REVIEW

(1) **Green's Theorem:** \mathcal{D} is a domain in the plane and $\partial \mathcal{D}$ is its boundary. Then:

$$\oint_{\partial \mathcal{D}} F_1 dx + F_2 dy = \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

or

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) \, dA.$$

(2) Stokes' Theorem: S is an oriented surface and ∂S is its boundary. Then:

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}.$$

(3) **Divergence Theorem:** Let S be a closed surface that encloses a region W in \mathbb{R}^3 . Assume that S is piecewise smooth and is oriented by normal vectors pointing to the outside of W. Let F be a vector field whose domain contains W. Then

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \operatorname{div}(\mathbf{F}) \, dV.$$

PROBLEMS

- (1) Use Green's Theorem to evaluate the line integral around the given closed curve.
 - (a) $\oint_{\mathcal{C}} xy^3 dx + x^3y dy$, where \mathcal{C} is the rectangle $-1 \le x \le 2$, $-2 \le y \le 3$, oriented counterclockwise. Solution: -30.
 - (b) $\oint_{\mathcal{C}} y^2 dx x^2 dy$, where \mathcal{C} consists of the arcs $y = x^2$ and $y = \sqrt{x}$, $0 \le x \le 1$, oriented clockwise. Solution: $\frac{3}{5}$.
- (2) Let I be the flux of $\mathbf{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
 - (a) Let $\mathbf{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field \mathbf{A} such that $\operatorname{curl}(\mathbf{A}) = \mathbf{G}$.

SOLUTION: $\mathbf{A} = \langle 0, 0, e^y - e^{x^2} \rangle$.

(b) Use Stokes' theorem to show that the flux of G through S is zero. *Hint:* Calculate the

circulation of **A** around ∂S .

Solution: Use $\iint_S \mathbf{G} \cdot d\mathbf{S} = \oint_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{r}$.

- (c) Calculate *I*. *Hint*: Use (b) to show that *I* is equal to the flux of $\langle 0, 0, z^2 \rangle$ through *S*. Solution: Use $\mathbf{F} = \text{curl}(\mathbf{A}) + \langle 0, 0, z^2 \rangle$.
- (3) Let \mathcal{S} be the portion of the plane z=x contained in the half-cylinder of radius R. Use Stokes' theorem to calculate the circulation of $\mathbf{F}=\langle z,x,y+2z\rangle$ around the boundary of \mathcal{S} (a half-ellipse) in the counterclockwise direction when viewed from above.

SOLUTION: Show that $\operatorname{curl}(\mathbf{F})$ is orthogonal to the normal vector to the plane. The circulation is zero.

(4) Show that the circulation of $\mathbf{F}(x,y,z) = \langle x^2, y^2, z(x^2+y^2) \rangle$ around any curve \mathcal{C} on the surface of the cone $z^2 = x^2 + y^2$ is equal to zero.

Solution: Show that $\operatorname{curl}(\mathbf{F})$ at a given point in the region enclosed by $\mathcal C$ is orthogonal to the normal vector and use Stokes.

(5) Compute the flux of $\mathbf{F} = \langle xyz + xy, \frac{1}{2}y^2(1-z) + e^x, e^{x^2+y^2} \rangle$, \mathcal{S} is the boundary of the solid bounded by the cylinder $x^2 + y^2 = 16$ and the planes z = 0 and z = y - 4.

Solution: -128π .

(6) Compute the flux of $\mathbf{F} = \langle \sin(yz), \sqrt{x^2 + z^4}, x \cos(x - y) \rangle$, \mathcal{S} is any smooth closed surface that is the boundary of a region in \mathbb{R}^3 .

SOLUTION: 0.

Figure 1: Problem 5.

Figure 2: Problem 4.