
Math 4740: Practice Final Exam Solutions
Spring 2016

1. (a) Write a transition matrix P for a Markov chain (Xn) on the state
space {1, 2, 3, 4, 5} such that:

• States 1, 2, 3 are recurrent, while states 4, 5 are transient.

• The unique stationary distribution is
[
1/3 1/3 1/3 0 0

]
.

• The Markov chain does NOT converge to this stationary distribution
as time tends to infinity.

There are many possible solutions. Here is one:

P =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 1/2 1/4 1/4
0 0 0 1/2 1/2


(b) Let f(x) = 2x. What is

lim
n→∞

1

n

n∑
i=1

f(Xi)?

Let π be the stationary distribution given above. The desired limit is

5∑
x=1

π(x)f(x) = (1/3)(2 + 4 + 6) = 4.

(c) Still using f(x) = 2x, modify your transition matrix P so that the con-
ditions in part (a) remain satisfied but

E4

[
1

10

10∑
i=1

f(Xi)

]
≥ 9.
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In order for the average value of f(Xi) for 1 ≤ i ≤ 10 to be at least 9, it
is required that f(Xi) = 5 with high probability. To meet the conditions in
part (a), let

P =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0.01 0 0.99

 .
Starting from X0 = 4, one has X1 = X2 = · · · = X10 = 5 with probability
0.999 > 0.91. Therefore,

E4

[
1

10

10∑
i=1

f(Xi)

]
≥ P4(X1 = · · · = X10 = 5)× 10 > 9.1.

2. Let {N(t)} be a Poisson process with rate λ, and Xn = N(n) for integers
n ≥ 0. Is (Xn) a Markov chain? If not, explain why not. If so, explain why
it is, and write a formula for the transition probabilities P (i, j).

The Markov property is that given the history (X0, . . . , Xn), the value of
Xn+1 depends only on Xn and not the previous values of Xi for i < n. In
this case, Xn+1−Xn = N(n+1)−N(n) is independent of {N(t) : 0 ≤ t ≤ n}
by the independence of increments of the Poisson process. Therefore (Xn) is
a Markov chain.

The transition probabilities are P (i, j) = P(N(n + 1) = j | N(n) = i) =
P(N(n+ 1)−N(n) = j − i). Since N(n+ 1)−N(n) ∼ Poisson(λ),

P (i, j) = P(Poisson(λ) = j − i) = e−λ · λj−i

(j − i)!
when i ≤ j

and P (i, j) = 0 when i > j.

3. Let p0, p1, . . . be probabilities such that
∑∞

k=0 pk = 1. Consider the branch-
ing process (Xn) that evolves as follows: If Xn = m, each of the m individu-
als independently has a random number of children (having k children with
probability pk) and then dies, so that Xn+1 is the total number of children
produced by the individuals in the nth generation. Let µ =

∑∞
k=0 kpk < ∞

be the average number of children per individual.
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(a) Prove that Xn/µ
n is a martingale.

It suffices to check that

E

[
Xn+1

µn+1
− Xn

µn

∣∣∣∣ X0 = x0, . . . , Xn = xn

]
= 0,

or equivalently that

E[Xn+1 | X0 = x0, . . . , Xn = xn] = µxn. (1)

(The other condition is that E[|Xn|] < ∞. However, if we have verified
(1), it follows that E[Xn] < ∞ =⇒ E[Xn+1] < ∞, so by induction every
E[Xn] <∞, and since Xn ≥ 0 the absolute values are irrelevant.)

To check (1), assume there are xn individuals at time n. Let Yi be the number
of children of the ith individual, so that the Yi are iid with expectation µ.
Then Xn+1 = Y1 + Y2 + · · ·+ Yxn has expectation µxn.

(b) Assume that p1 < 1. Explain why for every m > 0,

P(Xn+j = m for all j ≥ 0 | Xn = m) = 0.

Let P (m,m) = P(Xi+1 = m | Xi = m), then the desired quantity is

∞∏
i=n

P(Xi+1 = m | Xi = m) =
∞∏
i=n

P (m,m),

which is zero as long as P (m,m) < 1. Choose some j 6= 1 for which pj >
0. With probability pmj , each of the m individuals at time i has exactly j
children, meaning that

P(Xi+1 = jm | Xi = m) ≥ pmj > 0

and therefore P (m,m) < 1.

