Math 4740: Practice Final Exam Spring 2016

- 1. (a) Write a transition matrix P for a Markov chain (X_n) on the state space $\{1, 2, 3, 4, 5\}$ such that:
 - States 1, 2, 3 are recurrent, while states 4, 5 are transient.
 - The unique stationary distribution is $\begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \end{bmatrix}$.
 - The Markov chain does NOT converge to this stationary distribution as time tends to infinity.
- (b) Let f(x) = 2x. What is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i)?$$

(c) Still using f(x) = 2x, modify your transition matrix P so that the conditions in part (a) remain satisfied but

$$\mathbf{E}_4 \left[\frac{1}{10} \sum_{i=1}^{10} f(X_i) \right] \ge 9.$$

- 2. Let $\{N(t)\}$ be a Poisson process with rate λ , and $X_n = N(n)$ for integers $n \geq 0$. Is (X_n) a Markov chain? If not, explain why not. If so, explain why it is, and write a formula for the transition probabilities P(i,j).
- 3. Let p_0, p_1, \ldots be probabilities such that $\sum_{k=0}^{\infty} p_k = 1$. Consider the branching process (X_n) that evolves as follows: If $X_n = m$, each of the m individuals independently has a random number of children (having k children with probability p_k) and then dies, so that X_{n+1} is the total number of children produced by the individuals in the nth generation. Let $\mu = \sum_{k=0}^{\infty} k p_k < \infty$ be the average number of children per individual.
- (a) Prove that X_n/μ^n is a martingale.

(b) Assume that $p_1 < 1$. Explain why for every m > 0,

$$P(X_{n+j} = m \text{ for all } j \ge 0 \mid X_n = m) = 0.$$

- (c) Suppose that $\mu = 1$ and $p_1 < 1$, and the process is started from $X_0 = k$. Use the martingale convergence theorem and part (b) to show that the extinction probability $\mathbf{P}_k(X_n = 0 \text{ for some } n) = 1$.
- 4. Let $\{N(t)\}$ be a Poisson process with rate 4. Compute:
- (a) P(N(2) = 1)
- (b) $\mathbf{E}[N(5) \mid N(2) = 1]$
- (c) Var(N(5) | N(2) = 1)
- (d) $\mathbf{E}[N(2) \mid N(5) = 20]$
- 5. Let Y_1, Y_2, \ldots be iid normal random variables with mean 2 and variance 1. Let $\{N(t)\}$ be a Poisson process with rate λ , independent of the Y_i , and let $M(t) = Y_1 + \cdots + Y_{N(t)}$ (with M(t) = 0 if N(t) = 0). Prove that

$$\mathbf{E}\left[\frac{M(t)}{N(t)} \mid N(t) > 0\right] = \frac{\mathbf{E}[M(t)]}{\mathbf{E}[N(t)]}.$$

6. The *Ehrenfest urn* process is a Markov chain (X_n) on $\{0, 1, ..., N\}$ whose transition probabilities are

$$P(i, i + 1) = \frac{N - i}{N}, \qquad P(i, i - 1) = \frac{i}{N}, \qquad P(i, j) = 0 \text{ otherwise.}$$

- (a) Verify that $\pi(i) = {N \choose i}/2^N$ is the stationary distribution for this chain.
- (b) Let $T_i = \min\{n \geq 0 : X_n = i\}$ and $h(i) = \mathbf{P}_i(T_0 < T_N)$. When N = 4, compute h(i) for all $0 \leq i \leq 4$.
- (c) Still with N = 4, let $T = \min\{n \ge 0 : X_n \in \{0, 4\}\}$. Show that $h(X_n)$ is not a martingale but $h(X_{T \land n})$ is a martingale.

- 7. Let $T_1, T_2, ...$ be the arrival times for a Poisson process with rate λ . For which real numbers r is $M_n = T_n rn$ a supermartingale? A submartingale? A martingale?
- 8. Let $\{N(t)\}$ be a Poisson process with rate λ and let c > 0. Prove that $\{N(ct)\}$ is also a Poisson process and find its rate.
- 9. Suppose the price S_n of a stock at time n follows the binomial model with initial price $S_0 = 27$. At each time step the price is multiplied either by u = 4/3 or by d = 2/3. The interest rate is r = 1/9.
- (a) Find the risk-neutral probability p^* that the stock goes up at any given time step.
- (b) What is the current value of a European put option with strike price 30 and expiration time 2?
- (c) Without doing any additional computations, what can you say about the current value of an American put option with strike 30 and expiration time 2?
- (d) Repeat parts (b) and (c) for a call option with the same strike and expiration.
- (e) Suppose someone offers to sell you the put from part (b) for \$1 cheaper than the fair value in your answer. Describe how to implement an arbitrage strategy.
- 10. A critic of the Black-Scholes model makes the following argument. "The model predicts that stock prices follow a log-normal distribution. The price of a stock at time t is predicted to be

$$S_t = S_0 e^{\mu t + \sigma \sqrt{t}Z}$$

where $Z \sim N(0,1)$ is a standard normal random variable, and $\mu = r - \sigma^2/2$ where r is the interest rate. I estimated μ and σ for a variety of stocks using historical data and found that the relationship $\mu = r - \sigma^2/2$ usually does not hold. Since the stock price does not evolve as predicted, the option prices given by the Black-Scholes model are wrong." Do you think this is a valid critique? What is your response?