## Review

(1) A vector field $\mathbf{F}$ on a domain $\mathcal{D}$ is called path-independent if for any two points $P, Q \in \mathcal{D}$, we have

$$
\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

for any two paths $\mathcal{C}_{1}$ and $C_{2}$ in $\mathcal{D}$ from $P$ to $Q$.
(2) The Fundamental Theorem for Conservative Vector Fields: If $\mathbf{F}=\nabla f$, then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=f(Q)-f(P)
$$

for any path $\mathbf{r}$ from $P$ to $Q$ in the domain of $\mathbf{F}$. This shows that conservative vector fields are path independent. The converse is also true: on an open, connected domain, a path-independent vector field is conservative.
(3) The work $W$ exerted on an object along a curve $\mathcal{C}$ is given by:

$$
W=\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}
$$

The work performed against $\mathbf{F}$ is the quantity $-\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.

## Problems

(1) Calculate the work required to move an object from $P=(1,1,1)$ to $Q=(3,-4,-2)$ against the force field $\mathbf{F}(x, y, z)=-12 r^{-4}\langle x, y, z\rangle$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
Solution: $V=(x, y, z)=\frac{6}{x^{2}+y^{2}+z^{2}}$ is a potential function for $\mathbf{F}$. By the Fundamental Theorem,

$$
W=-\int_{\overline{P Q}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=-\int_{\overline{P Q}}-\nabla V \cdot \mathrm{~d} \mathbf{r}=-(V(Q)-V(P))=\frac{52}{29}
$$

(2) Let $\mathbf{F}(x, y)=\left\langle 9 y-y^{3}, e^{\sqrt{y}}\left(x^{2}-3 x\right)\right\rangle$, and let $\mathcal{C}_{2}$ be the oriented curve in the picture below.
(a) Show that $\mathbf{F}$ is not conservative. Solution:

$$
9-3 y^{2}=\frac{\partial \mathbf{F}_{1}}{\partial y} \neq \frac{\partial \mathbf{F}_{2}}{\partial x}=e^{\sqrt{y}}(2 x-3)
$$

The cross partials are not equal, hence $\mathbf{F}$ is not conservative.
(b) Show that $\int_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ without explicitly computing this integral. Hint: Show that $\mathbf{F}$ is orthogonal to the edges along the square. Solution: On $\overline{O A}, y=0$ hence $\mathbf{F}=\mathbf{F}(x, 0)=$ $\left\langle 0, x^{2}-3 x\right\rangle$, which is orthogonal to the vector in the direction of $\overline{O A}$, hence $\int_{\overline{O A}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$. Same idea for the other 3 segments.
(3) Find a conservative vector field of the form $\mathbf{F}=\langle g(y), h(x)\rangle$ such that $\mathbf{F}(0,0)=\langle 1,1\rangle$, where $g(y)$ and $h(x)$ are differentiable functions. Determine all such vector fields.
Solution: We need to find a scalar function $V(x, y)$ such that $\mathbf{F}=\nabla V$, that is:

$$
\frac{\partial V}{\partial x}=g(y) ; \quad \frac{\partial V}{\partial y}=h(x)
$$

Integrating the first one with respect to $x$, we get $V(x, y)=x g(y)+f(y)$. Differentiating this with respect to $y$ and comparing it to the second equation above,

$$
\frac{\partial V}{\partial y}=x g^{\prime}(y)+f^{\prime}(y)=h(x)
$$

This only holds when $g^{\prime}(y)$ and $f^{\prime}(y)$ are constants (take $x=0$ to verify that). That it, $g^{\prime}(y)=c_{1}$ and $f^{\prime}(y)=c_{2}$, yielding $g(y)=c_{1} y+d_{1}$ and $f(y)=c_{2} y+d_{2}$. Substituting in the expression we found for V,

$$
V(x, y)=x\left(c_{1} y+d_{1}\right)+c_{2} y+d_{2} \Rightarrow \nabla V=\left\langle d_{1}+c_{1} y, c_{2}+c_{1} x\right\rangle .
$$

By plugging in the condition $\mathbf{F}(0,0)=\langle 1,1\rangle$ we get $\mathbf{F}(x, y)=\langle 1+b y, 1+b x\rangle$, for any $b \in \mathbb{R}$.


Figure 1: Problem 2

