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Abstract: We study the minimal free resolution of the edge ideal of the complement of the n-cycle
for n ≥ 4 and construct a regular cellular complex which supports this resolution.

1 Introduction

Let S = k[x1, . . . , xn] be a polynomial ring in n variables over a field k. We are interested in
the structure of the minimal free resolutions of quadratic monomial ideals of S. The method of
polarization allows us to narrow our considerations to square-free quadratic monomial ideals. The
minimal monomial generators of such an ideal can be easily encoded in a graph as follows: let G
be a graph with vertex set {1, . . . , n}, the edge ideal of G is the monomial ideal IG of S whose
minimal monomial generators are the monomials xixj where (i, j) is an edge of G. Much work has
been done to discover connections between the combinatorial properties of the graph G and the
algebraic properties of its edge ideal IG. The properties of the complement graph Gc have turned
out to be useful in this endeavour; recall that the complement of G is the graph Gc such that the
vertex set of Gc the same as the vertex set of G and the edges of Gc are the non-edges of G. One
of the main results about resolutions of edge ideals was proved by Fröberg [Frö88] and states that
an edge ideal IG has a linear minimal free resolution if and only if the complement graph Gc is
chordal.

We consider the question of whether there exists a regular cellular structure which supports the
minimal free resolution of an edge ideal. In [BW02], Batzies and Welker showed that if an edge
ideal has a linear minimal free resolution then there is a CW-cellular complex which supports that
resolution. Their proof is non-constructive, however. Corso and Nagel in [CN08] and [CN09] and
Horwitz in [Hor07] construct explicit regular cellular structures for several classes of edge ideals
with linear minimal free resolutions. In view of these results, we focus on edge ideals whose minimal
free resolutions are not linear, but are close to being linear. The simplest non-chordal graphs are
cycles of length four or greater and the simplest examples of edge ideals with non-linear resolutions
are the edge ideals of the complements of such cycles. We study the minimal free resolutions of
such ideals. By [EGHP05] and [FRG09] we know that the minimal free resolution of the edge ideal
of the complement of the n-cycle is linear until homological degree n−4 and that the only non-zero
Betti number in homological degree greater than n− 4 is βn−3,n = 1.

Let In ⊂ S be the edge ideal of the complement of the n-cycle. That is, In = (x1x3, x1x4, . . . ,
x1xn−1, x2x4, x2x5, . . . , x2xn, . . . , xn−2xn). Let Jn = In + (x1xn). We study the minimal free
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resolution of S/In by first considering the minimal free resolution of S/Jn. In Section 2 we construct
an explicit resolution for S/Jn and a regular cellular complex which supports this resolution (a
different cellular complex is constructed in [CN08]; see Remark 3.8). Then in Section 3 we obtain
a regular cell complex which supports the resolution of S/In from that which we constructed for
S/Jn.

2 The Resolution of S/Jn

We begin this section by constructing a basis and differential maps for the minimal free resolution
of S/Jn. The minimal free resolution of S/Jn has basis {1} in homological degree 0 and basis in
homological degree f + 1 the set of symbols x = (xixj ; e1, . . . , ec, ec+1 . . . , ec+r, . . . , ef ) where xixj

is a minimal monomial generator of Jn with i < j, e1 < e2 < · · · < ec+r < i < i + 1 < ec+r+1 <
· · · < ef < j, and ec+1 = i− r, ec+2 = i− r + 1, . . . , ec+r = i− 1, ec 6= i− r − 1 .

The differential is made up of three maps, ∂, µ1, and µ2 which we define below. First define
b(m) for a monomial m to be the largest (in the lex order with x1 > x2 > · · · > xn) minimal
generator of the ideal Jn that divides m.

Then we define

∂(x) =
f∑

p=1

∂ep(x)

where
∂ep(x) = (−1)pxep(xixj ; e1, . . . , êp, . . . ef ) .

The second map is defined by

µ1(x) =
f∑

q=1

µ
eq

1 (x)

where
µ

eq

1 (x) = (−1)q+1 xixjxq

b(xixjxq)
(b(xixjxq); e1, . . . , êq, . . . , ef ) ,

Finally, we define

µ2(x) =
c+r−1∑
s=c+1

µes
2 (x)

where

µes
2 (x) = (−1)c+r+1xes+1(xesxj ; e1, . . . , ec, ec+1, . . . , ês, ês+1, . . . , ec+r, i, ec+r+1, . . . , ef ) .

It will sometimes be the case that the symbols appearing in µ1(x) are not valid elements the
basis as defined above. It is understood in this case that those terms of µ1(x) are zero.

Define d(x) = ∂(x) + µ1(x) + µ2(x) for x in homological degree 2 or higher. In homological
degree 1 define d(xixj ; ∅) = xixj . Then d(x) is the differential of the minimal free resolution of
S/Jn with the basis described above. Before proving that the minimal free resolution of S/Jn has
basis and differential as described, we prove the following lemma.

Lemma 2.1. Let x = (xixj ; e1, . . . , ec, ec+1 . . . , ec+r, . . . , ef ) as above. Then d2(x) = 0.
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Proof. Every term of d2(x) has the form (−1)txuxv ·y where y is the symbol for some basis element
in homological degree f . We call xuxv the coefficient of this term and we proceed by considering
all the terms of d2(x) with the same coefficient xuxv and show that these terms cancel.

