
Math 4740: Homework 5 Solutions

1. (a) When f = 1x,
∑n

i=1 f(Xi) = Nn(x) and
∑

y∈X π(y)f(y) = π(x).
Therefore the desired statement reduces to

lim
n→∞

Nn(x)

n
= π(x) with probability 1,

which was shown in class.

(b) Fix y ∈ X . By the definition of 1x,
∑

x∈X cx1x(y) = cy = f(y).

(c) First use (b) to expand f as a linear combination of the 1x, then bring
the limit inside the linear combination and use (a).

lim
n→∞

1

n

n∑
i=1

f(Xi) = lim
n→∞

1

n

n∑
i=1

∑
x∈X

cx1x(Xi) =
∑
x∈X

cx lim
n→∞

1

n

n∑
i=1

1x(Xi)

=
∑
x∈X

cxπ(x) =
∑
x∈X

π(x)f(x) with probability 1.

2. (a) For each 0 ≤ i ≤ N − 1, π(i)P (i, i + 1) = π(i + 1)P (i + 1, i). Since
P (i, i+1) = 1/3 and P (i+1, i) = 2/3, this means π(i) = 2π(i+1). Therefore
for any 0 ≤ j ≤ N , π(j) = 2−jπ(0). We compute

1 =
N∑
j=0

π(j) =
N∑
j=0

2−jπ(0) = (2− 2−N)π(0).

Therefore π(0) = 1/(2− 2−N) = 2N/(2N+1− 1) and π(j) = 2N−j/(2N+1− 1).

(b) Again, each π(j) = 2−jπ(0), and

1 =
∞∑
j=0

π(j) = 2π(0),

so π(0) = 1/2 and π(j) = 2−j−1. For each j > 0, P (i, j) = 0 except when
i = j ± 1, when we have P (j − 1, j) = 1/3 and P (j + 1, j) = 2/3. Therefore,

∞∑
i=0

π(i)P (i, j) =
1

3
π(j − 1) +

2

3
π(j + 1) =

1

3
· 1

2j
+

2

3
· 1

2j+2
=

1

2j+1
= π(j).



When j = 0 we have

∞∑
i=0

π(i)P (i, 0) = π(0)P (0, 0) + π(1)P (1, 0) =
1

2
· 2

3
+

1

4
· 2

3
=

1

2
= π(0).

3. Under the assumptions, the total number of spaces equals the total number
of words. Therefore the total number of characters (i.e. letters plus spaces)
equals the number of letters plus the number of words. So:

π(space) =
# spaces

# characters
=

743842922321

743842922321 + 3563505777820
= 0.1727,

π(F ) =
# letters F

# characters
=

85635440629

743842922321 + 3563505777820
= 0.0199,

π(Z) =
# letters Z

# characters
=

3205398166

743842922321 + 3563505777820
= 0.0007.

4. We compute

P (F,O) =
# 2-grams FO

# letters F
=

13753006196

85635440629
= 0.1606,

P (O,R) =
# 2-grams OR

# letters O
=

35994097756

272276534337
= 0.1322.

P (space, F ) is the probability that a word starts with F , while P (R, space)
is the probability that a given letter R occurs at the end of its word.

P (space, F ) =
# words starting with F

# words
=

29952197540

743842922321
= 0.0403,

P (R, space) =
# words ending with R

# letters R
=

43881791800

223767519675
= 0.1961.

5. (a) We have

π(α) =
f(α)∑
γ f(γ)

, P (α, β) =
f(α, β)

f(α)
,

where the sum in the denominator of π(α) is over all characters γ.



(b) To verify that πP = π, we must check that
∑

α π(α)P (α, β) = π(β) for
all characters β. Let Z =

∑
γ f(γ). Then

∑
α

π(α)P (α, β) =
∑
α

f(α)

Z
· f(α, β)

f(α)
=

1

Z

∑
α

f(α, β),

which will equal π(β) = f(β)/Z as long as
∑

α f(α, β) = f(β). This is true
because every time the character β appears, it is preceded by some other
character, so if we sum over all possible preceding characters α, we get the
total number of occurrences of β.

The alert reader may notice a minor problem with the reasoning above. We
are treating the Google corpus as a long string of words, each one followed
by a space. What if β0 is the very first letter in the corpus? Then f(β0) is
the total number of occurrences of β0, while

∑
α f(α, β0) is the total number

of times that β0 occurs after some other character. So

f(β0) = 1 +
∑
α

f(α, β0),

while for β 6= β0, f(β) =
∑

α f(α, β) as desired. The solution is to declare
that if β0 is the first letter in the corpus, then f(space, β0) should not denote
the total number of occurrences of the 2-gram (space, β0), but rather the total
number of words beginning with β0, which is the number of occurrences of
(space, β0) plus one.

