Review

(1) A vector $\mathbf{v}=\overrightarrow{P Q}$ is determined by a basepoint P and a terminal point Q.
(2) Components of $\mathbf{v}=\overrightarrow{P Q}$, where $P=\left(a_{1}, b_{1}\right)$ and $Q=\left(a_{2}, b_{2}\right)$:

$$
\mathbf{v}=\langle a, b\rangle
$$

with $a=a_{2}-a_{1}$ and $b=b_{2}-b_{1}$.
(3) The length $\|\mathbf{v}\|$ of \mathbf{v} is equal to \qquad .
(4) Vector addition: $\left\langle v_{1}, v_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle=$
(5) Scalar multiplication: $\|\lambda \mathbf{v}\|=|\lambda|\|\mathbf{v}\|$ for λ real.
(6) \mathbf{v} and \mathbf{w} are parallel if, for some scalar λ, \square
(7) If \mathbf{v} makes an angle θ with the positive x-axis, then $v_{1}=$ \qquad and $v_{2}=$
(8) Equation of the sphere of radius R and center (a,b,c):
(9) Equation of the cylinder of radius R and vertical axis through (a,b,0): \qquad
(10) Equations for the line passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\mathbf{v}=\langle a, b, c\rangle$:
(a) Vector parametrization: $\mathbf{r}(t)=\overrightarrow{O P_{0}}+t \mathbf{v}=$
(b) Parametric equation: $x=\square^{(9)}, y=\square^{(10)}, z=\square^{(11)}$.
(11) The dot product of $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ is

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

(12) $\mathbf{v} \cdot \mathbf{v}=$ \qquad
(13) Using the angle θ made by \mathbf{u} and \mathbf{v}, we have $\mathbf{u} \cdot \mathbf{v}=\square^{(13)}$. The vectors \mathbf{u} and \mathbf{v} are orthogonal if
(14) The angle between \mathbf{v} and \mathbf{w} is $\square^{(15)}$ if $\mathbf{v} \cdot \mathbf{w}>0$ and $\square^{(16)}$ if $\mathbf{v} \cdot \mathbf{w}<0$.
(15) Assume $\mathbf{v} \neq 0$. Every vector \mathbf{u} has a decomposition $\mathbf{u}=\mathbf{u}_{\| \mathbf{v}}+\mathbf{u}_{\perp \mathbf{v}}$, where $\mathbf{u}_{\| \mathbf{v}}$ is parallel to \mathbf{v}, and $\mathbf{u}_{\perp \mathbf{v}}$ is perpendicular to \mathbf{v}. Explicitly,

$$
\mathbf{u}_{\| \mathbf{v}}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|}\right) \mathbf{e}_{\mathbf{v}}, \quad \mathbf{u}_{\perp \mathbf{v}}=\mathbf{u}-\mathbf{u}_{\| \mathbf{v}}
$$

where

$$
\mathbf{e}_{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

(16) If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$, is it true that $\mathbf{v}=\mathbf{w}$? \square

Problems

(1) Let $R=(-2,7)$. Calculate the following:
(a) The length of $\overrightarrow{O R}$.
(c) The point P such that $\overrightarrow{P R}$ has components
(b) The components of $\mathbf{u}=\overrightarrow{P R}$, where $P=$ $\langle-2,7\rangle$. $(1,2)$.
(2) Find the given vector:
(a) Unit vector $\mathbf{e}_{\mathbf{v}}$ where $\mathbf{v}=\langle 3,4\rangle$.
(c) Vector \mathbf{v} of length 2 making an angle of 30°
(b) Vector of length 4 in the direction of of $\mathbf{u}=$ with the x-axis. $\langle-1,1\rangle$.
(3) Determine whether or not the two vectors are parallel:
(a) $\mathbf{u}=\langle 1,-2,5\rangle, \mathbf{v}=\langle-2,4,-10\rangle$.
(b) $\mathbf{u}=\langle 4,2,-6\rangle, \mathbf{v}=\langle 2,1,3\rangle$.
(4) Find a vector parametrization for the line with the given description:
(a) Passes through $P=(1,2,-8)$, direction vec-
(c) Passes through $(1,1,1)$ parallel to the line through $(2,0,-1)$ and $(4,1,3)$.
(b) Passes through $(-2,0,-2)$ and $(4,3,7)$.
(5) Show that the lines $\mathbf{r}_{1}(t)=\langle-1,2,2\rangle+t\langle 4,-2,1\rangle$ and $\mathbf{r}_{2}(s)=\langle 0,1,1\rangle+s\langle 2,0,1\rangle$ do not intersect.
(6) Find the intersection of the lines $\mathbf{r}_{1}(t)=\langle-1,1\rangle+t\langle 2,4\rangle$ and $\mathbf{r}_{2}(s)=\langle 2,1\rangle+s\langle-1,6\rangle$ in the plane.
(7) Find all values of b for which the vectors are orthogonal.
(a) $\langle b, 3,2\rangle, \quad\langle 1, b, 1\rangle$.
(b) $\langle 4,-2,7\rangle, \quad\left\langle b^{2}, b, 0\right\rangle$.
(8) Find the angle between \mathbf{v} and \mathbf{w} if $\mathbf{v} \cdot \mathbf{w}=\frac{1}{2}\|\mathbf{v}\|\|\mathbf{w}\|$.
(9) If \mathbf{e} and \mathbf{f} are unit vectors and $\|\mathbf{e}+\mathbf{f}\|=\frac{3}{2}$, compute $\|\mathbf{e}-\mathbf{f}\|$.
(10) Find the projection of \mathbf{u} along \mathbf{v}.
(a) $\mathbf{u}=\langle-1,2,0\rangle, \quad \mathbf{v}=\langle 2,0,1\rangle$.
(b) $\mathbf{u}=5 \mathbf{i}+7 \mathbf{j}-4 \mathbf{k}, \quad \mathbf{v}=\mathbf{k}$.
(11) Find the decomposition $\mathbf{a}=\mathbf{a}_{\| \mathbf{b}}+\mathbf{a}_{\perp \mathbf{b}}$.
(a) $\mathbf{a}=\langle 4,-1,5\rangle, \quad \mathbf{b}=\langle 2,1,1\rangle$.
(b) $\mathbf{a}=\langle x, y\rangle, \quad \mathbf{b}=\langle 1,-1\rangle$.

