Review

(1) The length s of a path $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$ is

$$
s=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

(2) Arc length function: $s(t)=$
(3) Speed is the derivative of distance traveled with respect to time:

$$
v(t)=\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\| .
$$

(4) $\mathbf{r}(s)$ is an arc length parametrization if $\left\|\mathbf{r}^{\prime}(s)\right\|=1$ for all s.
(5) If $\mathbf{r}(t)$ is any parametrization such that $\mathbf{r}^{\prime}(t) \neq 0$ for all t, then

$$
\mathbf{r}_{1}(s)=\mathbf{r}\left(g^{-1}(s)\right)
$$

is an arc length parametrization, where $t=g^{-1}(s)$ is the inverse function of the arc length function $s=g(t)$.

Problems

(1) Compute the arc length of the following curves over the given interval:
(a) $\mathbf{r}(t)=\left\langle\cos t, \sin t, t^{3 / 2}\right\rangle, 0 \leq t \leq 2 \pi$.
(b) $\mathbf{r}(t)=\left\langle t, 4 t^{3 / 2}, 2 t^{3 / 2}\right\rangle, 0 \leq t \leq 3$.
(2) Find the speed of $\mathbf{r}(t)=\left\langle t, \ln t,(\ln t)^{2}\right\rangle$ at $t=1$.
(3) Find an arc length parametrization of the circle in the plane $z=9$ with radius 4 and center $(1,4,9)$.
(4) Let $\mathbf{r}(t)=\langle 3 \cos t, 5 \sin t, 4 \cos t\rangle$. Show that $\|\mathbf{r}(t)\|$ is constant and use this to conclude that $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal.
(5) Find the solution to the following differential equation with the given initial conditions: $\mathbf{r}^{\prime \prime}(t)=$ $\left\langle e^{t}, \sin t, \cos t\right\rangle, \mathbf{r}(0)=\langle 1,0,1\rangle, \mathbf{r}^{\prime}(0)=\langle 0,2,2\rangle$.