(c) Suppose that µ = 1 and p1 < 1, and the process is started from X0 =
k. Use the martingale convergence theorem and part (b) to show that the
extinction probability Pk(Xn = 0 for some n) = 1.
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By part (a), (Xn) is a martingale. Because each Xn ≥ 0, the martingale
convergence theorem says that the sequence (X0, X1, . . .) converges to a limit
with probability 1. The Xn are integer-valued, so convergence to a limit
means that the sequence is eventually constant. Part (b) implies that the
probability of the sequence being eventually constant at any value m > 0
is zero. Therefore with probability 1, the sequence is eventually constant at
zero, which means that the population goes extinct.

4. Let {N(t)} be a Poisson process with rate 4. Compute:

(a) P(N(2) = 1)

N(2) ∼ Poisson(8) so P(N(2) = 1) = e−8(81/1!) = 8e−8.

(b) E[N(5) | N(2) = 1]

Given that N(2) = 1, N(5) − N(2) ∼ Poisson(12) and has expectation 12.
Hence E[N(5) | N(2) = 1] = 1 + E[N(5)−N(2)] = 13.

(c) Var(N(5) | N(2) = 1)

Var(N(5) | N(2) = 1) = Var(1 +N(5)−N(2)) = Var(N(5)−N(2)) = 12.

(d) E[N(2) | N(5) = 20]

Given that N(5) = 20, the 20 arrival times are distributed as independent
uniform random variables on [0, 5]. Each one has probability 2/5 of occurring
at or before time 2, so the expected number of arrivals by time 2 is (2/5)×
20 = 8.

5. Let Y1, Y2, . . . be iid normal random variables with mean 2 and variance
1. Let {N(t)} be a Poisson process with rate λ, independent of the Yi, and
let M(t) = Y1 + · · ·+ YN(t) (with M(t) = 0 if N(t) = 0). Prove that

E

[
M(t)

N(t)

∣∣∣∣ N(t) > 0

]
=

E[M(t)]

E[N(t)]
.

The theorem on random sums from class gives E[M(t)] = E[Yi]E[N(t)] =
2E[N(t)], so the right side of the equation is 2. For the left side, for each
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k > 0 we have

E

[
M(t)

N(t)

∣∣∣∣ N(t) = k

]
=

1

k
E[Y1 + · · ·+ Yk] =

2k

k
= 2.

Therefore,

E

[
M(t)

N(t)

∣∣∣∣ N(t) > 0

]
=

1

P(N(t) > 0)
E

[
M(t)

N(t)
;N(t) > 0

]
=

1

P(N(t) > 0)

∞∑
k=1

P(N(t) = k)E

[
M(t)

N(t)

∣∣∣∣ N(t) = k

]
=

1

P(N(t) > 0)

∞∑
k=1

P(N(t) = k)× 2

= 2.

6. The Ehrenfest urn process is a Markov chain (Xn) on {0, 1, . . . , N} whose
transition probabilities are

P (i, i+ 1) =
N − i
N

, P (i, i− 1) =
i

N
, P (i, j) = 0 otherwise.

(a) Verify that π(i) =
(
N
i

)
/2N is the stationary distribution for this chain.

We must check that for each 0 ≤ j ≤ N ,
∑N

i=0 π(i)P (i, j) = π(j). This
means

π(j − 1)P (j − 1, j) + π(j + 1)P (j + 1, j) = π(j).

Say that 1 ≤ j ≤ N − 1. The left side is

1

2N

[(
N

j − 1

)
· N − (j − 1)

N
+

(
N

j + 1

)
· j + 1

N

]
=

1

2N

[
N !

(j − 1)!(N − j + 1)!
· N − j + 1

N
+

N !

(j + 1)!(N − j − 1)!
· j + 1

N

]
=

1

2N

[
(N − 1)!

(j − 1)!(N − j − 1)!
·
(

1

N − j
+

1

j

)]
=

1

2N

[
(N − 1)!

(j − 1)!(N − j − 1)!
· N

j(N − j)

]
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which equals the right side.

When j = 0 we must check that π(1)P (1, 0) = π(0), which (when multiplied
by 2N on both sides) is equivalent to(

N

1

)
· 1

N
=

(
N

0

)
which is true. Likewise, when j = N we must check that π(N − 1)P (N −
1, N) = π(N), which is equivalent to(

N

N − 1

)
· 1

N
=

(
N

N

)
,

also true.

(b) Let Ti = min{n ≥ 0 : Xn = i} and h(i) = Pi(T0 < TN). When N = 4,
compute h(i) for all 0 ≤ i ≤ 4.

