
Math 6710 Homework 6: Solutions Fall, 2016

Grading: 1, 2, 3, 4, 5 (each 8 pts).

Problem 1: a) Let µ = E[X1]. Since neither σ2 nor V n change when each Xi is replaced by

Xi−µ, we may assume that µ = 0. Then each E[X2
i ] = σ2 and E[XiXj] = 0 for i 6= j. It follows

that E[(Xk−Xn)2] = (n−1)2
n2 E[X2

k ]+
∑

i 6=k
1
n2E[X2

i ] = ( (n−1)
2

n2 + n−1
n2 )E[X2

1 ] = n−1
n
σ2 since all the

cross terms have expectation zero. Finally, E[V n] = 1
n−1

∑n
k=1E[(Xk−Xn)2] = n

n−1 ·
n−1
n
σ2 = σ2.

b) Again assume µ = 0. Since E[X2
1 ] = σ2 < ∞, the classical Weak LLN (Theorem 2.2.9)

implies that 1
n

∑n
k=1X

2
k →p σ

2. Also, 1
n

∑n
k=1[(Xk −Xn)2 −X2

k ] = 1
n

∑n
k=1[−2XkXn + X

2

n] =
1
n
(−2Xn

∑n
k=1(Xk) + nX

2

n) = −X2

n. Since Xn →p 0 again by the Weak LLN, Homework 5

Problem 2 implies that Xn ·Xn →p 0 ·0. Add this to the previous result that 1
n

∑n
k=1X

2
k →p σ

2.

The conclusion is that 1
n

∑n
k=1(Xk−Xn)2 →p σ

2 + 0. We can replace the initial fraction 1
n

with
1

n−1 since n
n−1 → 1. Thus V n →p σ

2.

Problem 2: a) Using the triangle inequality, ||Z1||p ≤ ||X11|X1|>C ||p + ||E[X11|X1|>C ]||p. The

latter term is a constant so it equals |E[X11|X1|>C ]| ≤ E|X11|X1|>C | = ||X11|X1|>C ||1. After,

since |X1|p1|X1|≤C ≤ |X1|p and ||X1||p < ∞, by the DCT limn→∞E[|X1|p1|X1|≤C ] = E[|X1|p]
from where we can get ||X11|X1>C|||p → 0 so is less than δ/2 for a sufficiently large C. Writ-

ing a similar argument for ||X11|X1|>C ||1 and combining we get the desired result. b) Let

us pick C large enough so ||Z1||p < δ/2, then using the triangle inequality we have that

||Sn||p ≤ ||W1 + · · · + Wn||p + ||Z1||p + · · · + ||Zn||p ≤ ||W1 + · · · + Wn||p + n||Z1||p from

where ||Sn/n||p ≤ ||W1 + · · ·+Wn||2/n+ ||Z1||p ≤ (
∑n

i=1E[W 2
i ])0.5/n+δ/2 ≤ 2C/

√
n+δ/2 < δ

for n > [(4C/δ)2]. Hence, ||Sn/n||p → 0, i.e. Sn/n→ 0 in Lp.

Problem 3: a) Since U1, U2, ... are i.i.d and f is measurable then by the Theorem 2.1.6

f(Ui) are independent. They are identically distributed because P (f(Ui) ∈ A) = P (Ui ∈
f−1(A)) = m(f−1(A)) is the same for each i (m is the Lebesgue measure on [0, 1]). Each

E|f(Ui)| =
∫
[0,1]
|f(y)|dm(y) =

∫ 1

0
|f(y)|dy < ∞. Hence, we can use the Theorem 2.2.9 to

get
∑n

i=1 f(Ui)/n →p E[f(U1)] =
∫ 1

0
f(y)dy = I, as desired. b) By Chebyshev’s inequal-

ity we have: P (|In − I| > an−0.5) ≤ (n/a2) Var In = (n/a2)
∑n

i=1 Var f(Ui)/n
2, by Theorem

2.2.1, since
∫ 1

0
f(x)2dx < ∞ i.e. E(f(Ui))

2 < ∞ so Var f(Ui) = E(f(Ui)
2) − (Ef(Ui))

2 =∫ 1

0
f(x)2dx− (

∫ 1

0
f(x)dx)2 =: J . Thus, P (|In − I| > an−0.5) ≤ (n/a2)Jn/n2 = J/a2.

