Surface Integrals Review
Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

NAME: SOLUTIONS
November 13, 2018

Review

(1) A parametrized surface is a surface \mathcal{S} whose points are described in the form

$$
G(u, v)=(x(u, v), y(u, v), z(u, v))
$$

where the parameters u and v vary in a domain \mathcal{D} in the $u v$-place.
(2) Tangent and normal vectors:

- Tangent vectors:

$$
\mathbf{T}_{u}=\frac{\partial G}{\partial u}=\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle, \quad \mathbf{T}_{v}=\frac{\partial G}{\partial v}=\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right\rangle .
$$

- Normal vector:

$$
\mathbf{N}=\mathbf{N}(u, v)=\mathbf{T}_{u} \times \mathbf{T}_{v}
$$

(3) The quantity $\|\mathbf{N}\|$ is an "area distortion factor". If \mathcal{D} is a small region in the $u v$-plane and $\mathcal{S}=G(\mathcal{D})$, then

$$
\operatorname{Area}(\mathcal{S}) \approx\left\|\mathbf{N}\left(u_{0}, v_{0}\right)\right\| \operatorname{Area}(\mathcal{D})
$$

where $\left(u_{0}, v_{0}\right)$ is regular at (u, v) if $\mathbf{N}(u, v) \neq \mathbf{0}$.
(4) Surface integrals and surface area:

$$
\begin{aligned}
\iint_{\mathcal{S}} f(x, y, z) d S & =\iint_{D} f(G(u, v))\|\mathbf{N}(u, v)\| d u d v \\
\operatorname{Area}(\mathcal{S}) & =\iint_{\mathcal{D}}\|\mathbf{N}(u, v)\| d u d v
\end{aligned}
$$

(5) Some standard parametrizations:

- Cylinder of radius R (z-axis as central axis):

$$
G(\theta, z)=(R \cos \theta, R \sin \theta, z), \quad \mathbf{N}=\mathbf{T}_{\theta} \times \mathbf{T}_{z}=R\langle\cos \theta, \sin \theta, 0\rangle, \quad d S=\|\mathbf{N}\| d \theta d z=R d \theta d z
$$

- Sphere of radius R, centered at the origin:
$G(\theta, z)=(R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi), \quad$ Unit radial vector: $\quad \mathbf{e}_{r}\langle\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi\rangle$,

$$
\text { Outward normal: } \quad \mathbf{N}=\mathbf{T}_{\phi} \times \mathbf{T}_{\theta}=\left(R^{2} \sin \phi\right) \mathbf{e}_{r}, \quad d S=\|\mathbf{N}\| d \phi d \theta=R^{2} \sin \phi d \phi d \theta
$$

(6) Graph of $z=g(x, y)$:

$$
G(x, y)=(x, y, g(x, y)), \quad \mathbf{N}=\mathbf{T}_{x} \times \mathbf{T}_{y}=\left\langle-g_{x},-g_{y}, 1\right\rangle, \quad d S=\|\mathbf{N}\| d x d y=\sqrt{1+g_{x}^{2}+g_{y}^{2}} d x d y
$$

Problems

(1) Let $\mathcal{S}=G(\mathcal{D})$, where $\mathcal{D}=\left\{(u, v): u^{2}+v^{2} \leq 1, u \geq 0, v \geq 0\right\}$ and $G(u, v)=(2 u+1, u-v, 3 u+v)$.
(a) Calculate the surface area of \mathcal{S}. Solution: $\frac{\pi \sqrt{6}}{2}$.
(b) Evaluate $\iint_{\mathcal{S}}(x-y) d S$. Hint: use polar coordinates. Solution: Integrate over $0 \leq r \leq$ 1 and $0 \leq \theta \leq \frac{\pi}{2}$. The result is $\frac{8+3 \pi}{\sqrt{6}}$.
(2) Calculate $\iint_{\mathcal{S}} f(x, y, z) d S$ for the given surface and function.
(a) $G(u, v)=\left(u, v^{3}, u+v\right), 0 \leq u \leq 1,0 \leq v \leq 1$; $f(x, y, z)=y$. Solution: $\frac{19 \sqrt{19}-1}{108}$.
(b) Part of the unit sphere centered at the origin, where $x \geq 0$ and $|y| \leq x ; f(x, y, z)=x$. Solution: $\frac{\pi}{\sqrt{2}}$.
(3) Find the surface area of the part of the cone $x^{2}+y^{2}=z^{2}$ between the planes $z=2$ and $z=5$. Solution: Parametrize it by $\Phi(u, v)=(u \cos v, u \sin v, u), \mathcal{D}: 0 \leq v \leq 2 \pi, 2 \leq u \leq 5$. The normal vector \mathbf{N} will be $\mathbf{N}(u, v)=\langle-u \cos v,-u \sin v, u\rangle$. Use that to conclude that the area is $21 \sqrt{2} \pi$.
(4) Calculate $\iint_{G} x^{2} z d S$, where G is the cylinder (including the top and the bottom) $x^{2}+y^{2}=4,0 \leq z \leq 3$. Solution: Compute the top, bottom and side contributions separately and add them up. The answer is 48π.

