Surface Integrals and Green's Theorem
Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

Name: Solutions
November 20, 2018

## Review

(1) A surface $\mathcal{S}$ is oriented if a continuously varying unit normal vector $\mathbf{n}(P)$ is specified at each point on $\mathcal{S}$. This distinguishes an "outward" direction on the surface.
(2) The integral of a vector field $\mathbf{F}$ over an oriented surface $\mathcal{S}$ is defined as the integral of the normal component $\mathbf{F} \cdot \mathbf{n}$ over $\mathcal{S}$.
(3) Vector surface integrals are computed using the formula

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathcal{D}} \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) d u d v
$$

Here, $G(u, v)$ is a parametrization of $\mathcal{S}$ such that $\mathbf{N}(u, v)=\mathbf{T}_{u} \times \mathbf{T}_{v}$ points in the direction of the unit normal vector specified by the orientation.
(4) The surface integral of a vector field $\mathbf{F}$ over $\mathcal{S}$ is also called the flux of $\mathbf{F}$ through $G$. If $\mathbf{F}$ is the velocity field of a fluid, then $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$ is the rate at which fluid flows through $\mathcal{S}$ per unit time.
(5) We have two notations for the line integral of a vector field on the plane:

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} \quad \text { and } \quad \int_{\mathcal{C}} F_{1} d x+F_{2} d y
$$

(6) $\partial \mathcal{D}$ denotes the boundary of $\mathcal{D}$ with its boundary orientation.
(7) Green's Theorem:
or

$$
\oint_{\partial \mathcal{D}} F_{1} d x+F_{2} d y=\iint_{\mathcal{D}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

$$
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) d A
$$

(8) Formulas for the area of a region $\mathcal{D}$ enclosed by $\mathcal{C}$ :

$$
\operatorname{Area}(\mathcal{D})=\oint_{\mathcal{C}} x d y=\oint_{\mathcal{C}}-y d x=\frac{1}{2} \oint_{\mathcal{C}} x d y-y d x
$$

(9) The quantity

$$
\operatorname{curl}_{z}(\mathbf{F})=\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}
$$

is interpreted as circulation per unit area. If $\mathcal{D}$ is a small domain with boundary $\mathcal{C}$, then for any $P \in \mathcal{D}$,

$$
\oint_{\mathcal{C}} F_{1} d x+F_{2} d y \approx \operatorname{curl}_{z}(\mathbf{F})(P) \cdot \operatorname{Area}(\mathcal{D})
$$

(10) Vector Form of Green's Theorem:

$$
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} d s=\iint_{\mathcal{D}} \operatorname{div}(\mathbf{F}) d A
$$

The right-hand side of the identity above is called the flux of $\mathbf{F}$ out of the unit circle.

## Problems

(1) Calculate $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$ for the given surface and vector field.
(a) $\mathbf{F}=\left\langle e^{z}, z, x\right\rangle, \quad G(r, s)=(r s, r+s, r)$,
(b) $\mathbf{F}=\langle z, z, x\rangle, \quad z=9-x^{2}-y^{2}, x \geq 0$, $0 \leq r \leq 1,0 \leq s \leq 1, \quad$ oriented by $\mathbf{T}_{r} \times \mathbf{T}_{s}$. Solution: $\frac{4}{3}-e$. $y \geq 0, z \geq 0, \quad$ upward-pointing normal. Solution: $\frac{693}{5}$.
(2) Let $\mathcal{S}$ be the ellipsoid $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}+\left(\frac{z}{2}\right)^{2}=1$. Calculate the flux of $\mathbf{F}=z \mathbf{i}$ over the portion of $\mathcal{S}$ where $x, y, z \leq 0$ with upward-pointing normal.
Solution: Parametrize it by $\Phi(\theta, \phi)=(4 \cos \theta \sin \phi, 3 \sin \theta \sin \phi, 2 \cos \phi)$, with the parameter domain $\mathcal{D}=\left\{(\theta, \phi): \pi \leq \theta \leq \frac{3 \pi}{2}, \quad \frac{\pi}{2} \leq \phi<\pi\right\}$. Compute the tangent and normal vectors, the dot product $\mathbf{F} \cdot \mathbf{N}$ and use this to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. The answer is -4 .
(3) Use Green's Theorem to evaluate the line integral. Orient the curve counterclockwise.
(a) $\oint_{\mathcal{C}} y^{2} d x+x^{2} d y$, where $\mathcal{C}$ is the boundary of
(b) $\oint_{\mathcal{C}} e^{2 x+y} d x+e^{-y} d y$, where $\mathcal{C}$ is the triangle the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. with vertices $(0,0),(1,0)$, and $(1,1)$.
Solution: 0.
SOLUTION: $\frac{e^{2}}{2}-\frac{e^{3}}{3}-\frac{1}{6}$.
(4) Evaluate $I=\int_{C}(\sin x+y) d x+(3 x+y) d y$ for the nonclosed path $A B C D$ in Figure 1.

Solution: 34.
(5) Let $\mathcal{C}_{R}$ be the circle of radius $R$ centered at the origin. Use the general form of Green's Theorem to determine $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}$ is a vector field such that $\oint_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=9$ and $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=x^{2}+y^{2}$ for $(x, y)$ in the annulus $1 \leq x^{2}+y^{2} \leq 4$.
Solution: $9+\frac{15 \pi}{2}$.
(6) Referring to Figure 2, suppose that

$$
\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=3 \pi \quad \text { and } \quad \oint_{\mathcal{C}_{3}} \mathbf{F} \cdot d \mathbf{r}=4 \pi
$$

Use Green's Theorem to determine the circulation of $\mathbf{F}$ around $\mathcal{C}_{1}$, assuming that $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=9$ on the shaded region.
Solution: $214 \pi$.
(7) Compute the flux of $\mathbf{F}(x, y)=\left\langle x y^{2}+2 x, x^{2} y-2 y\right\rangle$ across the simple closed curve that is the boundary of the half-disk given by $x^{2}+y^{2} \leq 9, y \geq 0$.
SOLUTION: $\frac{81 \pi}{4}$.


Figure 1: Problem 4.


Figure 2: Problem 6.

