VECTOR-VALUED FUNCTIONS (AND A BIT MORE)
Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

NAME: SOLUTIONS
September 11, 2018

Problems

(1) State the type of quadric surface and describe the trace obtained by intersecting with the given plane.
(a) $x^{2}+\left(\frac{y}{4}\right)^{2}+z^{2}=1, y=0$.
(b) $\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{5}\right)^{2}-5 z^{2}=1, x=0$.
Solution: Hyperboloid of one sheet. The
Solution: Ellipsoid. The required trace is a circle. required trace is a hyperbola.
(2) Find an equation of the form $r=f(\theta, z)$ in cylindrical coordinates for the following surfaces.
(a) $z=x+y$.
(b) $z=3 x y$.
SOLUTION: $\quad r=\frac{z}{\cos \theta+\sin \theta}$.
SOLUTION: $r=\sqrt{\frac{2 z}{3 \sin 2 \theta}}$.
(3) Find an equation of the form $\rho=f(\theta, \phi)$ in spherical coordinates for the following surfaces.
(a) $z^{2}=3\left(x^{2}+y^{2}\right)$.
(b) $x^{2}-y^{2}=4$.
Solution: $\left\{\rho=0\right.$ or $\phi=\frac{\pi}{6}$ or $\left.\phi=\frac{5 \pi}{6}\right\}$.
SOLUTION: $\rho=\frac{2}{\sin \phi \sqrt{\cos 2 \theta}}$.
(4) Use sine and cosine to parametrize the intersection of the surfaces $x^{2}+y^{2}=1$ and $z=4 x^{2}$.

Solution: $\quad \mathbf{r}(t)=\left\langle\cos t, \sin t, 4 \cos ^{2} t\right\rangle$
(5) Let $\mathbf{r}(t)=\langle 3 \cos t, 5 \sin t, 4 \cos t\rangle$. Show that $\|\mathbf{r}(t)\|$ is constant and use this to conclude that $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal.
(6) A fighter plane, which can shoot a laser beam straight ahead, travels along the path

$$
\mathbf{r}(t)=\left\langle t-t^{3}, 12-t^{2}, 3-t\right\rangle
$$

Show that the pilot cannot hit any target on the x-axis.

