Math 4740: Homework 4

Due Friday, February 26 in class.

Textbook exercises (from section 1.12): 1.14, 1.36, 1.48(a).

For 1.36, to make the problem clearer, assume that bulbs always burn out during the daytime and are replaced overnight. Let X_n be the number of working bulbs at the end of day n and write the transition matrix for the Markov chain.

Additional problems:

1. Consider a Markov chain on the state space $\{a, b\}$ with transition matrix

$$P = \begin{bmatrix} 0.4 & 0.6\\ 0.3 & 0.7 \end{bmatrix}$$

where the first row/column correspond to state a and the second row/column correspond to state b. Let $T_a = \min\{n \ge 1 : X_n = a\}$ be the first positive time that the chain visits state a.

(a) Find the stationary distribution π of the Markov chain.

(b) Given an integer $k \ge 1$, write a formula for $\mathbf{P}_b(T_a = k)$. Also write a formula for $\mathbf{P}_b(T_a \ge k)$.

(c) Compute $\mathbf{E}_b[T_a]$. You may find useful the statement from HW #2 that if the random variable Y takes only nonnegative integer values, then $\mathbf{E}[Y] = \sum_{k=1}^{\infty} \mathbf{P}(Y \ge k)$.

(d) Write a formula for $\mathbf{E}_a[T_a]$ in terms of $\mathbf{E}_b[T_a]$, and use your answer from part (c) to compute $\mathbf{E}_a[T_a]$. Verify that $\pi(a) = 1/\mathbf{E}_a[T_a]$.

2. For a Markov chain (X_n) with transition matrix P, let $N(x) = \#\{n \ge 1 : X_n = x\}$ be the number of visits to state x at positive times. In HW #2 you showed that

$$\mathbf{E}_x[N(x)] = \sum_{n=1}^{\infty} P^n(x, x),$$

and this sum is finite if and only if the state x is transient. In that case, the "test for divergence" from calculus implies that $\lim_{n\to\infty} P^n(x,x) = 0$.

(a) For any other state y, let ρ_{yx} be the probability that the Markov chain started at y ever visits x. Prove that $\mathbf{E}_y[N(x)] = \rho_{yx}(1 + \mathbf{E}_x[N(x)])$.

(b) Deduce from part (a) and the test for divergence that if x is transient, then $\lim_{n\to\infty} P^n(y, x) = 0$ for all states y.

(c) Prove that if x is transient and π is any stationary distribution for the Markov chain, then $\pi(x) = 0$. *Hint:* Use that

$$(\pi P^n)(x) = \sum_{\text{all states } y} \pi(y) P^n(y, x).$$

3. Consider the Markov chain from Example 4.4 (p.28 of the printed textbook, pp.23-24 of the online PDF).¹ Use the distribution of the first return time to state **0** to compute the value $\pi(\mathbf{0})$ of the stationary distribution.

¹I have no idea why Example 4.4 is in the middle of Chapter 1 between Examples 1.22 and 1.23. There's also an Example 4.4 in Chapter 4.