In fact, this modification is necessary for the definition of P given in part (a)
actually to give a valid transition matrix. When we declared that P (α, β) =
f(α, β)/f(α), we were asserting that for each character α,

∑
β f(α, β) =

f(α), in order for each row of P to sum to 1. Since f(α) is the total number of
occurrences of α and

∑
β f(α, β) is the number of times that α is followed by

some other character, this is true except when α is the very last character in
the corpus, which we are assuming is a space. That is, using the unmodified
definition of f(α, β), we have f(α) =

∑
β f(α, β) for all α 6= (space), but

f(space) = 1 +
∑

β f(space, β). When we increase f(space, β0) by 1, this
makes f(space) =

∑
β f(space, β), so that P is a valid transition matrix.

If you look at the computation of P (space, F ) in problem 4, you will see that
we have implicitly followed this rule.



6. (a) There are many solutions to this problem. For example, the probability
that a string of 3 consecutive characters in the Markov model equals BLL is

Pπ(Xk = B,Xk+1 = L,Xk+2 = L)

= π(B)P (B,L)P (L,L)

=
52905544693

743842922321 + 3563505777820
· 6581097936

52905544693
· 16257360474

144998552911

= 0.0001713.

Since the whole corpus has 743842922321+3563505777820 = 4307348700141
characters, there are 4307348700141 − 2 = 4307348700139 strings of 3 con-
secutive characters, each of which has probability 0.0001713 of being BLL.
Hence the expected number of occurrences of BLL in a body of text pro-
duced by the Markov model with the same length as the Google corpus is
0.0001713 · 4307348700139 = 7.379 · 108. The actual number of occurrences
is zero!

Note: To make the reasoning above rigorous, let (X0, . . . , XN−1) be the text
produced by the Markov model, where N = 4307348700141. For 0 ≤ k ≤
N − 3, define random variables 1k to be 1 if (Xk, Xk+1, Xk+2) = (B,L, L)
and 0 otherwise. The variables 1k are not independent, but by linearity of
expectation,

Eπ[# occurrences of BLL] = Eπ

[
N−3∑
k=0

1k

]
=

N−3∑
k=0

Eπ[1k]

=
N−3∑
k=0

Pπ(Xk = B,Xk+1 = L,Xk+2 = L) = (N − 2)π(B)P (B,L)P (L,L).

(b) The word FOR (preceded and followed by spaces) appears 6545282031 ≈
6.5 · 109 times in the data set. To figure out how many times it would be
expected to appear from the Markov model, there are two approaches which
yield essentially the same answer.

First approach: In a body of text with 743842922321 words produced by the
Markov model, how many of them would be the word FOR? The probability



that any individual word is FOR is

Pspace(X1 = F,X2 = O,X3 = R,X4 = space)

= P (space, F )P (F,O)P (O,R)P (R, space)

= 0.0001676,

using the computations from problem 4. Therefore the expected number of
words FOR is 743842922321 · 0.0001676 = 1.2470× 108.

Second approach: In a body of text with 4307348700141 characters produced
by the Markov model, what is the expected number of occurrences of the 5-
gram (space, F, O,R, space)? The probability that any particular string of 5
consecutive characters is (space, F, O,R, space) equals

Pπ(Xk = space, Xk+1 = F,Xk+2 = O,Xk+3 = R,Xk+4 = space)

= π(space)P (space, F )P (F,O)P (O,R)P (R, space)

= 0.00002895.

The number of strings of 5 consecutive characters is 4307348700141 − 4 =
4307348700137. Therefore, the expected number of occurrences of the 5-gram
is 4307348700137 · 0.00002895 = 1.2470× 108.

Using either approach, the word FOR appears about 52 times as often in
the data set as the Markov model would predict.

The answers provided by the two approaches are almost but not quite equal.
The expectation given by the first approach is

(# words)P (space, F )P (F,O)P (O,R)P (R, space),

while the expectation given by the second approach is

(# characters− 4)π(space)P (space, F )P (F,O)P (O,R)P (R, space).

Since

π(space) =
# words

# characters
,

the only difference is the “minus 4” in the second expression. The ratio
between the answers given by the two approaches is

# characters

# characters− 4
= 1.00000000000093.


