SURFACE INTEGRALS AND GREEN'S THEOREM Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

REVIEW

- (1) A surface S is *oriented* if a continuously varying unit normal vector $\mathbf{n}(P)$ is specified at each point on S. This distinguishes an "outward" direction on the surface.
- (2) The integral of a vector field \mathbf{F} over an oriented surface \mathcal{S} is defined as the integral of the normal component $\mathbf{F} \cdot \mathbf{n}$ over \mathcal{S} .
- (3) Vector surface integrals are computed using the formula

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{D}} \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv$$

Here, G(u, v) is a parametrization of S such that $\mathbf{N}(u, v) = \mathbf{T}_u \times \mathbf{T}_v$ points in the direction of the unit normal vector specified by the orientation.

- (4) The surface integral of a vector field \mathbf{F} over \mathcal{S} is also called the *flux* of \mathbf{F} through G. If \mathbf{F} is the velocity field of a fluid, then $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ is the rate at which fluid flows through \mathcal{S} per unit time.
- (5) We have two notations for the line integral of a vector field on the plane:

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$
 and $\int_{\mathcal{C}} F_1 dx + F_2 dy$.

- (6) $\partial \mathcal{D}$ denotes the boundary of \mathcal{D} with its boundary orientation.
- (7) Green's Theorem:

$$\oint_{\partial \mathcal{D}} F_1 dx + F_2 dy = \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \operatorname{curl}_z(\mathbf{F}) dA.$$

or

(8) Formulas for the area of a region \mathcal{D} enclosed by \mathcal{C} :

$$Area(\mathcal{D}) = \oint_{\mathcal{C}} x \, dy = \oint_{\mathcal{C}} -y \, dx = \frac{1}{2} \oint_{\mathcal{C}} x \, dy - y \, dx.$$

(9) The quantity

$$\operatorname{curl}_{z}(\mathbf{F}) = \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}$$

is interpreted as circulation per unit area. If \mathcal{D} is a small domain with boundary \mathcal{C} , then for any $P \in \mathcal{D}$,

$$\oint_{\mathcal{C}} F_1 dx + F_2 dy \approx \operatorname{curl}_z(\mathbf{F})(P) \cdot \operatorname{Area}(\mathcal{D}).$$

(10) Vector Form of Green's Theorem:

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{\mathcal{D}} \operatorname{div}(\mathbf{F}) \, dA.$$

The right-hand side of the identity above is called the flux of F out of the unit circle.

PROBLEMS

- (1) Calculate $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ for the given surface and vector field.
 - $\begin{array}{lll} \text{(a)} \;\; \mathbf{F} \; = \; \langle e^z, z, x \rangle, & G(r,s) \; = \; (rs, r + s, r), \\ 0 \leq r \leq 1, \; 0 \leq s \leq 1, & \text{oriented by } \mathbf{T}_r \times \mathbf{T}_s. & z \geq 0, \;\; \text{upward-pointing normal.} \end{array}$
- (2) Let \mathcal{S} be the ellipsoid $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 + \left(\frac{z}{2}\right)^2 = 1$. Calculate the flux of $\mathbf{F} = z\mathbf{i}$ over the portion of \mathcal{S} where $x, y, z \leq 0$ with upward-pointing normal.
- (3) Use Green's Theorem to evaluate the line integral. Orient the curve counterclockwise.
 - (a) $\oint_{\mathcal{C}} y^2 dx + x^2 dy$, where \mathcal{C} is the boundary of the unit square $0 \le x \le 1, \ 0 \le y \le 1$. (b) $\oint_{\mathcal{C}} e^{2x+y} dx + e^{-y} dy$, where \mathcal{C} is the triangle with vertices (0,0), (1,0), and (1,1).
- (4) Evaluate $I = \int_C (\sin x + y) dx + (3x + y) dy$ for the nonclosed path ABCD in Figure 1.
- (5) Let C_R be the circle of radius R centered at the origin. Use the general form of Green's Theorem to determine $\oint_{C_2} \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is a vector field such that $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = 9$ and $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = x^2 + y^2$ for (x,y) in the annulus $1 \le x^2 + y^2 \le 4$.
- (6) Referring to Figure 2, suppose that

$$\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3\pi$$
 and $\oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = 4\pi$.

Use Green's Theorem to determine the circulation of **F** around C_1 , assuming that $\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 9$ on the shaded region.

(7) Compute the flux of $\mathbf{F}(x,y) = \langle xy^2 + 2x, x^2y - 2y \rangle$ across the simple closed curve that is the boundary of the half-disk given by $x^2 + y^2 \le 9$, $y \ge 0$.

Figure 1: Problem 4.

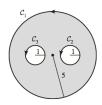


Figure 2: Problem 6.