, it has length 62
and cross-section radius 6 1. Let

={eeS"t:l—e-e < C72%5%}

Then S}, is a spherical cap of radius ~ C~1§ and centre ej,. Here C is chosen
big enough to guarantee that the Sy are disjoint. Define fi. by

T30 2ay,-
fk(x) — 62 10 “ay xXSk(x)'

Then || fx|loo = 1, supp(fx) C Sk and fi(€) = X5, (€ — 6 2az). Provided that
C' is large enough, but still depending only on n, Knapp’s example gives

|fr(€)] = o

for £ € 7.
Fix s >0, k=1,...,m. Forw € {—1,1}" let

m
fo=> wiskfr
k=1

We shall consider the wy as independent random variables taking values 1
and —1 with equal probability. Since the functions fj have disjoint supports,

m m
(32) el faggn-1y = D Isnfill gy = D st8™ "
k=1 k=1

By Fubini’s theorem and Khintchine’s inequality,
q

E (I ) = [ B(TOI)de ~ /(Zﬂm {y@
_1) 3 82 T ’ )
/(Z;mk@>df

(33)

since || > S, -
By assumption, holds and we have

(34) 1 Foll Loy Sng 1 follLan-1y-
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Combining (32 . ) and | we obtain:

q

o (é@m@) d5<E(waHm )

(35)
<E (Z sg5“—1>

Now we choose s = /tx and have

m m
Y s = Y <
k=1 k=1

Thus going back to and making the change y = 8%z, 75, goes to T}, and

p/
5‘1(71 1) 5 2n/ (ZthTk> 5 7

which is precisely , as required. ([l

Since the Kakeya maximal conjecture implies the Kakeya conjecture, we
have:

Corollary 4.3. The restriction conjecture[].1] implies the Kakeya conjecture
[Z.4}
Combining Theorems @ and [£.2] we obtain:

Corollary 4.4. If =5 < q < oo and

1£1l aqny < C(n, O fllLagn-1)

for f € LI(S™1), then dim B > 2"7;_%”‘1 for every Besicovitch set B in
R™.

5. NIKODYM MAXIMAL FUNCTION

Definition 5.1. A Nikodym set is a Borel subset N C R™ of measure zero
such that for every x € R” there is a L containing x such that LN N contains
a unit line segment.

More about Nikodym can be found in [4] on page 147. The related max-
imal function of a locally integrable function f is the Nikodym mazximal
function:
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Definition 5.2. For 0 < § < 1 define:
1
Naf (@) =sup o [ IF)ldy, @ R
732 |T| Jr

where the supremum is taken over all tubes T' = T (a) containing .

Conjecture 5.3 (Nikodym maximal conjecture). For alle > 0,0 < < 1:
NS fllzn(gny < C(n,€)0 | fll L (r)-

Theorem 5.4 (Tao). The Kakeya mazximal conjecture and the Nikodym
mazimal conjecture are equivalent.

Proof. See [2]. O
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