THREE-MANIFOLDS NOTES

DREW ZEMKE

Last Time. We saw that if B is an orbifold, then there is a *universal orbifold convering* space $\tilde{B} \rightarrow B$. The orbifold fundamental group B, denoted $\pi_1^{orb}B$, is defined to be the deck group of the universal cover.

As in ordinary covering space theory, there is a "Galois correspondence"

{subgroups of $\pi_1^{\text{orb}}B$ }/(conjugacy) \leftrightarrow {orbifold covers $\tilde{B} \rightarrow B$ }/(isotopy).

Orbifold Euler Characteristic. We want to define an Euler characteristic χ of orbifolds so that χ is multiplicative under finite orbifold covering maps. For instance, we'll have

1

$$\chi^{\text{orb}}(\text{disk with order-n cone point}) = \frac{1}{n},$$

$$\chi^{\text{orb}}(\text{disk with half of its boundary mirrored}) = \frac{1}{2}.$$

We can extend this to a definition of Euler characteristic for a general orbifold by formally dividing the orbifold into pieces marked by a single group G, and defining

$$\chi^{\text{orb}}(\text{piece}) = \frac{\chi(\text{piece})}{|\mathsf{G}|}.$$

This will satisfy

$$\chi^{\operatorname{orb}}(B) = \frac{1}{n} \chi^{\operatorname{orb}}(\tilde{B}) \quad \text{ for an n-fold cover } \tilde{B} \to B,$$

 $\chi^{\operatorname{orb}}(A \cup B) = \chi^{\operatorname{orb}}(A) + \chi^{\operatorname{orb}}(B) - \chi^{\operatorname{orb}}(A \cap B).$

Example 1. The following is a complete list of the orientable 2-orbifolds with positive Euler characteristic:

- the "teardrop," a 2-sphere with a single order-p cone point
- the "spindle," a 2-sphere with cone points of orders p and q with gcd(p,q) = 1

• the 2-sphere

• the 2-disk

Date: 07 Mar. 2016.

DREW ZEMKE

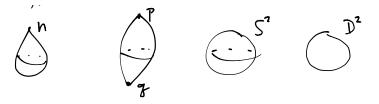


FIGURE 1. Orientable 2-orbifolds with positive Euler characteristic.

Remark. Later on we'll use the fact that these are the 2-orbifolds covered by a disk:

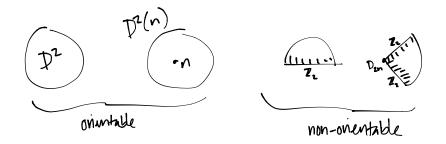


FIGURE 2. The 2-orbifolds covered by D^2 .

(BACK TO) ESSENTIAL SURFACES IN SEIFERT FIBERED SPACES

Lemma 2. Let M be a SFS¹, with $\pi : M \to B$ the projection onto the base orbifold. If $p : \hat{B} \to B$ is an orbifold covering map, then p induces a covering map $\hat{p} : \hat{M} \to M$. The cover \hat{p} is regular whenever p is.

Exercise 1. Prove Lemma ??.

Corollary 3. The induced map $\pi_1 M \to \pi_1^{orb} B$ is a surjection, with kernel generated by a generic fiber of M.

Proposition 4. Let $\Sigma \subset M$ be a 2-sided surface in an irreducible SFS M. If Σ is horizontal, then it is essential.

Proof. Let B be the base orbifold of M with projection $\pi : M \to B$. Then $\pi|_{\Sigma} : \Sigma \to B$ is an orbifold cover, so $\pi_1 \Sigma \to \pi_1^{orb} B$ is injective. We have the following commutative diagram.

¹Seifert fibered space; we'll use this abbreviation a lot.

Since the diagonal arrow is an injection, the top arrow must be as well. Hence Σ is π_1 -injective and therefore incompressible.

Now, we had a lemma a few lectures ago that stated that if Σ is inessential but incompressible, then Σ is a boundary-parallel annulus. The following exercise completes the proof.