First note that for all p, q ∈ {1, . . . , f} (assume without loss of generality that p < q), we have
the following equality

∂ep ◦ ∂eq(x) = (−1)p+qxepxeq(xixj ; e1, . . . , êp, . . . , êq, . . . , ef )
= −∂eq ◦ ∂ep(x) .

In other words, ∂2(x) = 0 for all x. In view of this, in the following we consider only the terms of
d2(x) which do not come from ∂2(x).

There are several cases to consider, but first we make the following observations:

1. b(xixjxep) = xixep if ep 6= i− 1
b(xixjxep) = xjxep if ep = i− 1
So µ1 always contributes xi or xj to the coefficient of a term of d(x)

2. µ2 always contributes xep with c+ 2 ≤ p ≤ c+ r

3. ∂ always contributes xep with 1 ≤ p ≤ f .

Case 1. Consider the terms of d2(x) with the coefficient xepxeq where p− 1, q − 1 /∈ {c+ 1, . . . , c+
r − 1}, p < q. The only terms with this coefficient come from ∂ep ◦ ∂eq and ∂eq ◦ ∂ep . We have
already shown that ∂ep ◦ ∂eq(x) = −∂eq ◦ ∂ep(x), so we are done.

Case 2. Consider terms of d2(x) with the coefficient xepxeq where p−1 ∈ {c+1, . . . , c+r−1}, q−1 /∈
{c+ 1, . . . , c+ r − 1}, again with p < q.

In this case µ2 can also contribute to the coefficient xepxeq so we also have the terms

∂eq ◦ µep−1

2 (x) = (−1)c+r+qxepxeq(xep−1xj ; e1, . . . , ec+1 . . . , êp−1, êp, . . . , ec+r, i, . . . , êq, . . . , ef )
= −µep−1

2 ◦ ∂eq(x) .

The case where p ∈ {c+ 1, . . . , c+ r − 1} and q /∈ {c+ 1, . . . , c+ r − 1} but q < p is analogous
and results in the same relation

∂eq ◦ µep−1

2 (x) = −µep−1

2 ◦ ∂eq(x) .

Case 3. Next we consider terms of d2(x) with the coefficient xepxeq where p − 1, q − 1 ∈ {c +
1, . . . , c+ r − 1} and p < q.

If p < q − 1, then as in Case 2 we have

∂ep ◦ µeq−1

2 (x) = −µeq−1

2 ◦ ∂ep(x) .

In this case (p < q − 1), we also have the following relation

∂eq ◦ µep−1

2 (x) = (−1)c+r+q−1xeqxep(xep−1xj ; e1, . . . , ec+1 . . . , êp−1, êp, . . . , êq, . . . , ec+r, i, . . . , ef )
= −µep−1

2 ◦ µeq−1

2 (x) .

3



Finally, if instead we have p = q − 1, then

µq−2
1 ◦ µq−1

2 (x) = (−1)c+r+qxeqxeq−1(xq−2xj ; e1, . . . , ec+1, . . . , êq−2, êq−1, êq, . . . , ec+r, i, . . . , ef )

= −∂eq ◦ µq−2
2 (x) .

Case 4. Consider the terms of d2(x) with the coefficient xixep , p ∈ {1, . . . , f}. The only terms of
d2(x) with xi in the coefficient come from µi−1

1 or from ∂i.
If p 6= c+ r (recall that ec+r = i− 1), then we have

∂ep ◦ µi−1
1 (x) = −µi−1

1 ◦ ∂ep(x) .

To see this in the case where p < c+ r, note that

∂ep ◦ µi−1
1 (x) = (−1)c+r+1+pxixep(xi−1xj ; e1, . . . , êp . . . , êc+r, . . . , ef )

= −µi−1
1 ◦ ∂ep(x) .

On the other hand, if p = i− 1

µi−2
1 ◦ µi−1

1 (x) = (−1)c+r+1+c+rxixi−1(xi−2xj ; e1, . . . , ec, ec+1, . . . , êc+r−1, êc+r, . . . , ef )
= −∂i ◦ µi−2

2 (x) .

Finally, if p− 1 ∈ {c+ 1, . . . , c+ r − 2}, then we also have the relation

∂i ◦ µep−1

2 (x) = (−1)c+r+c+rxixep(xep−1xj ; e1, . . . , ec, ec+1, . . . , êp−1, êp, . . . , ec+r, . . . , ef ))

= −µep−1

2 ◦ µi−1
1 (x) .

Case 5. Now we consider terms of d2(x) with the coefficient xjxep , p ∈ {1, . . . , f}. There are two
ways that xj can be part of the coefficient. The first is that xj comes from µf

1 .
If p 6= f and ef 6= i− 1, then we have

∂ep ◦ µef

1 (x) = (−1)f+1+pxepxj(xixf ; e1, . . . , êp, . . . , ef−1)

= −µef

1 ◦ ∂
ep(x) .

If instead we have p = f , and ef , ef−1 6= i− 1 then

µ
ef−1

1 ◦ ∂ef (x) = (−1)2fxef
xj(xixf−1; e1, . . . , ef−2)

= −µef−1

1 ◦ µef

1 (x) .

Finally, if we have p− 1 ∈ {c+ 1, . . . , c+ r − 1} and ef > i+ 1,

µ
ep−1

2 ◦ µef

1 (x) = (−1)f+c+r+2xpxj(xp−1xf ; e1, . . . , ec+1, . . . , êp−1, êp, . . . , ec+r, i, ec+r+1 . . . , ef−1)
= −µef

1 ◦ µ
ep−1

2 (x) .

