Review

(1) Total mass of regions $\mathcal{D} \subset \mathbb{R}^{2}$ and $\mathcal{W} \subset \mathbb{R}^{3}$:

$$
M=\iint_{\mathcal{D}} \delta(x, y) \mathrm{d} A, \quad M=\iiint_{\mathcal{W}} \delta(x, y, z) \mathrm{d} V
$$

where δ is the mass density. The same formula can be used to compute the total charge of a region if δ is the charge density.
(2) Moments:

$$
\begin{gathered}
\underline{\operatorname{In} \mathbb{R}^{2}:} \quad M_{x}=\iint_{\mathcal{D}} y \delta(x, y) \mathrm{d} A, \quad M_{y}=\iint_{\mathcal{D}} x \delta(x, y) \mathrm{d} A \\
\underline{\operatorname{In} \mathbb{R}^{3}:} \quad M_{y z}=\iiint_{\mathcal{W}} x \delta(x, y, z) \mathrm{d} V, \quad M_{x z}=\iiint_{\mathcal{W}} y \delta(x, y, z) \mathrm{d} V, \quad M_{x y}=\iiint_{\mathcal{W}} z \delta(x, y, z) \mathrm{d} V .
\end{gathered}
$$

(3) Coordinates of the center of mass:

$$
\begin{gathered}
\underline{\operatorname{In} \mathbb{R}^{2}: \quad x_{C M}=\frac{M_{y}}{M}, \quad y_{C M}=\frac{M_{x}}{M}} \\
\underline{\operatorname{In} \mathbb{R}^{3}: \quad x_{C M}=\frac{M_{y z}}{M}, \quad y_{C M}=\frac{M_{x z}}{M} \quad z_{C M}=\frac{M_{x y}}{M} .} .
\end{gathered}
$$

(4) Random variables X and Y have joint probability density function $p(x, y)$ if

$$
P(a \leq X \leq b ; c \leq Y \leq d)=\int_{x=a}^{b} \int_{y=c}^{d} p(x, y) \mathrm{d} y \mathrm{~d} x
$$

(5) A joint probability density function must satisfy $p(x, y) \geq 0$ and

$$
\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} p(x, y) \mathrm{d} y \mathrm{~d} x=1
$$

(6) Let $G(u, v)=(x(u, v), y(u, v))$ be a mapping. The Jacobian of G is the determinant

$$
\operatorname{Jac}(G)=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

(7) $\operatorname{Jac}(G)=[\operatorname{Jac}(F)]^{-1}$, where $F=G^{-1}$.
(8) Change of Variables Formula: If $G: \mathcal{D}_{0} \rightarrow \mathcal{D}$ has component functions with continuous partial derivatives and one-to-one on the interior of \mathcal{D}_{0}, and if f is continuous, then

$$
\iint_{\mathcal{D}} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{\mathcal{D}_{0}} f(x(u, v), y(u, v)) \frac{\partial(u, v)}{\partial(x, y)} \mathrm{d} u \mathrm{~d} v .
$$

Problems

(1) Compute the total mass of the plate in Figure 1 assuming a mass density of $f(x, y)=\frac{x^{2}}{\left(x^{2}+y^{2}\right)} \mathrm{g} / \mathrm{cm}^{2}$. Solution: $\quad \frac{50}{3} \pi+25 \sqrt{3}$.
(2) Find the $z_{C M}$ (z coordinate of the center of mass) of a cylinder of radius 2 and height 4 and mass density e^{-z}, where z is the height above the base (an expression in terms of e is fine). Can you find the $x_{C M}$ and $y_{C M}$ without explicitly computing any integral?
Solution: $\quad x_{C M}=y_{C M}=0, z_{C M}=\frac{\left(1-5 e^{-4}\right)}{1-e^{-4}}$.
(3) Find a constant C such that

$$
p(x, y)= \begin{cases}C x y & \text { if } 0 \leq x \text { and } 0 \leq y \leq 1-x \\ 0 & \text { otherwise }\end{cases}
$$

is a joint probability density function, then calculate $P(X \geq Y)$.
Solution: $\quad C=24, P(X \geq Y)=\frac{1}{2}$.
(4) Compute $\iint_{\mathcal{D}}(x+3 y) \mathrm{d} x \mathrm{~d} y$, where \mathcal{D} is the shaded region in Figure 3. Hint: Use the map $\Phi(u, v)=$ $(u-2 v, v)$.
SOLUTION: 80.
(5) Find a mapping Φ that maps the disk $u^{2}+v^{2} \leq 1$ onto the interior of the ellipse $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1$. Then use the Change of Variables Formula to prove that the area of the ellipse is $\pi a b$.
Solution: The map $\Phi(u, v)=(a u, b v)$ does the job.

Figure 1: Problem 1

Figure 2: Problem 2