Exercise 2. Show that a SFS M contains no horizontal boundary-parallel annuli.

Proposition 5. Let $\Sigma \subset M$ be a 2-sided surfaces in a SFS M. If Σ is vertical, then it is either

- (1) essential,
- (2) a vertical torus cutting off a model fibered solid torus,
- (3) a vertical Klein bottle cutting off a model fibered solid Klein bottle,
- (4) a vertical annulus cutting of a product solid torus, or
- (5) a vertical Möbius band cutting off a model fibered solid Klein bottle.

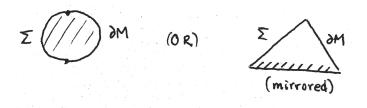
Proof. Suppose Σ is not essential.

CASE 1: Σ is compressible. Let D be a compressing disk for Σ , so that D is essential in $M \setminus \Sigma$. Since $\chi(D) \neq 0$, D cannot be made to be vertical, so we must be able to make it horizontal. If M_1 is the component of $M \setminus \Sigma$ containing D and B_1 is the base orbifold of M_1 , we get an orbifold cover $D \rightarrow B_1$. Since B_1 contains no corner reflectors, from Figure ?? we see that B is either a disk, a disk with a cone point, or a half-disk with part of its boundary mirrored. In the first two cases it follows that $M \setminus \Sigma$ is a model fibered solid Klein bottle.

CASE 2: Σ is incompressible but ∂ -compressible. As before, a ∂ -compressing disk D can be made horizontal in some component M_1 of $M \setminus \Sigma$, and we get an orbifold covering $D \rightarrow B_1$ of the base orbifold B_1 of M_1 . Hence B_1 is a disk; part of ∂B_1 contains the projection of points in $\partial \Sigma$, and another part contains the projection of points in ∂M .

Since the part of ∂B_1 coming from points in Σ must be connected, it follows that the only possibilities for B_1 are as shown below.

DREW ZEMKE



In the left case, $M \setminus \Sigma$ is a solid torus (with trivial fibering) and Σ is an annulus. In the right case, $M \setminus \Sigma$ is a solid Klein bottle and Σ is a Möbius band. This completes the proof.

UNIQUENESS OF MINIMAL TORUS DECOMPOSITIONS FOR SFSs

For the following, let M be an irreducible, orientable, compact SFS.

Lemma 6 (Lemma A). *If* A *is an essential annulus in* M*, then* A *is isotopic to a vertical surface unless* M *is one of the following exceptional SFSs:*

- $T \times I$, where $T = S^1 \times S^1$,
- $K \times I$, where K is a Klein bottle,
- $T \approx I$, or
- $K \approx I$.

4

In the exceptional cases, the fibering on M *can be modified so that* A *is vertical.*

Lemma 7 (Lemma B). *Any two Seifert fiberings on* M *agree on* ∂ M, *unless* M *is one of the four exceptional spaces listed above.*

Lemma 8 (Lemma C). *Assume* N *is a connected, compact, orientable, irreducible, atoroidal 3-manifold that contains an essential annulus. Then* N *is a SFS.*

Proof of Lemma A. We assume that A cannot be isotoped to be vertical; it follows that A can be isotoped to be horizontal. Let $M_1 = M \setminus A$.

CASE 1: M_1 is connected. It follows that $M_1 \cong A \times I$ is a trivial I-bundle over A. To recover M, we glue $A \times 0$ to $A \times 1$ by some automorphism φ of A. Writing $A = S^1 \times I$, $\varphi : S^1 \times I \to S^1 \times I$ is determined up to isotopy by whether or not it reverses orientation on each factor, yielding four possibilities that correspond to the four exceptional SFSs. In any case, we can fiber A by circles and extend that fibering to all of M so that A is vertical.

CASE 2: M_1 contains two components, M_1^+ and M_1^- . Each component is a twisted I-bundle over \tilde{A} , which is either an annulus or a Möbius band...

To be continued!