The other way that xj can be part of the coefficient of a term of d2(x) is that it comes from µ
eq

1

where eq+1 6= eq + 1 and where f = c+ r.
In this case, if p < q, we have

∂ep ◦ µeq

1 (x) = (−1)q+1+pxepxj(xeqxi; e1, . . . , êp, . . . , êq, . . . , ec+1, . . . , ec+r)
= −µeq

1 ◦ ∂
ep(x) .
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The case where p > q is similar and results in the same relation.
In addition, if p < q and ep = ep−1 + 1, ep+1 = ep + 1, . . . , eq = eq−1 + 1, then we have

µ
ep−1

2 ◦ µeq

1 (x) = (−1)2q+1xepxj(xep−1xi; e1, . . . , êp−1, êp, . . . , eq, . . . , ec+1, . . . , ec+r))
= −µep−1

1 ◦ ∂ep(x) .

Case 6. Finally we consider terms of d2(x) whose coefficients are xixj . First note that the variable
xi only divides the coefficient of terms which come from µ1 or terms which come from ∂i ◦ µ2.
However, the coefficient of ∂i ◦ µep

2 (x) 6= xixj for any p. This together with the fact that xj only
appears as part of a coefficient via the map µ1 means that xixj only appears as the coefficient of
terms of µ2

1.
Hence the only terms of d(x)2 which have coefficient xixj appear in two cases. The first case is

when f = c+ r, eq+1 6= eq + 1. In this case we have

µ
ec+r

1 ◦ µeq

1 (x) = (−1)q+1+c+rxixj(xeqxi−1; e1, . . . , êq, . . . , ec+1, . . . , ec+r−1)
= −µeq

1 ◦ µ
ec+r

1 (x) .

The other case in which we have terms with the coefficient xixj is when f 6= c+ r. In this case
we have

µ
ef

1 ◦ µ
ec+r

1 (x) = (−1)c+r+1+fxixj(xi−1xef
; e1, . . . , êc+r, . . . , ef−1)

= −µec+r

1 ◦ µef

1 (x) .

Theorem 2.2. The minimal free resolution of S/Jn has basis 1 in homological degree 0 and basis
(xixj ; e1, . . . , ec, ec+1 . . . , ec+r, . . . , ef ) in homological degree f+1 where xixj is a minimal generator
of Jn and e1 < e2 < · · · < ec+r < i < i + 1 < ec+r+1 < · · · < ef < j, ec+1 = i − r, ec+2 =
i− r+ 1, . . . , ec+r = i− 1, and ec 6= i− r− 1. The differential of the resolution is the map d defined
above.

Proof. We prove this by induction on n. First consider the case where n = 4. The minimal free
resolution, G, of S/J4 is the following

0 S2 S3 S 0 ,
d1 d0

where the basis of G1 is {
(x1x3; ∅), (x1x4; ∅), (x2x4; ∅),

}
,

and the basis of G2 is {
(x1x4; 3), (x2x4; 1)

}
.

The differential of G is given by the following two maps:

d0 =
(
x1x3 x1x4 x2x4

)
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d1 =

 x4 0
−x3 x2

0 −x1

 .

It is easily checked that this is exact and hence it is the minimal free resolution of S/J4.
Now assume that the minimal free resolution of S/Jn−1 is as stated. Call this minimal free

resolution F. We will construct the minimal free resolution of S/Jn by using a series of mapping
cones; one for each of the minimal monomial generators x1xn, . . . , xn−2xn. First we have the
following short exact sequence:

0 S/(Jn−1 : x1xn) S/Jn−1 S/(Jn−1 + (x1xn)) 0 .
x1xn

The ideal Jn + (x1xn) is the edge ideal of the complement of the n-cycle with the additional edge
{1, n}. In this graph, the edge {1, n} is a splitting edge as defined by Hà and Van Tuyl in [HVT07].
In their paper they study the effect on the edge ideal of removing a splitting edge from a graph as
in the short exact sequence above. In the remainder of this proof we will have similar short exact
sequences for each minimal monomial generator xuxn, however only this first short exact sequence
and the last, (that corresponding to the final minimal generator xn−2xn), are examples of short
exact sequences representing the removal of a splitting edge.

Note that the ideal (Jn−1 : x1xn) = (x3, x4, . . . , xn−1). Then the minimal free resolution of
S/(Jn−1 : x1xn) is the Koszul complex on the variables {x3, x4, . . . , xn−1}. Call this Koszul complex
K(1) and shift the multigrading so that the generator in homological degree 0 has multidegree x1xn.
We denote the generator in homological degree 0 of K(1) by (x1xn; ∅), and the basis in homological
degree f ≥ 1 by {

(x1xn; e1, e2, . . . , ef )
∣∣ 3 ≤ e1 < · · · < ef ≤ n− 1

}
.

The differential of K(1) is given by ∂ as we have defined it above.
Let µ = µ1 + µ2, and extend µ so that µ((x1xn; ∅)) = −x1xn. It is easy to see that ∂2 = 0, so

by Lemma 2.1 we have µ ◦ ∂ = −d ◦ µ. Thus the map (−µ) : K(1) −→ F is a map of complexes of
degree 0 which lifts the map S/(Jn−1 : x1xn) x1xn−→ S/Jn−1.

