REVIEW

- (1) A surface S is *oriented* if a continuously varying unit normal vector $\mathbf{n}(P)$ is specified at each point on S. This distinguishes an "outward" direction on the surface.
- (2) The integral of a vector field \mathbf{F} over an oriented surface \mathcal{S} is defined as the integral of the normal component $\mathbf{F} \cdot \mathbf{n}$ over \mathcal{S} .
- (3) Vector surface integrals are computed using the formula

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{D}} \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv$$

Here, G(u, v) is a parametrization of S such that $\mathbf{N}(u, v) = \mathbf{T}_u \times \mathbf{T}_v$ points in the direction of the unit normal vector specified by the orientation.

- (4) The surface integral of a vector field \mathbf{F} over \mathcal{S} is also called the *flux* of \mathbf{F} through G. If \mathbf{F} is the velocity field of a fluid, then $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ is the rate at which fluid flows through \mathcal{S} per unit time.
- (5) We have two notations for the line integral of a vector field on the plane:

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \quad \text{and} \quad \int_{\mathcal{C}} F_1 \, dx + F_2 \, dy.$$

- (6) $\partial \mathcal{D}$ denotes the boundary of \mathcal{D} with its boundary orientation.
- (7) Green's Theorem:

$$\oint_{\partial \mathcal{D}} F_1 \, dx + F_2 \, dy = \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$
$$\oint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \operatorname{curl}_z(\mathbf{F}) \, dA.$$

or

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) \, dA$$

(8) Formulas for the area of a region \mathcal{D} enclosed by \mathcal{C} :

Area
$$(\mathcal{D}) = \oint_{\mathcal{C}} x \, dy = \oint_{\mathcal{C}} -y \, dx = \frac{1}{2} \oint_{\mathcal{C}} x \, dy - y \, dx.$$

(9) The quantity

$$\operatorname{curl}_{z}(\mathbf{F}) = \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}$$

is interpreted as *circulation per unit area*. If \mathcal{D} is a small domain with boundary \mathcal{C} , then for any $P \in \mathcal{D}$,

$$\oint_{\mathcal{C}} F_1 \, dx + F_2 \, dy \approx \operatorname{curl}_z(\mathbf{F})(P) \cdot \operatorname{Area}(\mathcal{D}).$$

(10) Vector Form of Green's Theorem:

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{\mathcal{D}} \operatorname{div}(\mathbf{F}) \, dA.$$

The right-hand side of the identity above is called the flux of \mathbf{F} out of the unit circle.

PROBLEMS

- (1) Calculate $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ for the given surface and vector field.
 - (a) $\mathbf{F} = \langle e^z, z, x \rangle$, G(r, s) = (rs, r + s, r), (b) $\mathbf{F} = \langle z, z, x \rangle$, $z = 9 x^2 y^2$, $x \ge 0$, $0 \le r \le 1, \ 0 \le s \le 1$, oriented by $\mathbf{T}_r \times \mathbf{T}_s$. $y \ge 0, \ z \ge 0$, upward-pointing normal. SOLUTION: $\frac{4}{3} - e$. Solution: $\frac{693}{5}$.
- (2) Let S be the ellipsoid $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 + \left(\frac{z}{2}\right)^2 = 1$. Calculate the flux of $\mathbf{F} = z\mathbf{i}$ over the portion of S where $x, y, z \leq 0$ with upward-pointing normal. SOLUTION: Parametrize it by $\Phi(\theta, \phi) = (4\cos\theta\sin\phi, 3\sin\theta\sin\phi, 2\cos\phi)$, with the parameter domain $\mathcal{D} = \{(\theta, \phi) : \pi \leq \theta \leq \frac{3\pi}{2}, \quad \frac{\pi}{2} \leq \phi < \pi\}$. Compute the tangent and normal vectors, the dot product $\mathbf{F} \cdot \mathbf{N}$ and use this to compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$. The answer is -4.

(3) Use Green's Theorem to evaluate the line integral. Orient the curve counterclockwise.

- (a) $\oint_{\mathcal{C}} y^2 dx + x^2 dy$, where \mathcal{C} is the boundary of the unit square $0 \le x \le 1, 0 \le y \le 1$. SOLUTION: 0. (b) $\oint_{\mathcal{C}} e^{2x+y} dx + e^{-y} dy$, where \mathcal{C} is the triangle with vertices (0,0), (1,0), and (1,1). SOLUTION: $\frac{e^2}{2} - \frac{e^3}{3} - \frac{1}{6}$.
- (4) Evaluate $I = \int_C (\sin x + y) dx + (3x + y) dy$ for the nonclosed path *ABCD* in Figure 1. SOLUTION: 34.
- (5) Let C_R be the circle of radius R centered at the origin. Use the general form of Green's Theorem to determine $\oint_{C_2} \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is a vector field such that $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = 9$ and $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = x^2 + y^2$ for (x, y) in the annulus $1 \le x^2 + y^2 \le 4$. Solution: $9 + \frac{15\pi}{2}$.
- (6) Referring to Figure 2, suppose that

$$\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3\pi \quad \text{and} \quad \oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = 4\pi.$$

Use Green's Theorem to determine the circulation of **F** around C_1 , assuming that $\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 9$ on the shaded region.

Solution: 214π .

(7) Compute the flux of $\mathbf{F}(x, y) = \langle xy^2 + 2x, x^2y - 2y \rangle$ across the simple closed curve that is the boundary of the half-disk given by $x^2 + y^2 \leq 9, y \geq 0$. Solution: $\frac{81\pi}{4}$.

Figure 1: Problem 4.

Figure 2: Problem 6.