Math 4740: Homework 6 Solutions: Additional Problem

(a) Let @ be the transition matrix of the proposal chain. For any two distinct
colorings f,g:V — C,

if f and ¢ differ at exactly one vertex,

Q(f.9) = {ﬁ

0 if f and ¢ differ at more than one vertex.

Therefore Q(f, g) = Q(g, f), so the Metropolis transition matrix P has the
following formula: if f # g, then P(f,g) = Q(f, 9)R(f, g) where

Rif.g) =min {1, 70 L

We compute

m(g) _ a9 /7 _ NN

m(f)  oND/Z '
Suppose f and g differ at a single vertex v. It is actually quicker to compute
the difference N(g)—N(f) than to compute either N(f) or N(g) individually.
Call an edge of the graph “good” if the two vertices that it connects have
different colors, and “bad” if its two vertices have the same color. Then
N(f) counts the number of bad edges of the graph when the vertices are
colored according to f. If we start with f and recolor the vertex v to make
the new coloring ¢, the only edges that can change between bad and good
are the edges between v and its neighbors. Based on this insight, we define
N,(f) to be the number of vertices w that are neighbors of v for which
f(v) = f(w), that is, N,(f) is the number of bad edges coming out of v.
Then N(g)— N(f) = N,(g9) — N,(f). If the graph is very large, it takes much
less time to compute N,(g) — N,(f) than to compute N(f) or N(g).

Here is a description of the transition rule. Say that (X,,) is the Metropolis
chain on graph colorings. Starting from X,, = f, define the proposal coloring
g by choosing a vertex v uniformly at random and assigning a new color to v
also uniformly at random from C'. If g = f (because the new color of v is the
same as its original color), then set X, .1 = g = f. If g # f, then compute
the difference N,(g) — N,(f). If Ny(g9) — N,(f) <0, so that g has the same
number of bad edges as f or fewer, then set X,,.1 = g. If N,(g9) — No(f) > 0,



then flip a coin with heads probability of a™*(@)=No(/) Set X, ., = ¢ if heads
and X, = f if tails.

(b) When o = 1, the rule described above always sets X,,,; = g. That is,
the proposal from () is always accepted, so P = Q.

(c) Sending o — 0 in the transition rule from (a) results in the following:
If Ny(9) — No(f) <0, then set X, = g. If Ny(g9) — N,(f) > 0, then set
X1 = f. Therefore every proposal that decreases the number of bad edges
or keeps the same number of bad edges is accepted, and every proposal that
increases the number of bad edges is rejected.

Note that the derivation of the transition rule makes no sense when o = 0,
since 7 is not defined. Nevertheless the transition rule itself is well-defined,
and given in the previous paragraph. In fact, it will be seen in part (d) that
the Metropolis chain with @ = 0 may have more than one communicating
class of recurrent states, so it may not have a unique stationary distribution.

(d) The transition rule from part (c) rejects all proposals that increase the
number of bad edges. In the given example coloring, every proposal that
changes the color of a single vertex must increase the number of bad edges,
so it will be rejected. Therefore the given coloring is an absorbing state for
the Metropolis chain.

To go into more detail: The only bad edge in the example is the one connect-
ing the two red vertices. If one of the red vertices is changed to a different
color, then that edge becomes good, but two good edges become bad. If one
of the other vertices is changed, then the bad edge does not become good,
and at least one previously good edge turns bad.

(e) We'll answer the second and third questions before the first question.
When « is very close to 1, the Metropolis chain barely distinguishes between
colorings with many versus few bad edges, so it may take a long time to
stumble on a proper coloring. When « is very close to 0, the Metropolis
chain may spend a long time “trapped” at suboptimal colorings such as the
example from part (d), where the probability of accepting any proposal is at
most «. Therefore a value of a somewhere in the middle is probably optimal.

Adding more colors diminishes the effectiveness of a “trap” like the one in



part (d). In that example, if a fifth color were available, even when oo = 0 the
Metropolis chain would accept proposals using that color. Likely it would
not take too long to find a proper coloring. A reasonable guess is that the
more colors available, the lower « can safely be set, and the faster the chain
will find a proper coloring.

Finally, the first question. Consider the “greedy algorithm” for finding a
proper coloring: Start with one vertex, color it with any color. Move to
the next vertex and give it a color that is different from all its neighbors,
if available. Keep going until all vertices are colored. Let A be the highest
degree of a vertex in the graph. If the total number of colors |C| is at
least A + 1, then the greedy algorithm will always give a proper coloring.
If |C| < A then the greedy algorithm can get trapped. I personally would
guess that in this scenario, the Metropolis chain will find a proper coloring
reasonably quickly if it exists. But if anyone could prove such a statement,
it would be worthy of a published paper!

The existing research on this algorithm focuses on the case where |C] > A+2
and a = 0. In that situation, all the non-proper colorings are transient states
of the Markov chain, and there is a single communicating class that contains
all the proper colorings. The stationary distribution is uniform on the set
of proper colorings. Since |C| > A, finding a proper coloring is easy via
the greedy algorithm. The question is whether the Metropolis chain quickly
finds a random proper coloring, that is, how long it takes for the chain to
converge to its stationary distribution. It is conjectured that if the graph has
n vertices and |C'| > A + 2, the number of steps until the chain is roughly
stationary should be on the order of nlogn. This has been proved when
|C| > 2A, and there are partial results for |C| = A when 1 < a < 2, but
the original conjecture seems quite difficult. For more information, see:

http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf (Ch.14)
http://www.cc.gatech.edu/~vigoda/survey.pdf
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