The mapping cone of (−µ) : K(1) → F gives us a minimal free resolution of S/(Jn−1 + (x1xn))
with differential ∂ + µ. Call this resolution F(1).

For each of the minimal monomial generators x1xn, x2xn, . . . , xn−2xn of Jn we have a similar
short exact sequence and mapping cone. We show the step which adds the minimal monomial
generator xuxn. Let F(u−1) be the minimal free resolution of S/(Jn−1 + (x1xn, x2xn, . . . , xu−1xn))
obtained in the previous step. The basis of F(u−1) in degree f + 1 is{

(xixj ; e1, . . . , ec, . . . , ef )
∣∣e1 < e2 < · · · < ec < i, i+ 1 < ec+1 < · · · < ef

}
where xixj is a minimal generator of the ideal (Jn−1 + (x1xn, . . . , xu−1xn)).

We have the short exact sequence:

0 // S/((Jn−1 + (x1xn, . . . , xu−1xn)) : xuxn)
xuxn // S/(Jn−1 + (x1xn . . . , xu−1xn)) EDBC

GF@A
// S/(Jn−1 + (x1xn, . . . , xuxn)) // 0 .
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Note that (Jn−1 + (x1xn, . . . , xu−1xn) : xuxn) = (x1, x2, . . . , xu−1, xu+2, . . . , xn). Let K(u) be the
Koszul complex on the elements {x1, x2, . . . , xu−1, xu+2, . . . , xn}. We multigrade this complex so
that the basis element in homological degree 0 has multidegree xuxn. K(u) has differential ∂ and
basis in homological degree f given by{

(xuxn; e1, . . . , ec . . . , ef )
∣∣e1 < e2 < · · · < ec < u, u+ 1 < ec+1 < · · · < ef < n

}
.

As before, we define µ(xuxn; ∅) = −xuxn. Then the map (−µ) : K(u) −→ F(u−1) is a map of
complexes of degree 0 which lifts the map S/(Jn−1 + (x1xn, . . . , xu−1xn) : xuxn) xuxn−→ S/(Jn−1 +
(x1xn, . . . , xu−1xn)). Let F(u) be the mapping cone complex of this map of complexes. F(u) is a
free resolution of S/(Jn−1 + (x1xn, . . . , xuxn)). This resolution is minimal since the basis elements
in homological degree f > 0 all have multidegree a monomial of degree f + 1.

Next we construct a regular cellular structure which supports the minimal free resolution of
S/Jn which we have just constructed.

Theorem 2.3. There exists a regular cell complex supporting the minimal free resolution of the
ideal S/Jn for all n ≥ 4.

Proof. We proceed by induction on n. A regular cell complex supporting the minimal free resolution
of S/J4 = S/(x1x3, x1x4, x2x4) is shown in Figure 1.

We use the same notation as in the proof of Theorem 2.2: F is the minimal free resolution of
S/Jn−1 with basis and differential as in Theorem 2.2, F(u) the minimal free resolution of S/(Jn−1 +
(x1xn, . . . , xuxn)), and K(u) the Koszul complex on the variables {x1, . . . , xu−1, xu+2, . . . , xn−1}
shifted so that the generator in homological degree 0 has multidegree xuxn.

Let Xn−1 be a regular cellular complex supporting S/Jn−1. We will construct a regular cellular
complex supporting the minimal free resolution of S/Jn by constructing a regular cellular complex
X

(u)
n−1 supporting the resolution F(u) for each 1 ≤ u ≤ n− 2 in turn.

Recall from the proof of Theorem 2.2 that F(1) is the mapping cone of the map (−µ) :
K(1) −→ F where K(1) is the Koszul complex on the variables {x3, . . . , xn−1}. The Koszul complex
K(1) is supported on an (n − 4)-dimensional simplex with vertices labeled by the basis elements

x1x3

x1x4

x2x4

Figure 1: A regular cell complex supporting the minimal free resolution of S/J4.
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(x1xn;x3) . . . , (x1xn;xn−1. Since the mapping cone construction shifts the basis elements of K(1)

up a homological degree, these vertices become the new one-dimensional cells. The 1-cell (x1xn;xi)
has endpoints (x1xn; ∅) and (x1xi; ∅). Thus adding K(1) to F corresponds to adding a cone over
the point (x1xn; ∅) to Xn−1. This cone is attached to Xn−1 at the cell (x1xn−1; 3, . . . n− 2) since

µ((x1xn; 3, . . . , n− 1)) = (−1)n−2xn(x1xn−1; 3, . . . , n− 2) .

LetX(1)
n−1 beXn−1 together with this cone over the point (x1xn; ∅) with base the cell (x1xn−1; 3, . . . , n−

2). Since Xn−1 was regular and since the base of the cone we have just added is a single (n − 4)-
dimensional cell, the complex X1

n−1 is a regular cell complex which supports the resolution F(1).

