MORE ON CONSERVATIVE VECTOR FIELDS Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

NAME: November 8, 2018

REVIEW

(1) A vector field **F** on a domain \mathcal{D} is called *path-independent* if for any two points $P, Q \in \mathcal{D}$, we have

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two paths C_1 and C_2 in \mathcal{D} from P to Q.

(2) The Fundamental Theorem for Conservative Vector Fields: If $\mathbf{F} = \nabla f$, then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P)$$

for any path \mathbf{r} from P to Q in the domain of \mathbf{F} . This shows that conservative vector fields are path independent. The converse is also true: on an open, connected domain, a path-independent vector field is conservative.

(3) The work W exerted on an object along a curve \mathcal{C} is given by:

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

The work performed against **F** is the quantity $-\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

PROBLEMS

- (1) Calculate the work required to move an object from P=(1,1,1) to Q=(3,-4,-2) against the force field $\mathbf{F}(x,y,z)=-12r^{-4}\langle x,y,z\rangle,$ where $r=\sqrt{x^2+y^2+z^2}.$
- (2) Let $\mathbf{F}(x,y) = \langle 9y y^3, e^{\sqrt{y}}(x^2 3x) \rangle$, and let \mathcal{C}_2 be the oriented curve in the picture below.
 - (a) Show that \mathbf{F} is not conservative.
 - (b) Show that $\int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = 0$ without explicitly computing this integral. *Hint:* Show that \mathbf{F} is orthogonal to the edges along the square.
- (3) Find a conservative vector field of the form $\mathbf{F} = \langle g(y), h(x) \rangle$ such that $\mathbf{F}(0,0) = \langle 1,1 \rangle$, where g(y) and h(x) are differentiable functions. Determine all such vector fields.

Figure 1: Problem 2