Math 4740 Spring 2013 Prelim 3/1/13 Time Limit: 50 Minutes

This exam contains 5 pages (including this cover page) and 3 problems. Check to see if any pages are missing.

Name:

You may not use books, notes, calculator, phone, tablet, laptop or any other device on this exam.

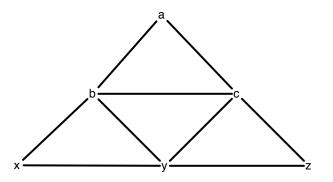
- Explain your answers. A correct answer with no explanation may receive no credit.
- **Organize your work** in a reasonably neat and coherent way. Work scattered all over the page without a clear ordering will receive very little credit.
- If you use a theorem from class you should indicate this and explain why the theorem may be applied.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem	Points	Score	
1	20		
2	25		
3	15		
Total:	60		

1. (20 points) Let X_n be a Markov chain with states a, b, c, d, e and transition matrix

			a	b	c	d	e
p	_	a	1	0	0	0	0
						0	
		c	0	.5	0	.5	0
		d	0	0	0	.8	.2
		e	0	0	0	.6	.4

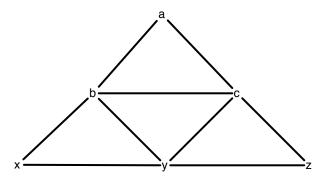
(a) (3 points) List all of the irreducible closed sets.


(b) (2 points) Which states are recurrent?

(c) (5 points) Find $\lim_{n\to\infty} p^n(d, e)$.

(d) (5 points) Find $P_c(T_a < T_e)$.

(e) (5 points) Find $\lim_{n\to\infty} p^n(c,e)$.


2. (25 points) Let X_n be random walk on the following graph

and let $T_a = \min\{n \ge 1 : X_n = a\}$ be the time of first return to a. (a) (5 points) Find $P_a(T_a = 3)$.

(b) (5 points) Find $\pi(a)$.

(c) (2 points) Find $E_a T_a$.

Let $T_B = \min\{n \ge 1 : X_n \in B\}$ where $B = \{x, y, z\}$. (d) (5 points) Find $E_a T_B$.

(e) (5 points) Starting at 11pm an ant performs random walk on the above anthill at a rate of one step every 10 seconds. Whenever she is at vertex a she picks up 5 grains of sugar, and whenever she is anywhere on the bottom row B if she has any sugar then she drops off 1 grain. Estimate how much sugar she is carrying at midnight.

(f) (3 points) Explain the source(s) of error in your estimate for part e.

- 3. (15 points) Let X_n be an <u>irreducible</u> Markov chain on a finite state space S with transition matrix p and stationary distribution π.
 For each sentence below circle True or False, and briefly explain your answer.
 - (a) All states are recurrent. True False

(b) There exists $n \ge 1$ such that all entries of the matrix p^n are positive. True False

(c) If p(x,x) > 0 for all $x \in S$, then $\lim_{n \to \infty} p^n(x,y) = \pi(y)$ for all $x, y \in S$. True False

(d) If μ is a row vector such that $\mu p = \mu$, then $\mu = \pi$. True False

(e) If $\sum_{x \in S} p(x, y) = 1$ for all $y \in S$, then $\pi(x) = \pi(y)$ for all $x, y \in S$. True False