
THREE DIMENSIONAL MANIFOLDS, SPRING 2016

1. Lecture 1

Some topics I’d like to cover this semester:

(1) Sphere (Kneser) and Torus (JSJ) decompositions of 3-manifolds.
(2) The Sphere and Loop theorems of Papakyriakopoulos.
(3) Geometric structures on 3-manifolds.
(4) Specifically, hyperbolic geometry.
(5) Sutured manifolds and Agol’s Fibering criterion.

Some references: For the first two items, Hatcher’s Notes on Basic 3-Manifold
Topology (https://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html) are
a good source, see also books by Hempel, Jaco, Schultens [1, 2, 6]. For geometric
structures in general, see Thurston’s Three-Dimensional Geometry and Topology [8].
For the structures which come up in the geometrization theorem, see Scott’s article
http://blms.oxfordjournals.org/content/15/5/401.full.pdf+html [7]. For
more on hyperbolic geometry, see Ratcliffe’s Foundations of hyperbolic manifolds
[4]. For the last item, see Scharlemann [5].

1.1. Examples of 3-manifolds. An n–manifold is a Hausdorff, second countable
space, which is locally homeomorphic to Rn. Examples of 3–manifolds are euclidean
space R3, the 3–torus T 3 = S1 × S1 × S1, the 3-sphere S3, and open subsets of
these, for example knot complements.

A surprisingly general way to build a 3–manifold is to start with a surface Σ and
a homeomorphism φ : Σ→ Σ, and form the mapping torus Mφ = Σ× [0, 1]/(x, 0) ∼
(φ(x), 1). (In other words, glue the boundary components of Σ× [0, 1] to each other
using the homeomorphism φ.) Such a mapping torus is also called a surface bundle
over a circle.

1.2. (G, X) structures. (cf. [8, Chapter 3]) Let X be a topological space. A
pseudogroup G on X is a set of homeomorphisms between open subsets of X, so
that

(1) The domains of f ∈ G cover X;
(2) G is closed under restriction, composition, and inverse; and
(3) (locality) If f : U → V is a homeomorphism, and U has an open cover {Uα}

so that every restriction fα = f |Uα is in G, then f is in G.

Any space X admits at least two pseudogroups:

• The trivial pseudogroup G = {1U | U open in X}, and
• the maximal pseudogroup TOP = {f : U → V | U, V open, f a homeo}.

Most interesting pseudogroups lie in between.
If X is a space, an G a pseudogroup on that space, we can define a (G, X)–space

to be a space M , together with an open covering by charts Uα ⊆M and chart maps
φα : Uα → X, so that the transition maps γαβ lie in G. For an arbitrary pair α, β,
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let Uαβ = Uα∩Uβ ; the transition map γαβ : φα(Uαβ)→ φβ(Uαβ) is the composition
γαβ = φβ ◦ φ−1α .

When X and M are manifolds, we call M a (G, X)–manifold, or just G–manifold
if X is understood.

Examples of (G, X)–structures (where X = Rn if it is not mentioned):

• A TOP–manifold is just a manifold.
• DIFF is the pseudogroup generated by all C∞ diffeomorphisms of Rn. A
DIFF–manifold is the same thing as a smooth manifold.
• PL is generated by restrictions to open subsets of piecewise linear homeo-

morphisms between n–dimensional polyhedra in Rn.
• If X is a Riemannian manifold, and G is generated by Isom(X), we get some

kind of metric structure on any G–manifold M . For example if X = Hn,
then M is a hyperbolic manifold.
• One can also define real analytic, complex, symplectic, contact, etc. struc-

tures using this scheme.

Fixing (G, X), a G–isomorphism is a homeomorphism h : M1 →M2, so that, for
any charts φα : Uα → X for M1 and ψβ : Vβ → X for M2, ψβ ◦h ◦φ−1α |φα(h−1(Vβ))
is in G.

The pseudogroup PL does not contain DIFF, but there is a sense in which it is
intermediate: every DIFF–structure uniquely determines a PL–structure, through
the existence of smooth triangulations (see Lecture 3).
WARNING: In high dimensions, the classification problems for TOP–manifolds,
PL–manifolds, and DIFF–manifolds all differ.

A glimpse of how the categories differ is given in the following table, which
addresses the question: Fixing n and G, is every homotopy n–sphere G–isomorphic
to the standard sphere Sn?

dim TOP PL DIFF

≤ 2 TRUE (classical)
3 TRUE (Perelman*)
4 TRUE (Freedman*) OPEN

5, 6
TRUE (Smale*, Stallings, Newman)

TRUE (Milnor–Kervaire)
≥ 7 FALSE (Milnor*)

(Note: * after a name indicates not only a Fields medal, but a Fields medal whose
citation includes the result in the box!)

In fact, things are much more complicated and interesting even than this table
suggests. But in terms of the material in this class we have the following:

Important fact. In dimensions ≤ 3, the distinctions between TOP, PL, and DIFF
“disappear”:

• Let M be an n–manifold for n ≤ 3. Then M supports a unique PL structure,
and a unique DIFF structure.
• Every PL embedding between manifolds of dimension ≤ 3 is isotopic to a

smooth one, and vice versa.

(See Moise’s book [3] for more on the above.)
WARNING: Topological “embeddings” can be wild. Examples include wild knots
and Alexander’s horned sphere. We therefore generally restrict attention to locally
flat (eg PL or smooth embeddings).
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Convention 1.1. Unless otherwise noted, all maps and manifolds are to be as-
sumed smooth (though corners are ok – see below).

1.3. Three-manifolds as we know them today. Much of the following termi-
nology will be defined later.

Let M be compact closed and oriented:

• M has a unique decomposition into prime summands (Kneser decomposi-
tion).
• If M is prime, it decomposes canonically along tori into pieces which are

either Seifert fibered or atoroidal (JSJ decomposition).

The above is 20th century knowledge. But in the 21st century, we know vastly
more:

• Thurston’s Geometrization Conjecture is true. The pieces from the JSJ
decomposition support geometric structures ( (G, X)–structures where G is
generated by a Lie group acting transitively by isometries on X) of eight
specific types, including hyperbolic, spherical, and euclidean.
• A special case of the last statement is the Poincaré Conjecture in dimension

3.
• Hyperbolic manifolds are very well understood, thanks to the proofs of

the Ending Lamination Conjecture and the Marden Conjecture, which are
probably beyond the scope of this class.
• Hyperbolic and many other manifolds are finitely covered by surface bun-

dles over S1 (they virtually fiber).

The last item uses a combination of geometric group theory techniques with Agol’s
fibering criterion. It is a goal of this course to do enough 3–manifold topology to
understand a proof of Agol’s fibering criterion.
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