To start, h(0) = 1 and h(4) = 0. In between, we have the equations

h(1) =
1

4
h(0) +

3

4
h(2)

h(2) =
1

2
h(1) +

1

2
h(3)

h(3) =
3

4
h(2) +

1

4
h(4).

By symmetry around the midpoint of the interval, h(2) = 1/2. This means
h(1) = 1/4 + 3/8 = 5/8 and h(3) = 3/8 + 0 = 3/8. (Even without noticing
the symmetry, one could solve the system above without too much trouble.)

(c) Still with N = 4, let T = min{n ≥ 0 : Xn ∈ {0, 4}}. Show that h(Xn) is
not a martingale but h(XT∧n) is a martingale.

The martingale property for h(Xn) is that

E[h(Xn+1)− h(Xn) | X0 = x0, . . . , Xn = xn] = 0.

Say that Xn = 0, then Xn+1 = 1 with probability 1, so h(Xn+1) < h(Xn)
and the martingale property fails.
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The martingale property for h(XT∧n) is that

E[h(XT∧(n+1))− h(XT∧n) | X0 = x0, . . . , Xn = xn] = 0.

Suppose first that x0, . . . , xn are all between 1 and 3. Then T > n and the
expected value is

E[h(Xn+1)−h(Xn) | X0 = x0, . . . , Xn = xn] = E[h(Xn+1) | Xn = xn]−h(xn).

Since 1 ≤ xn ≤ 3, this quantity is zero because h satisfies the three equations
we gave in the solution of part (b).

Now suppose that for some i ≤ n we have xi ∈ {0, 4}. Then T ≤ n and the
expected value is

E[h(XT )− h(XT ) | X0 = x0, . . . , Xn = xn] = 0.

7. Let T1, T2, . . . be the arrival times for a Poisson process with rate λ. For
which real numbers r is Mn = Tn− rn a supermartingale? A submartingale?
A martingale?

We compute

E[Mn+1 −Mn | T1 = t1, . . . , Tn = tn]

= E[Tn+1 − r(n+ 1)− Tn + rn | T1 = t1, . . . , Tn = tn]

= E[Tn+1 − Tn]− r

=
1

λ
− r.

Therefore (Mn) is a supermartingale when r ≥ 1/λ, a submartingale when
r ≤ 1/λ, and a martingale when r = 1/λ.

(Note: E[|Mn|] ≤ E[Tn] + rn = n/λ+ rn <∞.)

8. Let {N(t)} be a Poisson process with rate λ and let c > 0. Prove that
{N(ct)} is also a Poisson process and find its rate.

It is enough to verify the three properties. First, N(c · 0) = 0. Second,
{N(ct)} has independent increments: if 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk, then the
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increments N(csi+1)−N(csi) are also disjoint increments of {N(t)}, so they
are independent. Finally, if 0 ≤ s ≤ t, N(ct)−N(cs) ∼ Poisson(λ(ct− cs)).
This means {N(ct)} is a Poisson process with rate λc.

9. Suppose the price Sn of a stock at time n follows the binomial model
with initial price S0 = 27. At each time step the price is multiplied either by
u = 4/3 or by d = 2/3. The interest rate is r = 1/9.

(a) Find the risk-neutral probability p∗ that the stock goes up at any given
time step.

By risk-neutrality, p∗(S0u) + (1− p∗)(S0d) = S0(1 + r). Therefore, p∗(4/3−
2/3) + 2/3 = 10/9 and so p∗ = (3/2)(4/9) = 2/3.

(b) What is the current value of a European put option with strike price 30
and expiration time 2?

The possible values of S2 with their risk-neutral probabilities are

P∗(S2 = 48) =
4

9
, P∗(S2 = 24) =

4

9
, P∗(S2 = 12) =

1

9
.

The expected payoff of the option is

4

9
× 0 +

4

9
× 6 +

1

9
× 18 =

14

3

and its current value is (81/100)(14/3) = $3.78.

(c) Without doing any additional computations, what can you say about the
current value of an American put option with strike 30 and expiration time
2?

It is at least $3.78. The American option gives more choices than the corre-
sponding European option, so it must be worth at least as much.

(d) Repeat parts (b) and (c) for a call option with the same strike and
expiration.

Let VP = $3.78 be the value of the European put and VC be the value of the
European call. By put-call parity,

VP − VC =
30

(1 + r)2
− S0 = 30× 81

100
− 27 = −$2.70.
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Therefore, VC = $3.78+$2.70 = $6.48. This could also be computed directly
using the method from (b).

