Problems

(1) Find the critical points of $f(x, y)=x^{3}-x y+y^{3}$. Then, if possible, use the Second Derivative Test to determine if they are local maxima, local minima or saddle points.
Solution: The critical points are (0,0) (saddle point) and ($\frac{1}{3}, \frac{1}{3}$) (local minimum).
(2) Find the minimum and maximum values of the function f subject to the given constraint.

$$
f(x, y)=2 x+3 y ; \quad x^{2}+y^{2}=4
$$

Solution: The minimum is $\frac{-26}{\sqrt{13}}$ and the maximum is $\frac{26}{\sqrt{13}}$.
(3) Use spherical coordinates to calculate the triple integral of $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ over $W=$ $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 2 z\right\}$.
Solution: $\frac{8 \pi}{5}$.
(4) Compute $\iint_{\mathcal{D}}(x+3 y) \mathrm{d} x \mathrm{~d} y$, where \mathcal{D} is the shaded region in the figure below. Hint: Use the map $\Phi(u, v)=(u-2 v, v)$.
Solution: 80.
(5) Let $\mathcal{C}=\mathcal{C}_{1}+\mathcal{C}_{2}$ where \mathcal{C}_{1} is the quarter circle $x^{2}+y^{2}=4, z=0$, from $(0,2,0)$ to $(2,0,0)$, and where \mathcal{C}_{2} is the line segment from $(2,0,0)$ to $(3,3,3)$. Compute the work done along \mathcal{C} by the force $\mathbf{F}(x, y, z)=\langle-y+z, z-x, x+y+z\rangle$.
Solution: This vector field is conservative, $f(x, y, z)=x z-x y+z y+\frac{z^{2}}{2}$ is a potential function, so the work is $f(3,3,3)-f(0,2,0)=\frac{27}{2}$.

Figure 1: Problem 4

