Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

REVIEW

- (1) A vector $\mathbf{v} = \overrightarrow{PQ}$ is determined by a basepoint P and a terminal point Q.
- (2) Components of $\mathbf{v} = \overrightarrow{PQ}$, where $P = (a_1, b_1)$ and $Q = (a_2, b_2)$:

$$v = \langle a, b \rangle$$

with $a = a_2 - a_1$ and $b = b_2 - b_1$.

- (3) The length $\|\mathbf{v}\|$ of \mathbf{v} is equal to $\sqrt{a^2 + b^2}$ ⁽¹⁾.
- (4) Vector addition: $\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \boxed{\langle v_1 + w_1, v_2 + w_2 \rangle}^{(2)}$.
- (5) Scalar multiplication: $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$ for λ real.
- (6) **v** and **w** are *parallel* if, for some scalar λ , **w** = λ **v**
- (7) If **v** makes an angle θ with the positive x-axis, then $v_1 = \left\| \mathbf{v} \right\| \cos \theta$ (4) and $v_2 = \left\| \mathbf{v} \right\| \sin \theta$ (5)
- (8) Equation of the sphere of radius R and center (a,b,c): $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$
- (9) Equation of the cylinder of radius R and vertical axis through (a,b,0): $(x-a)^2 + (y-b)^2 = R^2$
- (10) Equations for the line passing through $P_0 = (x_0, y_0, z_0)$ with direction vector $\mathbf{v} = \langle a, b, c \rangle$:
 - (a) Vector parametrization: $\mathbf{r}(t) = \overrightarrow{OP_0} + t\mathbf{v} = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$ ⁽⁸⁾.
 - (b) *Parametric equation:* $x = x_0 + at$ ⁽⁹⁾, $y = y_0 + bt$ ⁽¹⁰⁾, $z = z_0 + ct$ ⁽¹¹⁾
- (11) The dot product of $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ is

 $\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2 + c_1 c_2.$

- (12) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$
- (13) Using the angle θ made by **u** and **v**, we have $\mathbf{u} \cdot \mathbf{v} = \boxed{\|v\| \|w\| \cos \theta}^{(13)}$. The vectors **u** and **v** are orthogonal if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}^{(14)}$.
- (14) The angle between \mathbf{v} and \mathbf{w} is <u>acute</u>⁽¹⁵⁾ if $\mathbf{v} \cdot \mathbf{w} > 0$ and <u>obtuse</u>⁽¹⁶⁾ if $\mathbf{v} \cdot \mathbf{w} < 0$.
- (15) Assume $\mathbf{v} \neq 0$. Every vector \mathbf{u} has a decomposition $\mathbf{u} = \mathbf{u}_{||\mathbf{v}|} + \mathbf{u}_{\perp \mathbf{v}}$, where $\mathbf{u}_{||\mathbf{v}|}$ is parallel to \mathbf{v} , and $\mathbf{u}_{\perp \mathbf{v}}$ is perpendicular to \mathbf{v} . Explicitly,

$$\mathbf{u}_{||\mathbf{v}} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|}\right) \mathbf{e}_{\mathbf{v}}, \quad \mathbf{u}_{\perp \mathbf{v}} = \mathbf{u} - \mathbf{u}_{||\mathbf{v}|}$$

where

$$\mathbf{e}_{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

(16) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, is it true that $\mathbf{v} = \mathbf{w}$? No.

PROBLEMS

- (1) Let R = (-2, 7). Calculate the following:
 - (a) The length of \overrightarrow{OR} . SOLUTION: $\sqrt{53}$.
 - (b) The components of $\mathbf{u} = \overrightarrow{PR}$, where P = (1,2).
- (2) Find the given vector:
 - (a) Unit vector $\mathbf{e}_{\mathbf{v}}$ where $\mathbf{v} = \langle 3, 4 \rangle$. SOLUTION: $\langle \frac{3}{5}, \frac{4}{5} \rangle$.
 - (b) Vector of length 4 in the direction of of $\mathbf{u} = \langle -1, 1 \rangle$.

Solution: $\langle -3, 5 \rangle$.

(c) The point P such that \overrightarrow{PR} has components $\langle -2,7\rangle$. SOLUTION: P = (0,0).

Solution: $\langle -2\sqrt{2}, -2\sqrt{2} \rangle$

(c) Vector v of length 2 making an angle of 30° with the x-axis.
 SOLUTION: ⟨√3, 1⟩.

