Review

(1) Divergence of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$:

$$
\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} .
$$

(2) Divergence Theorem: Let \mathcal{S} be a closed surface that encloses a region \mathcal{W} in \mathbb{R}^{3}. Assume that \mathcal{S} is piecewise smooth and is oriented by normal vectors pointing to the outside of \mathcal{W}. Let \mathbf{F} be a vector field whose domain contains \mathcal{W}. Then

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{\mathcal{W}} \operatorname{div}(\mathbf{F}) d V
$$

(3) If $\operatorname{div}(\mathbf{F})=0$, then \mathbf{F} has zero flux through the boundary $\partial \mathcal{W}$ of any \mathcal{W} contained in the domain of \mathbf{F}.
(4) The divergence $\operatorname{div}(\mathbf{F})$ is interpreted as "flux per unit volume", which means that the flux through a small closed surface containing a point P is approximately equal to $\operatorname{div}(\mathbf{F})(P)$ times the enclosed volume.
(5) Basic operations on functions and vector fields:

$$
\underset{\text { function }}{f} \quad \stackrel{\nabla}{\longrightarrow} \quad \underset{\text { vector field }}{\mathbf{F}} \quad \xrightarrow{\text { curl }} \quad \underset{\text { vector field }}{\mathbf{G}} \quad \xrightarrow{\text { div }} \underset{\text { function }}{g}
$$

(6) The result of two consecutive operations is zero:

$$
\operatorname{curl}(\nabla(f))=\mathbf{0}, \quad \operatorname{div}(\operatorname{curl}(\mathbf{F}))=0
$$

(7) The inverse-square field $\mathbf{F}_{\text {IS }}=\mathbf{e}_{r} / r^{2}$, defined for $r \neq 0$, satisfies $\operatorname{div}\left(\mathbf{F}_{\text {IS }}\right)=0$. The flux of $\mathbf{F}_{\text {IS }}$ through a closed surface \mathcal{S} is 4π if \mathcal{S} contains the origin and is zero otherwise.

Problems

(1) Which of the following is correct (\mathbf{F} is a continuously differentiable vector field defined everywhere)?
(a) The flux of $\operatorname{curl}(\mathbf{F})$ through all surfaces is zero.
(b) If $\mathbf{F}=\nabla \phi$, then the flux of \mathbf{F} through all
surfaces is zero.
(c) The flux of $\operatorname{curl}(\mathbf{F})$ through all closed surfaces is zero.
(2) How does the Divergence Theorem imply that the flux of $\mathbf{F}=\left\langle x^{2}, y-e^{z}, y-2 z x\right\rangle$ through a closed surface is equal to the enclosed volume?
(3) Apply the Divergence Theorem to evaluate the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$.
(a) $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle, \mathcal{S}$ is the boundary of the (b) $\mathbf{F}=\langle x+y, z, z-x\rangle, \mathcal{S}$ is the boundary of the cylinder given by $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$. region between the paraboloid $z=9-x^{2}-y^{2}$ and the $x y$-plane.
(4) Calculate the flux of the vector field $\mathbf{F}=2 x y \mathbf{i}-y^{2} \mathbf{j}+\mathbf{k}$ thorugh the surface \mathcal{S} in figure 1. (Hint: Apply the Divergence Theorem to the closed surface consisting of \mathcal{S} and the unit disk).
(5) Let $I=\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=\left\langle\frac{2 y z}{r^{2}},-\frac{x z}{r^{2}},-\frac{x y}{r^{2}}\right\rangle
$$

$\left(r=\sqrt{x^{2}+y^{2}+z^{2}}\right)$ and \mathcal{S} is the boundary of a region \mathcal{W}.
(a) Check that \mathbf{F} is divergence-free.
(b) Show that $I=0$ if \mathcal{S} is a sphere centered at
the origin. Explain, however, why the Divergence Theorem cannot be used to prove this.

Figure 1: Problem 4.

