
Math 4740: Homework 8 Solutions: Extra Credit

Solution 1: The number of satellites that were launched between times 0
and t is N(t) ∼ Poisson(λt). In addition, conditioned on N(t) = k, the
launch times have the same distribution as k independent uniform random
variables on [0, t]. Therefore we can re-imagine the launching process as
follows. There is a numbered list of satellites, S1, S2, . . .. Each satellite picks
a launch time independently and uniformly in [0, t]. Let Un be the launch
time chosen by satellite Sn. Then, the number of launches N(t) is chosen as
an independent Poisson(λt) random variable. Satellites S1, S2, . . . , SN(t) get
launched at times U1, U2, . . . , UN(t), and the rest stay on the ground.

Let Y be the lifetime distribution of each satellite. That is, P(Y ≤ s) = F (s),
and the probability that any given satellite’s lifetime exceeds s is P(Y > s) =
1−F (s). Given that satellite Sn is launched at time Un, the probability that
it will still be working at time t is P(Y > t − Un). Therefore the overall
probability that satellite Sn is still working at time t, averaged over all the
possible values of Un, is

p(t) =
1

t

∫ t

0

P(Y > t− u)du =
1

t

∫ t

0

P(Y > s)ds.

(Change of variables: s = t − u.) Not only is each satellite’s probability
of working at time t equal to p(t), the probabilities are independent for the
different satellites. This would not be true if we had listed the satellites in
order of launch time, since satellites launched later would be more likely to
survive. But the way we have set things up, the survival probabilities are
indeed independent.

Let X(t) be the number of satellites that were launched and are still working
at time t. We compute X(t) by first computing N(t) ∼ Poisson(λt), the
number of launched satellites, and then saying that each one survives with
independent probability p(t). This is an example of thinning, see section
2.4.1, and the result proved in class says that X(t) ∼ Poisson(p(t) · λt):

X(t) ∼ Poisson

(
λ

∫ t

0

P(Y > s)ds

)
= Poisson

(
λ

∫ t

0

[1− F (s)]ds

)
.

As t → ∞, the Poisson rate converges to λ
∫∞
0

P(Y > s)ds = λE[Y ] = λµ
by additional problem 1 on HW 7.



Solution 2: This is the solution given in the textbook, see Theorem 2.12 and
Example 2.4 in section 2.4.1. The satellite process works by taking the rate λ
Poisson process {N(s) : 0 ≤ s ≤ t} and keeping a satellite that was launched
at time s with probability 1 − F (t − s). By Theorem 2.12, the result is a
nonhomogeneous Poisson process {M(s)} with rate λ̃(s) = λ[1 − F (t − s)].
If X(s) is the number of satellites still working at time s, then in general
M(s) is not necessarily equal to X(s). This is because the definition of M(s)
means that if a satellite is going to stop working before time t, it is erased
immediately. Nevertheless it is true that M(t) = X(t).

The formula for the distribution at time s of a nonhomogeneous Poisson
process is M(s) ∼ Poisson(

∫ s

0
λ̃(r)dr), see p.103 of the printed textbook or

p.85 of the PDF. Therefore,

X(t) ∼ Poisson

(∫ t

0

λ[1− F (t− r)]dr
)

= Poisson

(
λ

∫ t

0

[1− F (s)]ds

)
using the change of variables s = t − r. This matches the formula on the
previous page, and the rest of the solution is the same.

In the end you can have your pick between the two solutions. Solution 2 is
more straightforward once you know the theory of nonhomogeneous Poisson
processes, and it is the one the textbook intended. Solution 1 uses only ideas
that we have covered in class or on the homework but combines them in a
clever way.


