
Math 4740: American call options

Consider a stock whose price at time n is Sn, and an American option with
expiration time N . Assume that the payoff gn from exercising the option
at time n depends only on the stock price Sn: gn = g(Sn) for some fixed
function g. If the option is a call with strike price K, then g(x) = max{0, x−
K}. If the option is a put with strike price K, then g(x) = max{0,K − x}.

As usual, we let r be the interest rate and P∗, E∗ denote probability and
expectation with respect to the risk-neutral measure, so that Sn/(1+r)n is a
martingale under P∗. This means that for every possible history (S0, . . . , Sn)
of stock prices up to time n,

1

1 + r
E∗[Sn+1 | S0, . . . , Sn] = Sn.

Theorem. In the situation described above, if g is a convex function and
g(0) = 0, then

g(Sn) ≤ 1

1 + r
E∗[g(Sn+1) | S0, . . . , Sn].

The left side is the payoff from exercising the option at time n. The right
side is the expected payoff from exercising the option at time n + 1 given
the history up to time n, discounted by the interest rate.

Proof. We saw in class that since g is convex and g(0) = 0, it follows that
for all 0 ≤ λ ≤ 1, g(λx) ≤ λg(x). Therefore,

g(Sn) = g

(
1

1 + r
E∗[Sn+1 | S0, . . . , Sn]

)
≤ 1

1 + r
g (E∗[Sn+1 | S0, . . . , Sn]) .

It remains to show that

g (E∗[Sn+1 | S0, . . . , Sn]) ≤ E∗[g(Sn+1) | S0, . . . , Sn].

This is a general fact known as Jensen’s inequality : for any convex function
g and any real-valued random variable X, g(E[X]) ≤ E[g(X)]. See

http://www.math.uah.edu/stat/expect/Properties2.html#jen

http://www.math.uah.edu/stat/expect/Properties2.html#jen


for a proof; after reading down to statement 9, click where it says “I Proof:”
to see the actual proof. Note that the definition of convexity given in that
link is different from ours, but it is equivalent.

The approach in class was to assume that given Sn, there are only two
possibilities for Sn+1. What we said was, if a is a sequence of n coin-flips
representing the history of the stock price up to time n, then

E∗[Sn+1 | a] = P∗(aH | a)Sn+1(aH) + P∗(aT | a)Sn+1(aT ),

E∗[g(Sn+1) | a] = P∗(aH | a)g(Sn+1(aH)) + P∗(aT | a)g(Sn+1(aT )).

We want to show that g applied to the first line is less than or equal to the
second line. This is a statement of the form

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2)

where λ = P∗(aH | a), x1 = Sn+1(aH), and x2 = Sn+1(aT ). Therefore it is
true by convexity of g.

As a consequence of this theorem, we can conclude that if g is convex with
g(0) = 0 (which holds for the American call), it is always optimal to wait
until the expiration time N to exercise the option. The reasoning is this.
Suppose we are sitting at time n < N and we have not yet exercised the
option. There are three choices:

1. Exercise the option now at time n.

2. Wait and exercise the option at time n+ 1.

3. Wait until time n + 1 and then re-evaluate according to the optimal
strategy given the history through time n+ 1.

The theorem says that choice 2 has a higher expected payoff than choice 1.
Choice 3 optimizes over many strategies, one of which is choice 2, so choice
3 has an equal-or-higher expected payoff than choice 2. We conclude that
choice 3 will maximize the expected payoff. Therefore we proceed to time
n+ 1 without exercising the option. Now apply this reasoning again; it says
to proceed to time n+2 without exercising the option. We continue up until
time N when we have no choice but to exercise the option.


