Name: Solutions
Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira
December 4th, 2018

Review

(1) Green's Theorem: \mathcal{D} is a domain in the plane and $\partial \mathcal{D}$ is its boundary. Then:

$$
\oint_{\partial \mathcal{D}} F_{1} d x+F_{2} d y=\iint_{\mathcal{D}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

or

$$
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) d A
$$

(2) Stokes' Theorem: \mathcal{S} is an oriented surface and $\partial \mathcal{S}$ is its boundary. Then:

$$
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S} .
$$

(3) Divergence Theorem: Let \mathcal{S} be a closed surface that encloses a region \mathcal{W} in \mathbb{R}^{3}. Assume that \mathcal{S} is piecewise smooth and is oriented by normal vectors pointing to the outside of \mathcal{W}. Let \mathbf{F} be a vector field whose domain contains \mathcal{W}. Then

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{\mathcal{W}} \operatorname{div}(\mathbf{F}) d V
$$

Problems

(1) Use Green's Theorem to evaluate the line integral around the given closed curve.
(a) $\oint_{\mathcal{C}} x y^{3} d x+x^{3} y d y$, where \mathcal{C} is the rectangle $-1 \leq x \leq 2,-2 \leq y \leq 3$, oriented counterclockwise. Solution: -30 .
(b) $\oint_{\mathcal{C}} y^{2} d x-x^{2} d y$, where \mathcal{C} consists of the arcs $y=x^{2}$ and $y=\sqrt{x}, 0 \leq x \leq 1$, oriented clockwise. Solution: $\frac{3}{5}$.
(2) Let I be the flux of $\mathbf{F}=\left\langle e^{y}, 2 x e^{x^{2}}, z^{2}\right\rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
(a) Let $\mathbf{G}=\left\langle e^{y}, 2 x e^{x^{2}}, 0\right\rangle$. Find a vector field \mathbf{A} such that $\operatorname{curl}(\mathbf{A})=\mathbf{G}$.
Solution: $\quad \mathbf{A}=\left\langle 0,0, e^{y}-e^{x^{2}}\right\rangle$.
(b) Use Stokes' theorem to show that the flux of G through \mathcal{S} is zero. Hint: Calculate the
circulation of \mathbf{A} around ∂S.
Solution: Use $\iint_{S} \mathbf{G} \cdot d \mathbf{S}=\oint_{\mathcal{C}} \mathbf{A} \cdot d \mathbf{r}$.
(c) Calculate I. Hint: Use (b) to show that I is equal to the flux of $\left\langle 0,0, z^{2}\right\rangle$ through \mathcal{S}.
Solution: Use $\mathbf{F}=\operatorname{curl}(\mathbf{A})+\left\langle 0,0, z^{2}\right\rangle$.
(3) Let \mathcal{S} be the portion of the plane $z=x$ contained in the half-cylinder of radius R. Use Stokes' theorem to calculate the circulation of $\mathbf{F}=\langle z, x, y+2 z\rangle$ around the boundary of \mathcal{S} (a half-ellipse) in the counterclockwise direction when viewed from above.

Solution: Show that curl (\mathbf{F}) is orthogonal to the normal vector to the plane. The circulation is zero.
(4) Show that the circulation of $\mathbf{F}(x, y, z)=\left\langle x^{2}, y^{2}, z\left(x^{2}+y^{2}\right)\right\rangle$ around any curve \mathcal{C} on the surface of the cone $z^{2}=x^{2}+y^{2}$ is equal to zero.
Solution: Show that $\operatorname{curl}(\mathbf{F})$ at a given point in the region enclosed by \mathcal{C} is orthogonal to the normal vector and use Stokes.
(5) Compute the flux of $\mathbf{F}=\left\langle x y z+x y, \frac{1}{2} y^{2}(1-z)+e^{x}, e^{x^{2}+y^{2}}\right\rangle, \mathcal{S}$ is the boundary of the solid bounded by the cylinder $x^{2}+y^{2}=16$ and the planes $z=0$ and $z=y-4$.
Solution: -128π.
(6) Compute the flux of $\mathbf{F}=\left\langle\sin (y z), \sqrt{x^{2}+z^{4}}, x \cos (x-y)\right\rangle, \mathcal{S}$ is any smooth closed surface that is the boundary of a region in \mathbb{R}^{3}.
Solution: 0.

Figure 1: Problem 5.

Figure 2: Problem 4.