SOLUTION: $\mathbf{r}(t) = \langle -2 + 6t, 3t, -2 + 9t \rangle$.

(c) Passes through (1, 1, 1) parallel to the line

SOLUTION: $\mathbf{r}(t) = \langle 1 + 2t, 1 + t, 1 + 4t \rangle$.

through (2, 0, -1) and (4, 1, 3).

- (3) Determine whether or not the two vectors are parallel:
 - (a) $\mathbf{u} = \langle 1, -2, 5 \rangle$, $\mathbf{v} = \langle -2, 4, -10 \rangle$. SOLUTION: Yes.
- (b) $\mathbf{u} = \langle 4, 2, -6 \rangle, \mathbf{v} = \langle 2, 1, 3 \rangle.$ Solution: No.
- (4) Find a vector parametrization for the line with the given description:
 - (a) Passes through P = (1, 2, -8), direction vector v = ⟨2, 1, 3⟩.
 SOLUTION: r(t) = ⟨1 + 2t, 2 + t, -8 + 3t⟩.
 (b) P = the share b (-2, 0, -2) = b (4, 2, 7).

(b) Passes through
$$(-2, 0, -2)$$
 and $(4, 3, 7)$.

- (5) Show that the lines $\mathbf{r}_1(t) = \langle -1, 2, 2 \rangle + t \langle 4, -2, 1 \rangle$ and $\mathbf{r}_2(s) = \langle 0, 1, 1 \rangle + s \langle 2, 0, 1 \rangle$ do not intersect. SOLUTION: In class.
- (6) Find the intersection of the lines $\mathbf{r}_1(t) = \langle -1, 1 \rangle + t \langle 2, 4 \rangle$ and $\mathbf{r}_2(s) = \langle 2, 1 \rangle + s \langle -1, 6 \rangle$ in the plane. SOLUTION: $(\frac{5}{4}, \frac{11}{2})$.
- (7) Find all values of b for which the vectors are orthogonal.
 - (a) $\langle b, 3, 2 \rangle$, $\langle 1, b, 1 \rangle$. SOLUTION: $b = -\frac{1}{2}$. (b) $\langle 4, -2, 7 \rangle$, $\langle b^2, b, 0 \rangle$. SOLUTION: b = 0 or $b = \frac{1}{2}$.
- (8) Find the angle between \mathbf{v} and \mathbf{w} if $\mathbf{v} \cdot \mathbf{w} = \frac{1}{2} \|\mathbf{v}\| \|\mathbf{w}\|$. SOLUTION: $\frac{\pi}{3}$.
- (9) If **e** and **f** are unit vectors and $\|\mathbf{e} + \mathbf{f}\| = \frac{3}{2}$, compute $\|\mathbf{e} \mathbf{f}\|$. Solution: $\frac{\sqrt{7}}{2}$.
- (10) Find the projection of \mathbf{u} along \mathbf{v} .
 - (a) $\mathbf{u} = \langle -1, 2, 0 \rangle$, $\mathbf{v} = \langle 2, 0, 1 \rangle$. Solution: $\langle -\frac{4}{5}, 0, -\frac{2}{5} \rangle$. (b) $\mathbf{u} = 5\mathbf{i} + 7\mathbf{j} - 4\mathbf{k}$, $\mathbf{v} = \mathbf{k}$. Solution: $-4\mathbf{k}$.

- (11) Find the decomposition $\mathbf{a} = \mathbf{a}_{||\mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}}$.
 - (a) $\mathbf{a} = \langle 4, -1, 5 \rangle$, $\mathbf{b} = \langle 2, 1, 1 \rangle$. SOLUTION: $\mathbf{a}_{||\mathbf{b}|} = \langle 4, 2, 2 \rangle$ and $\mathbf{a}_{\perp \mathbf{b}|} = \langle \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle$ and $\mathbf{a}_{\perp \mathbf{b}|} = \langle \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle$ and $\mathbf{a}_{\perp \mathbf{b}|} = \langle \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle$. (b) $\mathbf{a} = \langle x, y \rangle$, $\mathbf{b} = \langle 1, -1 \rangle$. SOLUTION: $\mathbf{a}_{||\mathbf{b}|} = \langle \frac{1}{2}, \frac{1}{2} \rangle$ and $\mathbf{a}_{\perp \mathbf{b}|} = \langle \frac{1}{2}, \frac{1}{2} \rangle$.