Now suppose that we have constructed a regular cell complex, X(u−1)
n−1 supporting the resolution

F(u−1). We wish to construct a regular cellular complex X
(u)
n−1 supporting F(u). We obtain F(u)

from the mapping cone of the map (−µ) : K(u) −→ F(u−1).
The Kozsul complex K(u) is supported on an (n− 4)-dimensional simplex with vertices labeled

by the basis elements {(xuxn; j)|j ∈ {1, . . . , u − 1, u + 2, . . . , n − 1}}. Again, the mapping cone
construction shifts the basis elements of K(u) up a homological degree so that these vertices become
the new 1-cells. The 1-cell (xuxn; j) has endpoints (xuxn; ∅) and (xjxu; ∅) for j 6= u − 1 and for
j = u − 1 the cell (xuxn; j) has endpoints (xuxn∅) and (xjxn; ∅). Adding K(u) to F(u−1) thus
corresponds to adding a cone over the point (xuxn; ∅). The base of this cone is the collection of
cells in X(u−1)

n−1 which are labelled by the basis elements of F(u−1) which make up µ(xuxn; 1, 2, . . . , u−
1, u+ 2, . . . , n− 1). In other words, the base of the cone is the collection of cells

(xuxn−1; 1, 2, . . . , u− 1, u+ 2, . . . , n− 2),
(x1xn; 3, . . . , u, u+ 2, . . . , n− 1),

(x2xn; 1, 4, . . . , u− 1, u, u+ 2, . . . , n− 1),
...

(xu−2xn; 1, . . . , u− 3, u, u+ 2, . . . , n− 1),
(xu−1xn; 1, . . . , u− 2, u+ 2, . . . , n− 1).

Let X(u)
n−1 be the regular cell complex X

(u−1)
n−1 together with this cone. In order to show that

X
(u)
n−1 is regular we need only show that the union of the cells labelled by

(xuxn−1; 1, 2, . . . , u− 1, u+ 2, . . . , n− 2),
(x1xn; 3, . . . , u, u+ 2, . . . , n− 1),

(x2xn; 1, 4, . . . , u− 1, u, u+ 2, . . . , n− 1),
...

(xu−2xn; 1, . . . , u− 3, u, u+ 2, . . . , n− 1),
(xu−1xn; 1, . . . , u− 2, u+ 2, . . . , n− 1)

in the cell complex X(u−1)
n−1 is homeomorphic to an (n− 4)-dimensional ball.

First consider just the first two elements in this list. The intersection of these two elements is

µ1
2((xuxn−1; 1, 2, . . . , u− 1, u+ 2, . . . , n− 2)) = (x1xn−1; 3, 4, . . . , u− 1, u, u+ 2, . . . , n− 2)

= ∂n−1((x1xn; 3, . . . , u, u+ 2, . . . , n− 1))
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if u > 2, and

µ1
1((x2xn−1; 1, 4, . . . , n− 2)) = (x1xn−1; 4, . . . , n− 2)

= ∂n−1((x1xn; 4 . . . , n− 1))

if u = 2. (We have already considered the case where u = 1). In either case the intersection consists
of a single cell of dimension n− 5. This is homeomorphic to an (n− 5)-ball and thus the union of
the two elements (xuxn−1; 1, 2, . . . , u − 1, u + 2, . . . , n − 2) and (x1xn; 3, . . . , u, u + 2, . . . , n − 1) is
homeomorphic to an (n− 4)-ball.

Now suppose that we know that the union of the first p elements in the list are homeomorphic
to an (n− 4)-ball. Explicitly, we assume that the union of the cells

(xuxn−1; 1, 2, . . . , u− 1, u+ 2, . . . , n− 2),
(x1xn; 3, . . . , u, u+ 2, . . . , n− 1),

(x2xn; 1, 4, . . . , u− 1, u, u+ 2, . . . , n− 1),
...

(xp−1xn; 1, . . . , p− 2, p+ 1, . . . , u− 1, u, u+ 2, . . . , n− 1)

is homeomorphic to an (n− 4)-dimensional ball.
The intersection of the cell (xpxn; 1, . . . , p−1, p+2, . . . , u−1, u, u+2, . . . , n−1) with the union

of cells listed above is the following union of cells:

(xpxn−1; 1, . . . , p− 1, p+ 2, . . . , u, u+ 2, . . . , n− 2),
(x1xn; 3, . . . , p, p+ 2, . . . , u, u+ 2, . . . , n− 1),

(x2xn; 1, 4, . . . , p, p+ 2, . . . , u, u+ 2, . . . , n− 1),
...

(xp−1xn; 1, . . . , p− 2, p+ 2, . . . , u, u+ 2, . . . , n− 1) .

These cells are the collection of cells which come from µ(∂u+1(xpxn; 1, . . . , p− 1, p+ 2, . . . , n− 1)).
Since (xpxn; 1, . . . , p− 1, p+ 2, . . . , n− 1) is a regular cell which is a cone over the point (xpxn; ∅),
the face ∂u+1((xpxn; 1, . . . , p − 1, p + 2, . . . , n − 1)) is also a regular cell which is a cone over the
point (xpxn; ∅. Therefore the base cells of this cone (i.e. the cells of µ(∂u+1(xpxn; 1, . . . , p− 1, p+
2, . . . , n− 1))) must be homeomorphic to an (n− 5)-ball and thus the union of the set of cells

(xuxn−1; 1, 2, . . . , u− 1, u+ 2, . . . , n− 2),
(x1xn; 3, . . . , u, u+ 2, . . . , n− 1),

(x2xn; 1, 4, . . . , u− 1, u, u+ 2, . . . , n− 1),
...

