Math 4740: Number theory for Lemma 1.16

Lemma. For a state x of a Markov chain, let $I_x = \{n \ge 1 : P^n(x, x) > 0\}.$ If the greatest common divisor of I_x is 1 (i.e. x has period 1), then there is an integer n_0 such that for all $n \geq n_0$, $n \in I_x$.

Proof. A subset I of Z is called an *ideal* if it is closed under addition and "ambient multiplication." That is, if $a, b \in I$ then $a + b \in I$, and if $a \in I$, then $ca \in I$ for all $c \in \mathbb{Z}$. Examples of ideals include $I = \{0\}, I = \mathbb{Z}$, and $I = \{3c : c \in \mathbb{Z}\}\$. An ideal is called *principal* if it takes the form $I = \{cd : c \in \mathbf{Z}\}\)$ for fixed d. All three of the examples above are principal ideals: respectively we take $d = 0$, $d = 1$, and $d = 3$.

In fact, every ideal in **Z** is a principal ideal. (A number theorist would say that **Z** is a "principal ideal domain.") The proof is this. Let $I \subseteq \mathbf{Z}$ be an ideal. For any $n \in I$, I must contain all the integer multiples of n; in particular this means $-n \in I$, so I is symmetric about 0. If actually $I = \{0\}$ then it is principal. If not, I must contain at least some positive elements, so we can let d be the least positive element of I . Immediately, I contains the set $\{cd : c \in \mathbf{Z}\}\$. We claim I is actually equal to this set. Suppose for contradiction that I contains an element b which is not an integer multiple of d. Using division with remainder, we can write $b = dq + r$ where $q, r \in \mathbb{Z}$ and $0 < r < d$. Now, since $b \in I$ and $-dq = (-q)d \in I$, we have $r = b-dq \in I$ by closure under addition. But since $0 < r < d$, this contradicts the definition of d as the least positive element of I. We conclude that $I = \{cd : c \in \mathbf{Z}\}\,$, so it is a principal ideal.

Returning now to the lemma, the set I_x is not quite an ideal. It is closed under addition and under ambient multiplication by *positive* integers c , but not negative integers. To "fix" this problem we consider the set of all finite linear combinations of elements of I_x :

$$
J = \{c_1a_1 + c_2a_2 + \cdots + c_\ell a_\ell : \ell \ge 1, a_1, \ldots, a_\ell \in I_x, c_1, \ldots, c_\ell \in \mathbf{Z}\}.
$$

You can check that J is closed under addition and ambient multiplication by Z , hence J is an ideal. The argument above shows that J is principal, that is, $J = \{ cd : c \in \mathbb{Z} \}$ for some positive integer d. In fact d is the period of x , as we will show.

Certainly $I_x \subseteq J$, so every element of I_x is divisible by d. Since $d \in J$, there exist fixed elements $a_1, \ldots, a_\ell \in I_x$ and coefficients $c_1, \ldots, c_\ell \in \mathbf{Z}$ such that

 $c_1a_1 + \cdots + c_\ell a_\ell = d$. Say that md is the least element of I_x . We'll choose large positive coefficients C_1, \ldots, C_ℓ and consider the elements

$$
k = C_1a_1 + C_2a_2 + \dots + C_\ell a_\ell,
$$

\n
$$
k + d = (C_1 + c_1)a_1 + (C_2 + c_2)a_2 + \dots + (C_\ell + c_\ell)a_\ell,
$$

\n
$$
k + 2d = (C_1 + 2c_1)a_1 + (C_2 + 2c_2)a_2 + \dots + (C_\ell + 2c_\ell)a_\ell,
$$

\n
$$
\vdots
$$

\n
$$
k + md = (C_1 + mc_1)a_1 + (C_2 + mc_2)a_2 + \dots + (C_\ell + mc_\ell)a_\ell.
$$

We want to make the C_i big enough that each coefficient $C_i + jc_i$ for $0 \leq$ $j \leq m$ is nonnegative; one way to accomplish this is to let $C_i = m|c_i|$. Given this choice of C_i , all the elements $k, k + d, \ldots, k + md$ are contained in I_x . Since also $md \in I_x$, by repeatedly adding md we conclude that I_x contains every multiple of d above k .

Already just from the statements $k \in I_x$ and $k + d \in I_x$ we can see that the period of x is d . (We knew it was at least d , and if for sake of contradiction the period were $D > d$, every pair of elements in I_x would be at least D apart.) In the special case that x has period 1, we have shown that I_x \Box contains every integer above k , proving the lemma.