REVIEW

- (1) The boundary of a surface S is denoted by ∂S . We say that S is closed if ∂S is empty.
- (2) Suppose that S is oriented (a continuously varying unit normal is specified at each point of S). The boundary orientation of ∂S is defined as follows: If you walk along the boundary in the positive direction with your left hand pointing in the normal direction, then the surface is on your left.
- (3) Stokes' Theorem relates the circulation around the boundary to the surface integral of the curl:

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}.$$

(4) Surface independence: If $\mathbf{F} = \operatorname{curl}(\mathbf{A})$, then the flux of \mathbf{F} through a surface \mathcal{S} depends only on the oriented boundary ∂S and not on the surface itself:

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{A} \cdot d\mathbf{r}.$$

In particular, if S is *closed* (i.e., ∂S is empty) and $\mathbf{F} = \text{curl}(\mathbf{A})$, then $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 0$. If S_1 and S_2 are oriented surfaces that share an oriented boundary and $\mathbf{F} = \text{curl}(\mathbf{A})$, then

$$\iint_{\mathcal{S}_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{S}_2} \mathbf{F} \cdot d\mathbf{S}.$$

(5) The curl is interpreted as a vector that encodes circulation per unit area: If P is any point and \mathbf{n} is a unit vector, then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \approx (\operatorname{curl}(\mathbf{F}) \cdot \mathbf{n}) \operatorname{Area}(\mathcal{D}),$$

where C is a small, simple closed curve around P in the plane through P with unit normal vector \mathbf{n} , and D is the region enclosed by C.

PROBLEMS

(1) Verify Stokes' Theorem for $\mathbf{F} = \langle yz, 0, x \rangle$ and \mathcal{S} is the portion of the plane $\frac{x}{2} + \frac{y}{3} + z = 1$ where $x, y, z \geq 0$.

Solution: Show that $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = -1 = \iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$.

- (2) Apply Stokes' Theorem to evaluate $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ by finding the flux of $\operatorname{curl}(\mathbf{F})$ across an appropriate surface.
 - (a) $\mathbf{F} = \langle yz, xy, xz \rangle$, \mathcal{C} is the square with vertices (0,0,2), (1,0,2), (1,1,2), and (0,1,2), oriented counterclockwise as viewed from above. Solution: $-\frac{3}{2}$.
- (b) $\mathbf{F} = \langle y, z, x \rangle$, \mathcal{C} is the triangle with vertices (0,0,0), (3,0,0), and (0,3,3), oriented counterclockwise as viewed from above. SOLUTION: 0.

(3) Let I be the flux of $\mathbf{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.

(a) Let $\mathbf{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field \mathbf{A} such that $\operatorname{curl}(\mathbf{A}) = \mathbf{G}$.

Solution: $\mathbf{A} = \langle 0, 0, e^y - e^{x^2} \rangle$.

(b) Use Stokes' theorem to show that the flux of G through S is zero. *Hint:* Calculate the

circulation of **A** around ∂S .

SOLUTION: Use $\iint_S \mathbf{G} \cdot d\mathbf{S} = \oint_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{r}$.

(c) Calculate *I*. *Hint*: Use (b) to show that *I* is equal to the flux of $\langle 0, 0, z^2 \rangle$ through *S*.

Solution: Use $\mathbf{F} = \text{curl}(\mathbf{A}) + \langle 0, 0, z^2 \rangle$.

(4) Let $\mathbf{F} = \langle y^2, x^2, z^2 \rangle$. Show that

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two closed curves lying on a cylinder whose central axis is the z-axis (figure below).

SOLUTION: Apply Stokes' theorem for the part of the cylinder for which C_1 and C_2 are boundary curves.

Figure 1: Problem 4.