(xp−1xn; 1, . . . , p− 2, p+ 1, . . . , u− 1, u, u+ 2, . . . , n− 1)

and the cell (xpxn; 1, . . . , p−1, p+2, . . . , u−1, u, u+2, . . . , n−1) is homeomorphic to an (n−4)-ball.

Example 2.4. In Figure 2 we show the steps in constructing the regular cell structure supporting
the minimal free resolution of S/J5 from that supporting the minimal free resolution of S/J4

(shown in Figure 1). Part (a) of Figure 2 shows the regular cell structure supporting the minimal
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free resolution of S/J4. The first step in the construction adds a cone over the point (x1x5; ∅) with
base the cell (x1x4; 3). This step is shown in Figure 2 (b).

The next step of the construction adds a cone over the point (x2x5; ∅) with base the union of
the cells (x2x4; 1) and (x1x5; 4). This step is shown in Figure 2 (c).

The final step in the construction is shown in Figure 2 (d). It adds a cone over the point
(x3x5; ∅) with base the union of the cells (x2x5; 1) and (x1x5; 3).

(a)

x1x3

x1x4

x2x4

(b)

x2x4

x1x3

x1x4

x1x5

(c)

x1x3

x1x4

x2x4x2x5

x1x5

(d)

x1x3

x3x5

x2x5 x2x4

x1x4

x1x5

Figure 2: The construction of a regular cell complex supporting the minimal free resolution of S/J5.

Definition 2.5. We say a CW-complex, X, is pure of dimension d if every cell of X is contained
in the boundary of a cell of dimension d.

Proposition 2.6. The regular cell complex Xn constructed in Theorem 2.3 which supports the
minimal free resolution of S/Jn is pure of dimension n− 3.

Proof. We prove this by induction on n. It is clear from Figure 1 that the regular cell complex
supporting the minimal free resolution of S/J4 is pure of dimension 1. Now let Xn be the regular cell
complex supporting the minimal free resolution of S/Jn and suppose that the regular cell complex
Xn−1 supporting S/Jn−1 is pure of dimension n − 4. By the way we constructed Xn from Xn−1

every cell of Xn which was not in Xn−1 is contained in the boundary of an (n − 3)-dimensional
cell. Therefore, to finish the proof we need to show that every cell of Xn−1 is contained in an
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(n − 3)-dimensional cell in Xn. Since Xn−1 is pure of dimension n − 4, we only need to consider
the (n− 4)-dimensional cells of Xn−1.

Every (n− 4)-dimensional cell of Xn−1 has the form (xixn−1; 1, 2, . . . , i− 1, i+ 2, . . . , n− 2) for
some 1 ≤ i ≤ n− 3. Then

µn−1
1 ((xixn; 1, 2, . . . , i− 1, i+ 2, . . . , n− 1)) = (−1)n−2xn(xixn−1; 1, 2, . . . , i− 1, i+ 2, . . . , n− 2) ,

so (xixn−1; 1, 2, . . . , i − 1, i + 2, . . . , n − 2) is part of the boundary of the (n − 3)-dimensional cell
(xixn; 1, 2, . . . , i− 1, i+ 2, . . . , n− 1) in Xn. Hence Xn is pure of dimension n− 3.

3 The resolution of S/In

In this section we construct a regular cell complex which supports the minimal free resolution of
S/In. We do this by taking the cells from the regular cell complex supporting S/Jn which we have
already constructed which do not contain the point x1xn and then adding an additional cell. We
then show that the resulting complex satisfies the necessary acyclicity conditions so that it supports
the minimal free resolution of S/In.

Before we construct the regular cell complex supporting the minimal free resolution of S/In, we
need to know more about the structure of the regular cell complex we constructed to support the
minimal free resolution of S/Jn. To this end, we need the following lemma and proposition.

Lemma 3.1. The cells of Xn which contain as part of their boundary the point (x1xn; ∅) are
exactly those cells which are labeled by symbols of the form (xixn; 1, 2, . . . , i − 1, ei, ei+1, . . . , ef )
where i+ 2 ≤ ei < ei+1 < · · · < ef < n.

Proof. One direction of this claim is easy. Any cell of the form (xixn; 1, 2, . . . , i− 1, ei, ei+1, . . . , ef )
contains in its boundary a cell of the form (x1xn; t1, . . . , td). To see this, note that if i = 1 then
the original cell is already of this form. If not, then applying µ1

1 (if i = 2), or µ1
2 (if i > 2) yields a

cell of the desired form. Then repeated applications of ∂ to (x1xn; t1, . . . , td) will eventually yield
(x1xn; ∅).

We prove the opposite direction by induction on the dimension of the cell. Clearly the only
1-dimensional cells which contain (x1xn; ∅) in their boundary are cells of the form (x1xn; j) for
some 3 ≤ j ≤ n− 1 and the cell (x2xn; 1).

Now suppose that the claim holds for cells of dimension f−1. Let x = (xixj ; e1, . . . , ef ) be a cell
of dimension f which contains (x1xn; ∅) as part of its boundary. In order for (x1xn; ∅) to be part of
the boundary of x it must be part of the boundary of one of the cells which make up d(x). Let y be
a cell which contains (x1xn; ∅) and appears as a term of d(x). Since y is a cell of dimension f − 1,
by the induction hypothesis it must be of the form y = (xuxn; 1, 2, . . . , u−1, tu, tu+1, . . . , tf−1) with
u+ 1 < tu < tu+1 < · · · < tf−1 < n.

