Problems

(1) Find the point in the first quadrant on the curve $y=x+x^{-1}$ closest to the origin.
(2) Use Lagrange Multipliers to find the dimensions (i.e. radius and height) of a cylindrical can with a bottom but not top, of fixed volume V with minimum surface area.
(3) Evaluate the following integrals using Fubini's theorem.
(a) $\int_{0}^{1} \int_{0}^{1} y \sqrt{1+x y} d y d x$.
(b) $\int_{0}^{1} \int_{0}^{1} x e^{x y} d x d y$.
(4) Compute the double integral over the domain \mathcal{D} indicated
(a) $f(x, y)=x ; 0 \leq x \leq 1,1 \leq y \leq e^{x^{2}}$.
(b) $f(x, y)=\sin x$; bounded by $x=0, x=1$, $y=\cos x$.
(5) Find the volume of the region bounded by $z=40-10 y, z=0, y=0$, and $y=4-x^{2}$.
(6) Find the average height of the "ceiling" in Figure 2 defined by $z=y^{2} \sin x$ for $0 \leq x \leq \pi, 0 \leq y \leq 1$.
(7) Find the triple integral of the function z over the ramp in the picture below. Here, z is the height above the ground.

Figure 1: Problem 7

Figure 2: Problem 6

