NAME: Solutions
Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira
September 27, 2018

Problems

(1) Find the equation of the plane that contains the lines $\mathbf{r}_{1}(t)=\langle t, 2 t, 3 t\rangle$ and $\mathbf{r}_{2}(t)=\langle 3 t, t, 8 t\rangle$. Solution: $13 x+y-5 z=0$
(2) Sketch the set described in cylindrical coordinates.
(a) $r=4$.
the ray $\theta=\pi / 3$
Solution: Cilinder of radius 4.
(b) $\theta=\frac{\pi}{3}$.
(c) $z^{2}+r^{2} \leq 4$.
Solution: Half-plane that projects onto
Solution: Sphere of radius 2 .
(3) Evaluate the limit or determine that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$.

Solution: Since, $0 \leq|y| \leq \sqrt{x^{2}+y^{2}}$, the limit is zero by the Squeeze theorem.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{|x|+|y|}$.

Solution: Try lines $y=m x$ to show that the limit does not exist.
(c) $\lim _{(x, y) \rightarrow(0,2)}(1+x)^{y / x}$.

Solution: Set $f(x, y)=(1+x)^{y / x}$ and show that $\lim _{(x, y) \rightarrow(0,2)} \ln f(x, y)=2$. By continuity of the exponential, the required limit is e^{2}.
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}$.

Solution: The limit is 0 . Use polar coordinates and the Squeeze Theorem.
(4) Suppose that the plane tangent to $z=f(x, y)$ at $(-2,3,4)$ has equation $4 x+2 y+z=2$. Estimate $f(-2.1,3.1)$.
Solution: $\quad f(-2.1,3.1) \approx 4-4(-0.1)-2(0.1)=4.2$.
(5) A fighter plane, which can shoot a laser beam straight ahead, travels along the path

$$
\mathbf{r}(t)=\left\langle t-t^{3}, 12-t^{2}, 3-t\right\rangle
$$

Show that the pilot cannot hit any target on the x-axis.
(6) Find a vector normal to the surface $3 z^{3}+x^{2} y-y^{2} x=1$ at $P=(1,-1,1)$.

Solution: $\langle-3,3,9\rangle$.