In order for y to be a term of d(x), either y is a term of ∂(x) or y is a term of µ(x). If y is
a term of ∂(x), x must have the form (xuxn; 1, 2, . . . , u − 1, eu, . . . , ef ) with {tu, tu+1, . . . , tf−1} ⊂
{eu, eu+1, . . . , ef}.

Since xn divides the multidegree of y, if y is a term of µ(x) then x = (xixn; e1, . . . , ef ). In order
for µ2(x) to be non-zero, x must have the form (xixj ; 1, 2, . . . , i−1, ei, ei+1, . . . , ef ). So if y is a term
of µ2(x), x = (xixn; 1, 2, . . . , i−1, ei, ei+1, . . . , ef ) with i > u+1. Finally, since b(xuxixn) = xuxn if
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and only if i = u+1, if y is a term of µ1(x) then we must have x = (xu+1xn; 1, 2, . . . , v, eu+1, . . . , ef ).
Thus, in order for (x1xn; ∅) to be contained in the boundary of x, x must be of the form x =
(xixn; 1, . . . , i− 1, ei, ei+1, . . . , ef ).

Proposition 3.2. Let Xn be the regular cell complex supporting the minimal free resolution of S/Jn

which was constructed in Theorem 2.3. Then the boundary of the union of the (n− 3)-dimensional
cells of Xn is homeomorphic to a sphere of dimension n− 4.

Proof. The dimension n− 3 cells of Xn correspond to the following basis elements of the minimal
free resolution of S/Jn:

(x1xn; 3, 4, . . . , n− 1),
(x2xn; 1, 4, . . . , n− 1),

...
(xpxn; 1, 2, . . . , p− 1, p+ 2, . . . , n− 1),

...
(xn−2xn; 1, 2, . . . , n− 3) .

By Lemma 3.1, all of these cells contain the point (x1xn; ∅). Any two of these (n− 3)-dimensional
cells intersect in exactly one (n− 4)-dimensional cell which also contains the point (x1xn; ∅). More
explicitly, the intersection of the cells (xpxn; 1, 2, . . . , p− 1, p+ 2, . . . , n− 1) and (xqxn; 1, 2, . . . , q−
1, q + 2, . . . , n − 1) where p < q is exactly the (n − 4)-dimensional cell (xpxn; 1, 2, . . . , p − 1, p +
2, . . . , q̂ + 1, . . . , n−1). Conversely, every (n−4)-dimensional cell which contains the point (x1xn; ∅)
is of the form (xpxn; 1, 2, . . . , p− 1, p+ 2, . . . , q̂ + 1, . . . , n− 1) and thus is contained in boundary of
exactly two (n−3)-dimensional cells. On the other hand, an (n−4)-dimensional cell which does not
contain (x1xn; ∅) can have two forms. It is either of the form (xpxn−1; 1, 2, . . . , p−1, p+2, . . . , n−2)
or of the form (xpxn; 1, . . . , q̂, . . . , p − 1, p + 2, . . . , n − 1). In either of these cases the (n − 4)-
dimensional cells is contained in exactly one (n − 3)-cell, (xpxn; 1, 2, . . . , p − 1, p + 2, . . . , n − 1).
This structure together with the fact that Xn is contractible means that Xn is homeomorphic to
an (n − 3)-dimensional ball. Therefore the boundary of Xn, by which we mean the (n − 4)-cells
which are contained in only one (n− 3)-dimensional cell is homeomorphic to an (n− 4)-sphere.

Now we are ready to construct a CW-complex which supports the minimal free resolutionof
S/In.

Construction 3.3. Define a CW-complex Yn as follows:
The dimension 0 cells of Yn are the dimension 0 cells of Xn minus the 0-cell (x1xn; ∅). The

dimension f cells of Yn are the dimension f cells of Xn which do not contain the point (x1xn; ∅) in
their boundary for 1 ≤ f ≤ n− 4. There is one dimension n− 3 cell of Yn whose boundary is the
union of all the dimension n− 4 cells of Yn.

Before proving that Yn supports the minimal free resolution of S/In we will need the following
definition.

Definition 3.4. Let X be a CW-complex whose 0-cells are labeled by monomials and whose
higher dimensional cells are labeled by the lcm of the monomials labeling the 0-cells contained in
the boundary of the given cell. For a monomial m define X≤m to be the subcomplex of X consisting
of all cells labeled by monomials which divide m.
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Theorem 3.5. The minimal free resolution of S/In is supported on the regular cellular complex
Yn.

Proof. We need only show that for every monomial m in the lcm lattice of In, the subcomplex
(Yn)≤m is acyclic. Let m be an element of the lcm lattice of In which is not the product of all the
variables x1, . . . , xn. If x1xn does not divide m, then (Yn)≤m = (Xn)≤m. Since the CW-complex
Xn supports the minimal free resolution of S/Jn, we know that (Xn)≤ m is acyclic.

Now suppose that x1xn does divide m. Let m = x1x2 · · · · · xixei+1 · · · · · xef
. Then by Lemma

3.1 the only cell of Xn which has multidegree m and contains the point x1xn in its boundary is the
cell x = (xixn; 1, 2, . . . , i− 1, ei+1, . . . , ef ). Since we got Yn from Xn by taking the cells which did
not contain the point (x1xn; ∅), (Xn)≤m = (Yn)≤m ∪ x where x is attached to (Yn)≤m along the
cells of the boundary of x which do not contain the point (x1xn; ∅). Since (Xn)≤m is contractible,
if we knew that the intersection of the cell x with (Yn)≤ was also contractible, then (Yn)≤m would
have to be contractible as well.

