Math 4740: Homework 8

Due Friday, April 8 in class.

Textbook exercises (from section 2.6): 2.18, 2.22, 2.34, 2.42, 2.57.

Additional problems:

1. Explain the difference between a Poisson process $\{N(s)\}\$ with rate λ and a Poisson random variable $N(s)$ with rate λs .

2. (a) Fix $t > 0$ and let

$$
A = \{ (t_1, t_2, t_3, t_4) \in \mathbf{R}^4 : 0 \le t_1 \le t_2 \le t_3 \le t_4 \le t \}.
$$

Use a symmetry argument to explain why the volume of A is $t^4/24$.

(b) Let $\{N(s)\}\$ be a Poisson process with rate λ , arrival times $0 = T_0$, T_1, T_2, \ldots , and interarrival times $\tau_k = T_k - T_{k-1}$. In order to have $N(t) = 4$ and $T_1 = t_1, T_2 = t_2, T_3 = t_3, T_4 = t_4$, it is required that $\tau_1 = t_1, \tau_2 = t_2 - t_1$, $\tau_3 = t_3 - t_2, \tau_4 = t_4 - t_3, \text{ and } \tau_5 > t - t_4.$

Let $f(t_1, t_2, t_3, t_4)$ be the joint density function of T_1, T_2, T_3, T_4 conditioned on $N(t) = 4$. Since an Exp(λ) variable has density function $\lambda e^{-\lambda t}$, one might guess the following (incorrect!) formula for f :

$$
f(t_1, t_2, t_3, t_4) = (\lambda e^{-\lambda t_1})(\lambda e^{-\lambda (t_2 - t_1)}) (\lambda e^{-\lambda (t_3 - t_2)}) (\lambda e^{-\lambda (t_4 - t_3)}) (e^{-\lambda (t - t_4)})
$$

on A, and $f = 0$ outside A. (The last term is the probability that $\tau_5 > t-t_4$.)

If f were defined by the formula above, what would be

$$
\int_A f(t_1, t_2, t_3, t_4) dt_1 dt_2 dt_3 dt_4?
$$

What *should* that integral be? What was the problem with the formula for f , and how should it be fixed?

(c) Let U_1, U_2, U_3, U_4 be independent uniform random variables on [0, t], and let $V_1 \leq V_2 \leq V_3 \leq V_4$ be the U_i listed in increasing order. Use part (a) to

find the joint density function of the V_i , and check that it is the same as the joint density function of the T_i conditioned on $N(t) = 4$.

3. (a) Let $\{N(s)\}\$ be a Poisson process with rate λ . Fix $t_0 > 0$ and let $M(s) = N(t_0) - N(t_0 - s)$ for $0 \le s \le t_0$. You could think of $\{M(s): 0 \le s \le t_0\}$ $s \leq t_0$ as a "backwards Poisson process." Show that $\{M(s)\}\$ satisfies all three conditions of Theorem 2.7 in section 2.2, so in fact it is the beginning of a (regular) Poisson process with rate λ .

(b) Use part (a) to solve Exercise 2.29 in the textbook.

Extra credit: Textbook exercise 2.53.