PROBLEMS

(1) Find the critical points of $f(x,y) = x^3 - xy + y^3$. Then, if possible, use the Second Derivative Test to determine if they are local maxima, local minima or saddle points.

Solution: The critical points are (0,0) (saddle point) and $(\frac{1}{3},\frac{1}{3})$ (local minimum).

(2) Find the minimum and maximum values of the function f subject to the given constraint.

$$f(x,y) = 2x + 3y;$$
 $x^2 + y^2 = 4.$

Solution: The minimum is $\frac{-26}{\sqrt{13}}$ and the maximum is $\frac{26}{\sqrt{13}}$.

- (3) Use spherical coordinates to calculate the triple integral of $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ over $W = \{(x,y,z): x^2 + y^2 + z^2 \le 2z\}$.

 Solution: $\frac{8\pi}{5}$.
- (4) Compute $\iint_{\mathcal{D}} (x+3y) dxdy$, where \mathcal{D} is the shaded region in the figure below. *Hint:* Use the map $\Phi(u,v) = (u-2v,v)$.

SOLUTION: 80.

(5) Let $C = C_1 + C_2$ where C_1 is the quarter circle $x^2 + y^2 = 4$, z = 0, from (0, 2, 0) to (2, 0, 0), and where C_2 is the line segment from (2, 0, 0) to (3, 3, 3). Compute the work done along C by the force $\mathbf{F}(x, y, z) = \langle -y + z, z - x, x + y + z \rangle$.

Solution: This vector field is conservative, $f(x, y, z) = xz - xy + zy + \frac{z^2}{2}$ is a potential function, so the work is $f(3,3,3) - f(0,2,0) = \frac{27}{2}$.

Figure 1: Problem 4