Problem 4: Using the integral test for convergence and since E[|Xi|] =
∑∞

k=2C/(k log k) we get

that E[|Xi|] =∞. Next, note that nP (|Xi| > n) = n
∑∞

j=n+1C/(j
2 log j) ≤ Cn

logn

∑∞
j=n+1

1
j(j−1) =

Cn
logn

∑∞
j=n+1(

1
j−1−

1
j
) = C/ log n, so limn→∞ nP (|Xi| > n) = 0 and by the Weak LLN (Theorem

2.2.7) Sn/n − µn → 0 for µn = E[X11|X1|≤n] =
∑n

j=2(−1)jC/(j log j). Note that the latter

sum is convergent as a monotonic alternating series whose terms converge to 0 and denote the
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number it converges to by µ. Hence, Sn/n→p µ, which completes the proof.

Problem 5: Let Xn,k = Xk and an = nE[X11{X1 ≤ bn}]. Theorem 2.2.6 says that under

certain conditions (Sn − an)/bn →p 0. We will show that (1) bn ≤ n/ log2 n for n sufficiently

large; (2) an/(n/ log2 n) → −1; and (3,4) the two conditions of Theorem 2.2.6 are met. Given

these results, (Sn− an)/bn →p 0⇒ (Sn− an)/(n/ log2 n)→p 0⇒ (Sn− an)/(n/ log2 n) + (an +

n/ log2 n)/(n/ log2 n)→p 0⇒ Sn/(n/ log2 n)→p −1, as desired. To show (1): Write m = m(n).

We have 2m−1(m − 1)3/2 < n ≤ 2mm3/2 so (m − 1) + 3
2

log2(m − 1) < log2 n ≤ m + 3
2

log2m.

Dividing by m, we see that (log2 n)/m → 1 as n → ∞. Hence bn = 2m < 2n/(m − 1)3/2 ≤
n/ log2 n for large enough n. (In fact bn is asymptotically proportional to n/(log n)3/2.) To

show (2): Since (log2 n)/m → 1 it is enough to show that man/n → −1. We have an/n =

E[X11{X1 ≤ bn}] = −p0 +
∑m

k=1 pk(2k−1) = −1+
∑m

k=1 2kpk +
∑∞

k=m+1 pk = −1+[1−1/(m+

1)]+
∑∞

k=m+1 pk where the last equality used the telescoping sum. Thus man/n = −m/(m+1)+

m
∑∞

k=m+1 pk. The first term converges to −1. The second term is m
∑∞

k=m+1 1/[2kk(k+ 1)] ≤
(1/m)

∑∞
k=m+1 1/2k = 1/(m2m) → 0. To show (3): We must check that nP (X1 > bn) → 0.

This quantity is n
∑∞

k=m+1 1/[2kk(k + 1)] ≤ (n/m2)
∑∞

k=m+1 1/2k = n/(m22m) ≤ m−1/2 since

n/2m ≤ m3/2. To show (4): We must check that (1/b2n)nE[X2
11{X1 ≤ bn}]→ 0. This quantity

is (n/22m)[p0 +
∑m

k=1 pk(2k − 1)2] ≤ (m3/2/2m)[1 +
∑m

k=1 2k/k(k + 1)]. The term (m3/2/2m) · 1
tends to 0. Also, if j = bm − 2 log2mc then

∑j
k=1 2k/k(k + 1) +

∑m
k=j+1 2k/k(k + 1) ≤

2j
∑j

k=1 1/k(k + 1) + (j + 1)−2
∑m

k=j+1 2k. Using the telescoping sum, the first term is less

than 2j · 1 ≤ 2m−2 log2 m = 2m/m2. The second term is less than (m − 2 log2m)−22m+1. When

multiplying by m3/2/2m we obtain an upper bound of m−1/2 + 2m3/2(m − 2 log2m)−2, which

tends to 0. We have now shown properties (1)-(4), so the proof is complete.
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