VECTORS AND DOT PRODUCT

Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

REVIEW

- (1) A vector $\mathbf{v} = \overrightarrow{PQ}$ is determined by a basepoint P and a terminal point Q.
- (2) Components of $\mathbf{v} = \overrightarrow{PQ}$, where $P = (a_1, b_1)$ and $Q = (a_2, b_2)$:

$$\mathbf{v} = \langle a, b \rangle$$

with $a = a_2 - a_1$ and $b = b_2 - b_1$.

- (3) The length $\|\mathbf{v}\|$ of \mathbf{v} is equal to \mathbf{v} .
- (4) Vector addition: $\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- (5) Scalar multiplication: $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$ for λ real.
- (6) **v** and **w** are parallel if, for some scalar λ ,
- (7) If **v** makes an angle θ with the positive x-axis, then $v_1 =$ (5)and $v_2 =$
- (8) Equation of the sphere of radius R and center (a,b,c):
- (9) Equation of the cylinder of radius R and vertical axis through (a,b,0):
- (10) Equations for the line passing through $P_0 = (x_0, y_0, z_0)$ with direction vector $\mathbf{v} = \langle a, b, c \rangle$:
 - (a) Vector parametrization: $\mathbf{r}(t) = \overrightarrow{OP_0} + t\mathbf{v} =$
 - (b) Parametric equation: x = (9), y = (10), z = (11).
- (11) The dot product of $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ is

$$\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2 + c_1 c_2.$$

- $(12) \mathbf{v} \cdot \mathbf{v} = \boxed{\qquad}^{(12)}.$
- (13) Using the angle θ made by \mathbf{u} and \mathbf{v} , we have $\mathbf{u} \cdot \mathbf{v} = \boxed{}^{(13)}$. The vectors \mathbf{u} and \mathbf{v} are orthogonal if
- (14) The angle between \mathbf{v} and \mathbf{w} is $\mathbf{v} \cdot \mathbf{w} > 0$ and $\mathbf{v} \cdot \mathbf{w} = 0$.
- (15) Assume $\mathbf{v} \neq 0$. Every vector \mathbf{u} has a decomposition $\mathbf{u} = \mathbf{u}_{||\mathbf{v}} + \mathbf{u}_{\perp \mathbf{v}}$, where $\mathbf{u}_{||\mathbf{v}}$ is parallel to \mathbf{v} , and $\mathbf{u}_{\perp \mathbf{v}}$ is perpendicular to \mathbf{v} . Explicitly,

$$\mathbf{u}_{||\mathbf{v}} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|}\right) \mathbf{e}_{\mathbf{v}}, \quad \mathbf{u}_{\perp \mathbf{v}} = \mathbf{u} - \mathbf{u}_{||\mathbf{v}},$$

where

$$\mathbf{e}_{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}.$$

(16) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, is it true that $\mathbf{v} = \mathbf{w}$?

PROBLEMS

(1) Let R = (-2,7). Calculate the following:

(a) The length of \overrightarrow{OR} .

(b) The components of $\mathbf{u} = \overrightarrow{PR}$, where P = (1, 2).

(c) The point P such that \overrightarrow{PR} has components $\langle -2,7 \rangle$.

(2) Find the given vector:

(a) Unit vector $\mathbf{e}_{\mathbf{v}}$ where $\mathbf{v} = \langle 3, 4 \rangle$.

(b) Vector of length 4 in the direction of of $\mathbf{u} = \langle -1, 1 \rangle$.

(c) Vector **v** of length 2 making an angle of 30° with the *x*-axis.

(3) Determine whether or not the two vectors are parallel:

(a) $\mathbf{u} = \langle 1, -2, 5 \rangle, \mathbf{v} = \langle -2, 4, -10 \rangle.$

(b) $\mathbf{u} = \langle 4, 2, -6 \rangle, \mathbf{v} = \langle 2, 1, 3 \rangle.$

(4) Find a vector parametrization for the line with the given description:

(a) Passes through P = (1, 2, -8), direction vector $\mathbf{v} = \langle 2, 1, 3 \rangle$.

(c) Passes through (1,1,1) parallel to the line through (2,0,-1) and (4,1,3).

(b) Passes through (-2, 0, -2) and (4, 3, 7).

(5) Show that the lines $\mathbf{r}_1(t) = \langle -1, 2, 2 \rangle + t \langle 4, -2, 1 \rangle$ and $\mathbf{r}_2(s) = \langle 0, 1, 1 \rangle + s \langle 2, 0, 1 \rangle$ do not intersect.

(6) Find the intersection of the lines $\mathbf{r}_1(t) = \langle -1, 1 \rangle + t \langle 2, 4 \rangle$ and $\mathbf{r}_2(s) = \langle 2, 1 \rangle + s \langle -1, 6 \rangle$ in the plane.

2

(7) Find all values of b for which the vectors are orthogonal.

(a) $\langle b, 3, 2 \rangle$, $\langle 1, b, 1 \rangle$.

(b) $\langle 4, -2, 7 \rangle$, $\langle b^2, b, 0 \rangle$.

(8) Find the angle between \mathbf{v} and \mathbf{w} if $\mathbf{v} \cdot \mathbf{w} = \frac{1}{2} ||\mathbf{v}|| ||\mathbf{w}||$.

(9) If **e** and **f** are unit vectors and $\|\mathbf{e} + \mathbf{f}\| = \frac{3}{2}$, compute $\|\mathbf{e} - \mathbf{f}\|$.

(10) Find the projection of \mathbf{u} along \mathbf{v} .

(a) $\mathbf{u} = \langle -1, 2, 0 \rangle$, $\mathbf{v} = \langle 2, 0, 1 \rangle$.

(b) $\mathbf{u} = 5\mathbf{i} + 7\mathbf{j} - 4\mathbf{k}, \quad \mathbf{v} = \mathbf{k}.$

(11) Find the decomposition $\mathbf{a} = \mathbf{a}_{||\mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}}$.

(a) $\mathbf{a} = \langle 4, -1, 5 \rangle$, $\mathbf{b} = \langle 2, 1, 1 \rangle$.

(b) $\mathbf{a} = \langle x, y \rangle$, $\mathbf{b} = \langle 1, -1 \rangle$.