To see that the union of the cells of the boundary of x containing the point (x1xn; ∅) is con-
tractible, suppose that y and z are two cells contained in the boundary of x such that (x1xn; ∅) is
contained in the boundary of both y and z. Further suppose that w = (xuxv; p1, . . . , pc) is a cell
contained in the intersection of y and z. Since both y and z contain (x1xn; ∅), they have the form
y = (xj1xn; 1, 2, . . . , i1−1, t1, . . . , tf1) and z = (xj2xn; 1, 2, . . . , i2−1, s1, . . . , sf2). Let the lcm of the
multidegree of y and the multidegree of z be x1x2 · · · · ·xjxe1 · · · · ·xef

where j = min{j1, j2}. Then
it is not hard to check that w is contained in the cell (xjxn; 1, 2, . . . , j − 1, e1, . . . , ef ) which is also
contained in the intersection of y and z. Since all of the cells in the boundary of x which contain
the point (x1xn; ∅) intersect in cells which also contain (x1xn; ∅), the union of cells in the boundary
of x which contain (x1xn; ∅) is contractible. Since Xn is a regular CW-complex, the boundary of
x is homeomorphic to a sphere, therefore the union of the cells of the boundary of x which do not
contain (x1xn; ∅) is also contractible.

Finally, we must check that (Yn)≤x1·····xn is acyclic as well. By construction of Yn, we know
(Yn)≤x1·····xn = Yn, which consists of a single (n − 3)-dimensional cell whose boundary is homeo-
morphic to a sphere. Therefore, Yn is acyclic, and we are done.

We end with two examples of regular cell complexes which support the minimal free resolution
of S/I4 and S/I5.

Example 3.6. The regular cell complex which we constructed in Theorem 2.3 which supports the
minimal free resolution of S/J4 is shown in Figure 3 (a). A regular cell complex which supports
the minimal free resolution of S/I4 is obtained from this cell complex by removing the cells which
contain the 0-cell (x1x4; ∅) (for simplicity, in Figure 3 this cell is labeled by its multidegree x1x4),
and adding a 1-cell whose boundary made up of the cells (x1x3; ∅) and (x2x4; ∅). This is shown in
Figure 3 (b).

Example 3.7. The regular cell complex which we constructed in Theorem 2.3 which supports the
minimal free resolution of S/J5 is shown in Figure 4 (a). A regular cell complex which supports
the minimal free resolution of S/I5 is obtained from this cell complex by removing the cells which
contain the 0-cell (x1x5; ∅), and adding a 1-cell whose boundary made up of the cells (x1x4; 3),
(x2x4; 1), (x2x5; 4), (x3x5; 2), and (x3x5; 1). This complex is shown in Figure 4 (b).
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(a)

x1x3

x1x4

x2x4

(b)

x1x3

x2x4

Figure 3: Regular cell complexes which support the minimal free resolutions of (a) S/J4 and (b)
S/I4.

(a)

x1x3

x3x5

x2x5 x2x4

x1x4

x1x5

(b)

x1x3

x3x5

x2x5 x2x4

x1x4

Figure 4: Regular cell complexes which support the minimal free resolutions of (a) S/J5 and (b)
S/I5.

Remark 3.8. Let M be a monomial ideal in S. The minimal free resolution FM of S/M can have
more than one cellular structure. A cellular structure uses a fixed basis, and different choices of
basis in FM can yield different cellular structures.

The ideal Jn is an example of a specialization of a Ferrers ideal. Corso and Nagel showed in
[CN08] that such an ideal is supported on a regular cell complex. However for n ≥ 5 the regular cell
complex they constructed is different than that constructed in this paper. For example, Figure 5
(a) shows the regular cell complex which supports the minimal free resolution of S/J5 constructed
in [CN08], and (b) shows that constructed in this paper.

The goal of this paper is to construct a cellular resolution of S/In. The cellular structure on
the minimal free resolution of S/Jn is just used as a tool. The cellular structure in [CN08] cannot
be used as a tool in the proof of Theorem 3.5 in the same way as we use our cellular structure.
Consider how the proof of Theorem 3.5 works in the example in Figure 5. We use the cellular
complex in Figure 5 (b) by removing all the cells containing the vertex x1x5 and then gluing a new
two-dimensional cell to the remaining pentagon (the pentagon is the boundary of the new cell).
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(a)

x1x3

x1x4

x2x4x2x5

x3x5

x1x5

(b)

x1x3

x3x5

x2x5 x2x4

x1x4

x1x5

Figure 5:

If we remove the cells containing the vertex x1x5 from the cellular complex in Figure 5 (a), then
we get the four edges {{x1x3, x1x4}, {x1x4, x2x4}, {x2x4, x2x5}, {x2x5, x3x5}} which don’t form a
cycle, so we cannot glue a new two-dimensional cell to them.

It should also be noted that for small numbers of n the resolution constructed here is the same
as that constructed by Horwitz in [Hor07], however for n ≥ 9 Horwitz’s resolution cannot be applied
to the ideals Jn (see Example 3.18 in [Hor07]).
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