
THREE-MANIFOLDS NOTES

DREW ZEMKE

Last Time. We saw that if B is an orbifold, then there is a universal orbifold convering
space B̃ → B. The orbifold fundamental group B, denoted πorb

1 B, is defined to be the deck
group of the universal cover.

As in ordinary covering space theory, there is a “Galois correspondence”

{subgroups of πorb
1 B}/(conjugacy) ↔ {orbifold covers B̃→ B}/(isotopy).

Orbifold Euler Characteristic. We want to define an Euler characteristic χ of orbifolds
so that χ is multiplicative under finite orbifold covering maps. For instance, we’ll have

χorb(disk with order-n cone point) =
1

n
,

χorb(disk with half of its boundary mirrored) =
1

2
.

We can extend this to a definition of Euler characteristic for a general orbifold by for-
mally dividing the orbifold into pieces marked by a single group G, and defining

χorb(piece) =
χ(piece)

|G|
.

This will satisfy

χorb(B) =
1

n
χorb(B̃) for an n-fold cover B̃→ B,

χorb(A ∪ B) = χorb(A) + χorb(B) − χorb(A ∩ B).

Example 1. The following is a complete list of the orientable 2-orbifolds with positive
Euler characteristic:

• the “teardrop,” a 2-sphere with a single order-p cone point

• the “spindle,” a 2-sphere with cone points of orders p and qwith gcd(p, q) = 1

• the 2-sphere

• the 2-disk
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FIGURE 1. Orientable 2-orbifolds with positive Euler characteristic.

Remark. Later on we’ll use the fact that these are the 2-orbifolds covered by a disk:

FIGURE 2. The 2-orbifolds covered by D2.

(BACK TO) ESSENTIAL SURFACES IN SEIFERT FIBERED SPACES

Lemma 2. Let M be a SFS1, with π : M → B the projection onto the base orbifold. If
p : B̂→ B is an orbifold covering map, then p induces a covering map p̂ : M̂→M. The cover
p̂ is regular whenever p is.

Exercise 1. Prove Lemma ??.

Corollary 3. The induced map π1M → πorb
1 B is a surjection, with kernel generated by a

generic fiber ofM.

Proposition 4. Let Σ ⊂ M be a 2-sided surface in an irreducible SFS M. If Σ is horizontal,
then it is essential.

Proof. Let B be the base orbifold of M with projection π : M → B. Then π|Σ : Σ → B
is an orbifold cover, so π1Σ → πorb

1 B is injective. We have the following commutative
diagram.

1Seifert fibered space; we’ll use this abbreviation a lot.
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π1Σ π1M

πorb
1 B

Since the diagonal arrow is an injection, the top arrow must be as well. Hence Σ is
π1-injective and therefore incompressible.

Now, we had a lemma a few lectures ago that stated that if Σ is inessential but incom-
pressible, then Σ is a boundary-parallel annulus. The following exercise completes the
proof. �

Exercise 2. Show that a SFS M contains no horizontal boundary-parallel an-
nuli.

Proposition 5. Let Σ ⊂M be a 2-sided surfaces in a SFSM. If Σ is vertical, then it is either

(1) essential,

(2) a vertical torus cutting off a model fibered solid torus,

(3) a vertical Klein bottle cutting off a model fibered solid Klein bottle,

(4) a vertical annulus cutting of a product solid torus, or

(5) a vertical Möbius band cutting off a model fibered solid Klein bottle.

Proof. Suppose Σ is not essential.

CASE 1: Σ is compressible. Let D be a compressing disk for Σ, so that D is essential in
M\Σ. Since χ(D) 6= 0, D cannot be made to be vertical, so we must be able to make it
horizontal. If M1 is the component of M\Σ containing D and B1 is the base orbifold
of M1, we get an orbifold cover D → B1. Since B1 contains no corner reflectors, from
Figure ?? we see that B is either a disk, a disk with a cone point, or a half-disk with part
of its boundary mirrored. In the first two cases it follows that M\Σ is a model fibered
solid torus, and in the last case it follows thatM\Σ is a model fibered solid Klein bottle.

CASE 2: Σ is incompressible but ∂-compressible. As before, a ∂-compressing diskD can
be made horizontal in some component M1 of M\Σ, and we get an orbifold covering
D → B1 of the base orbifold B1 of M1. Hence B1 is a disk; part of ∂B1 contains the
projection of points in ∂Σ, and another part contains the projection of points in ∂M.

Since the part of ∂B1 coming from points in Σ must be connected, it follows that the
only possibilities for B1 are as shown below.
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In the left case, M\Σ is a solid torus (with trivial fibering) and Σ is an annulus. In the
right case, M\Σ is a solid Klein bottle and Σ is a Möbius band. This completes the
proof. �

UNIQUENESS OF MINIMAL TORUS DECOMPOSITIONS FOR SFSS

For the following, letM be an irreducible, orientable, compact SFS.

Lemma 6 (Lemma A). If A is an essential annulus in M, then A is isotopic to a vertical
surface unlessM is one of the following exceptional SFSs:

• T × I, where T = S1 × S1,

• K× I, where K is a Klein bottle,

• T ∼× I, or

• K ∼× I.

In the exceptional cases, the fibering onM can be modified so that A is vertical.

Lemma 7 (Lemma B). Any two Seifert fiberings on M agree on ∂M, unless M is one of the
four exceptional spaces listed above.

Lemma 8 (Lemma C). Assume N is a connected, compact, orientable, irreducible, atoroidal
3-manifold that contains an essential annulus. Then N is a SFS.

Proof of Lemma A. We assume that A cannot be isotoped to be vertical; it follows that A
can be isotoped to be horizontal. LetM1 =M\A.

CASE 1: M1 is connected. It follows that M1
∼= A × I is a trivial I-bundle over A. To

recoverM, we glue A× 0 to A× 1 by some automorphism ϕ of A. Writing A = S1 × I,
ϕ : S1×I→ S1×I is determined up to isotopy by whether or not it reverses orientation
on each factor, yielding four possibilities that correspond to the four exceptional SFSs.
In any case, we can fiber A by circles and extend that fibering to all of M so that A is
vertical.

CASE 2: M1 contains two components, M+
1 and M−

1 . Each component is a twisted
I-bundle over Ã, which is either an annulus or a Möbius band...

To be continued!
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