The value of the American call is exactly $6.48 since in our model it is always
optimal to hold an American call until the expiration time.

(e) Suppose someone offers to sell you the put from part (b) for $1 cheaper
than the fair value in your answer. Describe how to implement an arbitrage
strategy.

The idea is to buy the put for $2.78 and also buy a portfolio that perfectly
hedges the risk.

Suppose that the stock goes up from time 0 to 1, so S1 = 36. The two
possibilities for S2 are 48 and 24, which correspond to option payoffs of 0
and 6. To replicate the option, we should hold (0 − 6)/(48 − 24) = −1/4
shares of stock between times 1 and 2. To hedge the option, which is what
we want, we should hold +1/4 shares of stock over this interval.

Suppose that the stock goes down from time 0 to 1, so S1 = 18. The two
possibilities for S2 are 24 and 12, which correspond to option payoffs of 6
and 18. To hedge the option, we should hold (18− 6)/(24− 12) = 1 share of
stock over this interval.

Finally, we need the strategy at time 0. The two possibilities for S1 are 36
and 18. If S1 = 36 the expected value of the option in time 1 dollars is
(9/10)[(2/3) · 0 + (1/3) · 6] = $1.80. If S1 = 24 the expected value of the
option in time 1 dollars is (9/10)[(2/3) · 6 + (1/3) · 18] = $9. Therefore to
hedge the option, we should hold (9 − 1.8)/(36 − 18) = 0.4 shares of stock
over this interval.

Here is the overall strategy. At time 0, buy the put for $2.78 and buy 0.4
shares of stock for 0.4 · 27 = $10.80. At time 1, if the stock has gone up
to $36, sell 0.15 shares of stock for $5.40 and hold onto the remaining 0.25
shares. Then at time 2 there are two choices. If the final price is $48, sell
the 0.25 shares for $12, choose not to exercise the put, and get a total profit
in time 0 dollars of (81/100) · 12 − 2.78 − 10.80 + (9/10) · 5.40 = $1. If the
final price is $24, sell the 0.25 shares for $6 and exercise the put for another
$6. The total profit in time 0 dollars is also $1.
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If instead the stock goes down to $18 at time 1, buy 0.6 more shares of stock
for $10.80 for a total of 1 share. At time 2 there are two choices. If the final
price is $24, sell the stock for $24 and exercise the put for $6 for a total profit
in time 0 dollars of (81/100) · 30− 2.78− 10.80− (9/10) · 10.80 = $1. If the
final price is $12, sell the stock for $12 and exercise the put for $18 so that
the total profit in time 0 dollars is still $1.

10. A critic of the Black-Scholes model makes the following argument. “The
model predicts that stock prices follow a log-normal distribution. The price
of a stock at time t is predicted to be

St = S0e
µt+σ

√
tZ (2)

where Z ∼ N(0, 1) is a standard normal random variable, and µ = r − σ2/2
where r is the interest rate. I estimated µ and σ for a variety of stocks using
historical data and found that the relationship µ = r−σ2/2 usually does not
hold. Since the stock price does not evolve as predicted, the option prices
given by the Black-Scholes model are wrong.” Do you think this is a valid
critique? What is your response?

The critic confuses the actual probability measure on stock prices with the
risk-neutral measure. Imagine for example that the historical data was taken
from a time period when stock prices tended to go up (i.e. a bull market).
Looking back, investing in stocks would have led to greater profits than
putting the money in the bank (or money market account) to get the risk-
free interest rate. So, the critic would have found that µ > r−σ2/2, which is
another way of saying that the stock prices (discounted by the interest rate)
did not behave as martingales in real life.

This is quite possible, but it does not affect the validity of the Black-Scholes
formula. The relationship µ = r − σ2/2 is supposed to hold under the risk-
neutral measure, which is a fiction designed only to make it easier to compute
option prices. Under the hypothetical bull market scenario, one could have
made money by investing in the stock market; but given a mispriced option,
there would have been an arbitrage opportunity as in problem 9(e).

The kernel of truth in the critic’s argument is that Black-Scholes does assume
that stock prices will follow a log-normal distribution, and to the extent this
assumption is violated (which it is in practice to some degree), the formulas
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for option prices will be incorrect. This critique says that the equation (2)
is mis-specified. Once the critic accepts equation (2) and starts estimating
values for µ and σ, the rest of their argument does not hold up.
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